
Computational Studies of the Intestinal Host-Microbiota 
Interactome

Scott Christley, Chase Cockrell, Gary An*

Department of Surgery, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, 
USA

Abstract

A large and growing body of research implicates aberrant immune response and compositional 

shifts of the intestinal microbiota in the pathogenesis of many intestinal disorders. The molecular 

and physical interaction between the host and the microbiota, known as the host-microbiota 

interactome, is one of the key drivers in the pathophysiology of many of these disorders. This 

host-microbiota interactome is a set of dynamic and complex processes, and needs to be treated as 

a distinct entity and subject for study. Disentangling this complex web of interactions will require 

novel approaches, using a combination of data-driven bioinformatics with knowledge-driven 

computational modeling. This review describes the computational approaches for investigating 

the host-microbiota interactome, with emphasis on the human intestinal tract and innate immunity, 

and highlights open challenges and existing gaps in the computation methodology for advancing 

our knowledge about this important facet of human health.
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1. Introduction

The Human Microbiome Project (HMP) and Metagenomics of the Human Intestinal Tract 

(MetaHIT) are two large-scale data collection projects that have helped to spur research 

on the microbial communities that inhibit various niches of the human body [1-3]. Of 

the epithelial surfaces where microbes reside, the intestinal microbiota is one of the most 

diverse communities consisting of hundreds of species, and its composition varies between 

individuals as well as across space and time within the same individual [2,4-7]. The 

intestinal microbial community is established during infancy and coevolves with the host 

immune system into a symbiotic relationship [8-11]. Disturbance of this host-microbiota 

relationship has been implicated or suggested in numerous diseases such as inflammatory 
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bowel disease [12], necrotizing enterocolitis [13], gut-derived sepsis [14], and cancer 

[15,16].

The primary hypothesis of the pathogenesis of these intestinal disorders invokes a series of 

stages in the progression from a healthy state to disease, whereby external perturbations, 

genetic predispositions and host-microbiota feedback interactions lead to a self-sustaining 

chronic state involving host dysfunction and microbiota dysbiosis. We consider a healthy 

state as one where the host intestinal architecture and immune system are in complementary 

homeostasis with the commensal microflora. This is a dynamic steady-state as the microbial 

community composition undergoes changes due to dietary input as well as host nutrient 

requirements throughout the typical work/sleep circadian rhythm, yet these changes are 

typically well within the normal robust boundaries of a healthy system. The divergence 

from a healthy state starts with the introduction of a significant perturbation that disturbs 

this homeostasis. It could be a host perturbation such as an injury, trauma, surgery or 

exposure to harsh chemicals, essentially anything that activates a systemic host immune 

response that reaches the intestinal cells. It could also be a microbiota perturbation 

due to the ingestion of toxins, tainted or poisoned food, or medicines and other drugs. 

Small perturbations may become further exacerbated in some individuals due to genetic 

susceptibility, likewise it may be a combination of perturbations through diet, antibiotic 

regiments, chemotherapy or radiation treatments that lead to a disruption of the baseline 

healthy homeostasis. Interactions that feed back and forth between the host and the 

microbiota, which may involve multiple steps and transitions, eventually either lead back 

to a healthy homeostasis or head along a disease trajectory. Along the disease trajectory 

the commensal microbiota may enter a dysbiotic state by shifting towards a pathobiome, 

which further enforces a pathogenic host response [17]. It is this interactome that is the 

current “black box” of the intestinal system: peering into and manipulating this black box 

holds the promise of designing interventions that can control the interaction dynamics and 

guide the system towards a healthy outcome (Figure 1). For patients with existing chronic 

conditions, appropriate control interventions would aim to steer patients back towards 

healthy homeostasis, or at least manage the interactome to prevent the outbreak of severe 

disturbances and relapses. There are numerous review articles that discuss the underlying 

biology for each of the different aspects of the host-microbiota interactome including the 

role of the immune system [18-20], host genetics [21,22], protection from pathogens by 

the microbiota [23], microbial community interactions [24-26], the microbiota’s influence 

on development [27] and relationship with pathogenesis [28,29]. Disentangling the complex 

multi-stage web of interactions that lead to these diseases will require novel approaches, 

using a combination of data-driven bioinformatics with knowledge-driven computational 

modeling.

Data-driven bioinformatics refers to the large body of analysis techniques and tools that seek 

to discover meaningful patterns from biological data. These techniques include a wide-range 

of statistical, mathematical and algorithmic methods. Bioinformatic tools are considered 

“data-driven” because of their common feature of using biological data as the primary 

input for their processing, and the output from these tools provide knowledge to better 

understand that data. In general, these tools are designed to operate on data produced by 

various high-throughput technologies, which generate a large quantity of experimental data, 
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but other sources of data such as biological databases and literature are also applicable. The 

breadth and scope of bioinformatics has led to the numerous “omics” subfields based upon 

the type of biological data, i.e., genomics for genome data, proteomics for protein data, 

transcriptomics for gene transcription data, etc. Knowledge-driven computational modeling 

seeks to understand biological systems and their behavior by simulating the cause and 

effect relationships of biological mechanisms using mathematical methods. “Knowledge

driven” refers to the process of constructing the model that includes a primary task of 

encoding knowledge about biological entities, processes and mechanisms into mathematical 

objects, and thus the model becomes an abstract representation of a biological system. 

The simulation of a model imitates the biological system over time and (possibly) space 

and allows for the behavior of the system to be analyzed. Specifically, models can be 

incorporated with hypothetical mechanisms and interventions to evaluate their plausibility 

and predict their efficacy. Combination of data-driven bioinformatics with knowledge-driven 

computational modeling will be crucial to understand the host-microbiota interactome 

because neither methodology is sufficient alone. Bioinformatics is needed to extract insights 

from experimental data and suggest new hypotheses but is incapable of evaluating the 

causal outcome of those hypotheses, which computational modeling can provide. Likewise, 

computational models are abstractions of the real biological system and require experimental 

data to validate and calibrate their behavior, and they produce simulated data that looks 

much like experimental data, which requires bioinformatics to properly analyze. This review 

covers both methodologies in the study of the host-microbiota interactome and highlights 

efforts to combine the two approaches.

As the generation of high-throughput experimental data has become relatively inexpensive 

(though there are often sample collection hurdles to be overcome), analysis of that data 

has quickly become the primary bottleneck to extract meaningful knowledge. Construction 

of specialized databases such as IMG/M [30], SEED [31] and Greengenes [32] have 

consolidated annotated genomic data for bacteria, and some provide analytical pipelines 

(i.e., RAST [33], MG-RAST [34]). However, these tools provide only an initial, first-stage 

descriptive analysis of the data. Customized scripts and programs are still often required 

for performing in-depth bioinformatics analysis. In the future, projects like KBase will 

provide an open development environment based upon a standard data and service model for 

customized analysis pipelines [35]. Moving further down the chain of extracting knowledge 

from data, there is even less standardization for dynamic computational modeling, which 

is aimed at examining the behaviors associated with imputed bio-molecular mechanisms. 

While the efforts of the Systems Biology Markup Language (SBML) [36] and BioModels 

repository [37] have helped to standardize the use and simulation of biochemical reaction 

models, they are too specific to cover the broader range of biological modeling. Describing 

the various modeling methods and specific models using mathematical notation within the 

research article remains the primary mode of dissemination, with the implementation of the 

actual models often left as an exercise for the reader.

In this review, we will focus on the computational approaches for investigating the 

microbiota and the host-microbiota interactome. Many of the current bioinformatic tools 

are in their early stages, often providing mostly descriptive analysis, yet there is progress 

towards increasing functional detail that will eventually lead towards mechanistic predictive 
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models. Our objective is not to describe all of the existing tools and methods in detail, nor 

the protocols for performing the various analyses, though we will reference existing articles 

with this information when available. Instead we will highlight the current open challenges 

in the field and existing gaps in the integration of multiple techniques, with the hope that it 

will encourage research in new computational methods.

2. Microbiota Studies

Following ecology standards, the term “microbiota” is used to refer to the collection of 

microbial species that comprise a specific ecological niche, while the term “microbiome” 

refers to the genomic content of those microbiota. Many research papers tend to intermix 

the two terms, so careful reading of the context is often required to differentiate the 

appropriate interpretation. Computational studies of the microbiota have primarily been 

DNA-based either with marker gene (i.e., 16S and 18S) profiling or metagenomics [38,39]. 

Marker gene profiling, also called amplicon sequencing, uses the known properties of the 

variable regions within ribosomal RNA (rRNA) genes that are present within all bacteria to 

provide a taxonomic characterization and relative abundance of the microbial community. 

Metagenomics performs sequencing of the entire genomic DNA and thus can provide a 

complete repertoire of genes within the microbiome. DNA-based techniques have been 

useful in characterizing the composition of the microbiome, especially in comparative 

studies of treatments and experimental conditions. Metatranscriptomics is an RNA-based 

approach that has become more practical with the decreasing cost of sequencing. Similar 

to RNA-seq used for eukaryotic organisms [40,41], the RNA of all bacterial species is 

captured in an unbiased way without requiring existing genome sequences with annotated 

genes as with microarray technology. Metatranscriptomics offers the promise of revealing 

the dynamics of microbial communities, however there are still significant experimental and 

computational hurdles [42,43].

While the bioinformatic analysis of microbiota is being rapidly adopted by the biological 

sciences, dynamic computational modeling and simulation has lagged behind. One bright 

spot is the development of genome-scale metabolic models for model bacteria organisms 

[44], and the constraint-based optimization method called flux balance analysis for 

predicting the flow of metabolites and compounds through a network of metabolic reactions 

[45,46]. These predictive models can reconcile culture conditions and phenotypes to 

experimental data, and offer intriguing possibilities for enhancing individual species and 

microbial community discovery [47]. On the other hand, most dynamic computational 

models have focused on an individual species and a specific signaling pathway or behavior 

within that species such as quorum-sensing, biofilm formation, motility or colony pattern 

formation. Recent research has started to tackle the more sophisticated problems of multi

species interactions [48,49] and whole-cell simulations [50].

2.1. Marker Gene Profiling

Marker gene profiling (also called gene amplicon sequencing) requires DNA to be 

extracted from the samples, and large collection projects such as the Earth Microbiome 

Project recommend a standard experimental protocol [51]. Universal primers specific to 
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the ribosomal RNA gene are then used to amplify the DNA sequence, while barcode 

sequences are also incorporated thus allowing multiple samples to be multiplexed on a 

single sequencing run. While initially using 454 pyrosequencing technology, amplicon 

studies have steadily switched to Illumina sequencing which provides equivalent results 

and greater coverage [52]. The computation tools have advanced quickly with pipelines 

such as QIIME [53] and MEGAN [54] providing many standard analytical techniques; even 

so there is continuing work to provide greater accuracy and fidelity [55,56]. Two primary 

limitations are: (1) reliance upon existing curated rRNA databases to align sequences for 

taxonomic assignment and (2) lack of specificity in the resultant taxonomic categories. The 

first limitation signifies that only existing well-characterized species can be identified in 

the samples, with truly novel species falling into a generic unknown category. Pipelines 

such as QIIME provide a “de novo” strategy, which clusters sequence reads together 

without requiring a reference database, yet additional annotation is required to meaningfully 

interpret the results. The preferred approach is an “open reference” strategy that first aligns 

sequence reads to the reference database, and then uses clustering for any remaining reads. 

The latter limitation manifests as taxonomic categories typically at the family or genus level, 

and only rarely can specific species be identified. While this may be sufficient to give a 

general characterization of the microbial community, it offers little insight into particular 

strains or isolates of interest in clinical samples.

Despite its limitations, marker gene profiling is popular partly because it is inexpensive, 

thus allowing large data collection projects to be performed. The open challenge is how 

to use these large datasets to extract meaningful patterns and predictive models about 

microbial communities. For example, PICRUSt is a tool that predicts the functional 

capability of the microbiota by inferring the metagenome from the marker gene data 

[57]. Standard techniques for analyzing the functional composition of metagenomes 

including pathway enrichment and metabolic reconstruction can then be applied [58,59]. 

More fruitful approaches might utilize well-established machine learning algorithms to 

predict phenotypes, perform classification, and extract discriminative features [60-62]. 

Deconstructing the microbe-microbe interactions and internal community structure is 

challenging using only taxonomic abundances, but with perturbation data or time-series data 

then the various network inference algorithms used on gene expression data can be applied 

to the microbiome [63-66]. These can provide correlation networks [67,68], while methods 

with an underlying mechanistic model can provide predictive dynamics [49,69].

2.2. Metagenomics

Metagenomics requires substantial sequencing to be performed in order to obtain adequate 

depth and coverage of the microbiome, in contrast to marker gene profiling which only 

requires a few thousand sequence reads per sample. The presumption is the microbiome 

consists of numerous uncultivable species, so the sequence reads must be de novo 

assembled before being aligned to existing databases to catalog species and gene content. 

In theory with enough sequencing, whole genomes of novel species can be assembled 

[70-72]; however practically, de novo assembly tends to produces numerous short contigs 

(contiguous sequences). Producing high-quality drafts of microbial genomes will likely 

require borrowing techniques from eukaryotic genome assembly with longer read lengths 
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and read-pair scaffolding [73,74], or possibly by utilizing single-cell sequencing technology 

[75,76]. However with the intense focus on the human microbiome, the number of fully 

assembled bacteria genomes is rapidly increasing, so the day may soon approach where 

the assembly step can be skipped in place of direct alignment to genome databases, and 

de novo assembly is reserved for the more diverse soil and marine ecologies. Alternatively, 

assembly-free methods could provide informative analysis with much less computational 

requirements [77,78].

Characterizing the gene content and associated functional composition of the microbiome 

is the initial descriptive analysis for metagenomic data, and the standard approach for 

determining gene content is to run BLAST, or similar alignment tools, on either the raw 

or assembled sequences against a reference database to find regions of local similarity (and 

presumed function) between sequences. For example, the MG-RAST pipeline uses the M5nr 

database, which is an aggregated set of non-redundant protein sequences from multiple 

sources [34,79]. Taxonomic categorization can also be performed by picking out just the 

marker gene sequences and is supported by the QIIME pipeline. Functional composition is 

generated by collating the functional categories assigned to the gene content from a set of 

functional databases such as KEGG Orthology [80] or SEED subsystems [31]. Specialized 

statistics tests can then be performed to compare the functional composition between 

experimental groups [81], and pathway analysis provides higher-level aggregate insights 

[58,82]. Comparative functional analysis between metagenomic samples is complicated by 

the fact that many bacterial genes have poor or unknown functional annotation and gene 

content of a sample is a mixture of multiple species [83]. Genes with metabolic functions 

tend to be well annotated, allowing the construction of mechanistic metabolic models 

[59,84,85], while gene regulatory and signaling networks are poorly characterized except for 

a small number of pathways in model organisms. As a mixture of species with unknown 

internal interactions, attempts at computational modeling of the microbial community 

require careful consideration of what constitutes a “community”, and the appropriate 

mapping of the functional composition with that community [26,86]. Furthermore, DNA 

measurement does not differentiate between alive or dead microbes and whether those 

functions are active.

Despite the difficulties, the broad unbiased approach of metagenomics is continuing to 

expand our catalog of known genes. The challenge of discovering the functions for many 

of these genes will likely require the development of high-throughput functional screens 

that can be applied to microbial communities [87]. Likewise, the largely unexplored world 

of bacterial phages and viruses in the intestine suggests another layer of complexity 

that will require metagenomics to adequately explore [88-90]. The primary challenge for 

metagenomics is determining the mechanistic underpinnings for changes in the microbiome, 

and deciding which changes are causal drivers with functional consequence versus less 

significant side effects. Integrating the metagenomics data with predictive computational 

models, such as is currently being done with metabolic modeling, provides one such route 

[91]. Including signaling pathways for virulence factors, reception and response to host and 

microbial factors and spatial organization of microbial communities will be key capabilities 

required for understanding the microbiome’s effect on human health. Another route is using 

dynamical system formulations of the microbial community and then inferring parameters 
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from the experimental data [92], such as described above with marker gene profiling studies 

[49,69], but to date these techniques have not be applied to metagenomics data.

2.3. Metatranscriptomics

Metatranscriptomics requires RNA to be extracted from the samples, and unlike 

DNA techniques the experimental protocols are still being actively investigated to 

achieve both quality sequence and high yields. One of the experimental challenges 

for metatranscriptomics is the extraction of sufficient bacteria RNA to perform high

throughput sequencing without performing amplification. In combined host-microbiota in 
vivo experiments, even though the number of bacterial cells greatly outnumbers the host 

cells, they have much less total biomass, and host RNA dominates. Furthermore, the 

ribosomal RNA needs to be depleted from the bacterial RNA otherwise it will overpower 

the regulatory and signaling genes of primary interest. As a relatively new technique, there 

are numerous computational challenges to be addressed for metatranscriptomic data. The 

first is mapping of individual sequence reads to the appropriate genes. If only a functional 

characterization is required, then the techniques used to analyze metagenomic data can be 

used, as available with MG-RAST. Most desirable is to calculate gene expression values 

for the sequence reads and have them assigned to specific bacteria species. One approach 

is to collect a set of representative bacteria genomes and use fast alignment tools such 

as bowtie [93] or SSAHA [94] to align the sequences [43,95,96]. However, this only 

provides information for those species with a known genome, and furthermore will not work 

for clinical samples and bacterial isolates that have mutated significantly from laboratory 

strains. For example, our experience with a microbiome extracted from an intensive care 

unit patient [97] containing multi-drug resistant pathogens, Enterococcus faecalis, Klebsiella 
oxytoca and Serratia marcescens, found that only 1% of the sequence reads could be aligned 

to the reference genomes in NCBI using bowtie. Sequence alignment using BLAST of some 

randomly selected reads showed 90%–95% homology, which are more mismatches than 

efficiently allowed by these tools. Some studies use only BLAST [43,98], but this requires 

substantial computing capability to align millions of sequence reads. Current pipelines use a 

variant of this basic approach [99,100].

Bacteria share many common genes, especially those with metabolic function, and BLAST

style approaches produce numerous matches that require some heuristic post-processing 

analysis to assign the sequence read to a species. An alternative approach is to de novo 

assembly the sequence reads into transcripts, which can then be aligned against the 

transcripts to produce gene expression counts. The longer assembled transcripts will provide 

a more unique BLAST match for designating the species, as well as fewer sequences to 

process. Even this approach has its difficulties though as it relies upon the assembly quality. 

The sequencing depth may not sufficient to provide coverage across the whole transcript, 

possibly resulting in multiple assembled transcripts that partially cover the same gene or 

contain chimeric sequence. Furthermore, multiple bacterial genes are typically transcribed 

as a single unit, called an operon, so each assembled transcript can contain multiple genes 

that need to be individually parsed. None of the approaches currently published are optimal, 

as the ambiguity in the assignment of species-gene pair for each sequence read still needs 

to be solved. Functional analysis can be performed, but tools that provide comparative 
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metatranscriptomic analysis, which highlights species transcriptional differences, is lacking. 

There are currently no published attempts to integrate metatranscriptomic data with 

mechanistic computational models. Regardless, metatranscriptomics holds great potential 

to elucidate the dynamics of the microbiota, and techniques to capture both host and 

microbiota transcriptomes will provide a broad snapshot of the host-microbiota interactome 

[99,101].

2.4. Computational Modeling and Simulation

Computational modeling and simulation of the microbiota has primarily focused on 

metabolic modeling due to the availability of genome-scale metabolic models for some 

bacteria [44,47], as well as software tools for automatically generating models from 

metagenomic data [45]. These approaches do not yet attempt to model the full complexity 

of the microbial community, instead the system is simplified using various abstractions. 

Models may focus on a single organism, a small community of interacting organisms 

or a supra-organism whereby all of the metabolic genes are aggregated together without 

regard to species [86]. The metabolic model is translated into a linear optimization problem 

where metabolic reactions become equality constraints for the reactants and products in the 

reaction. Inequality constraints are added to represent bounds on the system, such as the 

availability and rate that metabolites can be taken up from the environment, and an objective 

function is defined for the desired phenotype. Commonly a growth phenotype is desired, 

so an objective function that maximizes biomass is used. When the optimization problem 

is solved, it provides fluxes (or flows) on each reaction, the rate at which the metabolites 

are consumed or produced. This method is commonly called flux balance analysis (FBA) 

[46]. One critique of FBA metabolic models is the underlying assumption that the system 

is in steady state, which is likely false for in vivo systems, and the model does not take 

into account the availability and activity of the enzymes which catalyze those metabolic 

reactions. Also, FBA models utilize and provide metabolic rates, as opposed to metabolite 

concentrations, which are most often measured in experimental systems. As such, comparing 

FBA model results to experimental metabolomics data is challenging. However, the success 

of FBA models at predicting experimental phenotypes has led to new method development 

that addresses these criticisms, including incorporation of dynamics [102,103], integration 

with transcriptional regulation and signaling [103-107], and integration with “omics” data 

sets [108-110]. An interesting twist on these models is reverse ecology, which infers the set 

of compounds that the microbial community extracts from the environment [111].

Beyond metabolic models, dynamic modeling of the intestinal microbiota is still in its 

infancy [112]. Dynamic modeling has a long tradition in ecology where methods such 

as agent-based modeling were developed to represent heterogeneous agents interacting 

with each other in a heterogeneous environment [113], and these ecological methods are 

slowly being applied to the human microbiome. Agent-based modeling is highly applicable 

to microbial communities, however getting appropriate and sufficient experimental data 

to calibrate and validate the model predictions is still a formidable hurdle. Simplified 

population models such as the generalized Lotka-Volterra equations have been successfully 

used with marker gene profile data, and analysis of generated taxonomic interaction 

networks can provide insights about community stability or dysbiosis [49,69]. Another 
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technique is to model bacterial as functional groups and to investigate the interactions of 

those groups. This approach was used to study antibiotic-mediated switch behavior with 

bacteria classified into functional groups from metagenomic data [48]. Additional multi

species modeling approaches are applicable to the intestinal microbiota including biofilm 

formation [114,115], cooperation and competition [116], and other ecological processes 

[117].

When considering individual bacterial species, there is a large body of dynamical 

modeling research that investigates specific molecular signaling and gene regulatory 

systems, behaviors and phenotypes. Such systems include cell-cell communication, quorum

sensing that provides population-level communication, motility on surfaces and in media, 

growth and colony pattern formation, environmental interactions through chemotaxis and 

haptotaxis, virulence factors related to infection and disease, genetic mutability, antibiotic 

resistance and numerous others. The major challenge in the scaling of these methods 

from individual pathways or modules to actual microbial behavior is the task of taking 

many small specific individual models and integrating them together to produce useful 

system-level models of bacteria. One route is to produce genome-scale models similar to 

metabolic models that have a high degree of fidelity in their component description, while 

using scalable numerical methods to examine the system dynamics [118]. An alternative 

route is to produce logical conceptual models that abstractly implement the low-level 

physical details of the biology while qualitatively representing our biological knowledge 

and hypotheses [119]. A combination of the two approaches will be the likely strategy in 

the immediate future. Regardless of the approach, extracting useful predictions and insights 

from increasingly complicated models will be a continuing obstacle.

3. Intestinal Host-Microbiota Interactome Studies

Computational modeling of the host-microbiota interactome is still in its infancy. The 

bioinformatics techniques to study the microbiota described in the previous section are 

helping to provide an increasing descriptive analysis about the microbial community, with 

the intestinal tract being one of most studied. On the other side of the interactome is the host 

immune system. There is a long history of immune system modeling. While this body of 

work is too large to adequately describe in this review, in the following sections we point 

out some main categories of interest. Consequently, we will highlight studies of intestinal 

inflammation where interactions with the microbiome can initiate, perpetuate or even disrupt 

the inflammatory response.

There are some significant methodological challenges that need to be addressed before 

causal mechanisms of the host-microbiota interactome can be effectively evaluated with 

computational modeling. Foremost is determining appropriate levels of representation for 

both the host and the microbiota, i.e., what computational and mathematical constructs to 

use to represent the biological entities and processes. The host immune system manifests at 

the molecular, cellular, tissue, organ, whole organism and population scales of organization, 

and it is still an open question about how to define the interactions between these different 

scales as they can contain important inflection points of behavior [119-121]. The set of 

methods used in existing multiscale models would suggest that no single method would 
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be sufficient for all purposes, as there are advantages and disadvantages with each. 

Meanwhile, microbes manifest at the molecular, cellular and population scales, and the 

quantity and diversity of individual bacteria presents computational challenges to specify the 

intra-community interactions in sufficient detail to establish dynamical changes in microbial 

community structure. The intestinal host-microbiota also exhibits spatial heterogeneity, with 

host cell responsiveness and microbial composition changing throughout the length of the 

intestinal tract. Moreover, the interactome acts through multiple routes including metabolite 

exchange and competition, signaling pathways mediated by extracellular molecules, physical 

interactions between host and bacteria cells, and the extracellular milieu which may 

be abundant with viruses, bacteriophages and mechanisms for horizontal gene transfer. 

Computational modeling is a knowledge-driven task, yet there are still large gaps in 

our biological knowledge about the interactome that can divert the modeling process. A 

combined data-driven and modeling framework will likely be the most effective approach 

to fill those gaps, with suggestive correlations from statistical analysis being evaluated for 

plausibility in mechanistic dynamical models.

3.1. Computational Modeling of Host Immune System

The host immune system is split between innate immunity and adaptive immunity. The 

innate immune system is the initial defense against infection and operates in a non-specific 

manner, while adaptive immunity invokes specialized responses to specific pathogens that 

are acquired during the lifetime of the host and maintained in immunological memory. 

Computational modeling of the immune system has historically concentrated either on 

specific host-pathogen interactions or on inflammation. Host-pathogen specific models 

include research on the diseases and pathogens with broad global health implications such 

as HIV [122-125], malaria [126-128], tuberculosis [129-131] and influenza [132,133]. These 

models primarily focus on the adaptive immune system and cover a wide range of topics 

related to the epidemiology of the diseases including the molecular biology interactions 

between host and pathogen pathways and molecules, disease progression and transmission 

both in the host and associated vectors (e.g., mosquito for malaria), evolutionary and 

selection forces on pathogen genetics, and drug discovery for vaccines and treatments. These 

models have helped to elucidate the dynamics associated with many of these processes, 

however no models have yet considered the microbiota, and biological studies of the 

microbiota’s relationship to these diseases are only beginning.

Computational studies of inflammation can be divided between acute and chronic 

inflammation, which both focus on, but consider different aspects of, the innate immune 

system [134-141]. Inflammation is a response by the immune system to injury or infection 

and involves three basic steps: (1) sensing of damage or threat; (2) containment and 

clearance of the threat; and (3) repair of the damaged tissue. Acute inflammation is 

the initial immune response to a threat, and it is a self-regulating system that, through 

a set of positive and negative feedbacks, will first upregulate immune processes and 

then downregulate them once the threat is removed [142-144]. Chronic inflammation is 

characterized by a disorder in the self-regulating inflammatory response system such that 

a persistent low-level inflammation continually damages and repairs host cells in localized 

tissue. For example, the disorder could be due to insufficient negative feedback that prevents 

Christley et al. Page 10

Computation (Basel). Author manuscript; available in PMC 2021 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the inflammatory response from completely turning off, or it could be excessive positive 

feedback that chronically re-starts the inflammatory response. Chronic inflammation can be 

due to genetic susceptibility in the host, the inability of the immune system to completely 

clear a bacterial infection or a combination of both. Early computational models emphasized 

acute inflammation, specifically in relation to trauma and sepsis, to better understand 

the self-regulating dynamics of the system for prevention and treatment of systemic 

inflammatory response syndrome (SIRS), a severe disruption of the innate immune system 

that can lead to organ dysfunction, failure and potentially death. While bacteria is known 

to cause or propagate the inflammatory response, these models generally define bacteria as 

an abstract perturbation to the host immune system, but there is increasing recognition that 

the interplay between host and microbial dynamics needs to be considered. Recently there 

has been greater interest in chronic inflammatory diseases such as necrotizing enterocolitis, 

Crohn’s disease and inflammatory bowel disease, and the role the microbiota can play on 

perpetuating or alleviating disease.

Computational models have used a variety of mathematical methods such as ordinary 

(ODE) and partial (PDE) differential equations [139,141,145], Boolean networks [146] and 

agent-based models (ABM) [139,144] to represent the host immune system. Furthermore, 

these models have to consider the inherent multi-scale nature of the immune system that 

include intracellular signaling networks, cell level behaviors and organ function. Though 

some models focus on just a single scale, which tends to be signaling and regulatory 

networks, other models incorporate multiple scales of organization and the interactions 

between scales to better represent the complexity of the immune system. The variety of 

applicable methods means that researchers can pick an appropriate level of abstraction based 

upon the types of available knowledge and data, and models can produce a spectrum of 

outcomes from quantitative results to qualitative thought experiments across the multiple 

scales [136,147,148].

3.2. Inflammatory Diseases and the Intestinal Host-Microbiota Interactome

The intestinal tract is subject to both acute and chronic inflammatory conditions. Acute 

intestinal inflammation can be part of a systemic response in sepsis and trauma, or due 

to intestinal surgery or injury, however current studies focus on individual opportunistic 

pathogens vs. the whole microbiota. Meanwhile, the microbiota and environmental factors 

that influence the microbiota have been shown to have a strong link with chronic intestinal 

inflammatory diseases [10,19]. The main challenge is how to translate the correlative 

descriptive studies about the changes in the microbiota and host immunity into causal 

mechanisms [149].

One step in that direction are attempts to overlay a generic dynamic model for the 

microbial community onto time-course data then analyze the resultant dynamical system 

for insights [48,49,69]. Stein et al. took this approach to hypothesize the colonization 

mechanism for C. difficile infection based upon the effect of antibiotics on the microbial 

community [49]. Marino et al. analyzed colonization of germ-free mice with the cecal 

contents of conventionally raised mice and suggested that few microbial interactions are 

mutualistic, while most are neutral Parasitic and competitive interactions dominated within 
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specific phyla like Bacteroidetes and Firmicutes [69]. Both of these studies used the 

generalized Lotka-Volterra equations to define the interactions between microbial species 

in the community. Bucci et al. used a model derived from statistical physics to show that 

a two-group community composed of antibiotic-sensitive and antibiotic-resistant bacteria 

can exhibit multistability and hysteresis whereby the community can be dominated by 

either group [48]. Furthermore, it is an open question about how evolution formed stable 

microbial communities in the first place [150], especially given evidence that mutualism of 

the host-microbiota interactome is fragile whereby fast growing microbes can outcompete 

host beneficial ones [151]. Computational modeling is well suited to provide insights into 

the importance of interaction mechanisms and to evaluate hypotheses about these processes. 

Some recent models have considered interactions such as host genome evolution [152], 

economic market strategies [153], and the role of spatial structure [154,155]. There is a large 

body of theoretical ecology modeling research about food webs, biodiversity and community 

structure that can inform future microbial community modeling.

Spatial heterogeneity of the gut microbiota is well recognized, yet there are currently no 

computational models that consider the spatial host-microbiota interactome. However, there 

are models that consider the spatial architecture of the intestine in relation to disease 

and development that also include pathogen interaction. Three such models include a 

gastric mucosal immune response to Helicobacter pylori infection [156], Pseudomonas 
aeruginosa virulence activation in the pathogenesis of gut-derived sepsis [157] and dysentery 

resulting from Brachyispira hyodysenteriae infection [140]. Necrotizing enterocolitis is 

another intestinal disease that has received modeling attention [145,158,159]. The first paper 

develops a hybrid ODE and ABM model, with the ODE representing the signaling networks 

in and between four spatial compartments (lumen, epithelium, gastric lamina propria, 

gastric lymph nodes) while the ABM represents immune cell populations categorized by 

immunological states through the progression of H. pylori infection. The model depicts 

the migration of H. pylori from the mucus layer of the gastric lumen to invasion of the 

gastric lamina propria with spatiotemporal interactions between immune cells and spatial 

compartments. One of the challenges they identified was the lack of developed strategies 

for parameter estimation for ABMs in comparison to numerous methods available for 

ODEs, and thus because of the stochastic nature of ABMs, they needed to perform trial 

and error simulations to refine the parameters values. The high level of detail makes the 

model computationally expensive; the authors needed to use a high-performance computing 

cluster with 912 processor cores to run simulations. The Brachyispira hyodysenteriae 
infection model uses the same Enteric Immunity Simulator (ENISI) modeling environment 

as the previous model, and it describes in more detail the graphical discrete dynamical 

system that represents the spatial interaction between immune cell and bacteria agents. This 

method abstracts the spatial representation into compartments, which can be subdivided into 

sublocations. An agent’s location implicitly defines the set of other potentially interacting 

agents. This abstraction allows the full set of interactions to be computed, and the dynamical 

graph can be partitioned and executed in a parallel discrete-event simulation. Scaling 

to a larger number of agents is a difficult challenge for ABMs, and ENISI provides a 

novel approach for accomplishing large-scale simulations. The Pseudomonas aeruginosa 
virulence activation model developed by our group is an ABM with multiple virulence 
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signaling pathways represented within P. aeruginosa as well as an abstract representation 

of the commensal microbiota. The commensal microbiota is represented collectively as 

generic microbial species without genetic background or detailed molecular mechanisms, 

however they compete with P. aeruginosa for nutrient resources within the intestinal lumen. 

Commensal and P. aeruginosa populations are limited by a finite carrying capacity per 

volume of the mucus layer, and P. aeruginosa activation of its virulence pathways can 

secrete chemicals that target the elimination of commensal microbiota. The model also 

represents gut epithelial cells as agents, and it consists of four spatial data layers for 

the intestinal lumen, mucous layer, epithelial layer and systemic circulation. This model 

takes a bacteriocentric viewpoint vs. the typical immunocentric perspective of other models 

by including detailed virulence pathways in P. aeruginosa while using simple behavioral 

rules for the host immune cells. This approach allowed for the exploration of hypotheses 

based upon current knowledge of bacterial virulence activation even though the model 

does not accurately capture all of the host dynamics. The authors note that adding in 

sufficient host immune system detail to obtain complete host dynamics would have made 

the model computationally intractable (or at least require a large compute cluster as with 

the other models), which would have defeated the purpose to engage in expedient “thought 

experiments” about plausible lines of investigation. As is, the model can be run on a 

single computer. This demonstrates the ongoing need to consider appropriate levels of 

representation when developing host-microbiota interactome models. The open challenge 

for the modeling community is the question of whether models are going to inherently 

become more detailed over time, and we just need to accept the increased computational 

costs, or whether we can develop methods that allow models at different abstract levels to 

be composed together. One approach is to utilize a more generic representation that includes 

semantic content such as biomedical ontologies for model specifications, and thus models 

can be composed and manipulated at the semantic level [160-162].

While the microbial community has spatial structure, that community can also alter the 

host epithelial intestinal architecture through the perpetuation of a chronic inflammatory 

response. Our group has published a model that considers this interplay of the host 

inflammatory response with the morphogenetic pathways that control spatial patterning and 

tissue architecture [163]. The Spatially Explicit General-purpose Model of Enteric Tissue 

(SEGMEnT) reproduces the epithelial crypt-villus architecture under health and disease 

conditions such as colonic metaplasia, which is characterized by a shift to a colonic tissue 

phenotype with increased crypt depth and shortened villi. SEGMEnT uses a 3D spatial 

representation for crypt-villus architecture (Figure 2), and this is in contrast to the spatial 

models described above which use compartments or an abstract 2D interaction grid. This 

more sophisticated spatial representation is required to accurately depict the morphogenetic 

changes to the crypt-villus architecture so that they can be correlated with experimental 

histology images. It is not a complete 3D representation however as cells are not represented 

within the interior of the villi or the spaces between the crypts, instead a 2D grid is mapped 

onto the 3D surface (Figure 2C). The 2D grid can change in height over time as cells are 

either lost or gained, and morphogen gradients define the crypt-villus boundary and may 

also shift as the morphogenetic functions are altered by host inflammatory input. Currently, 

the microbial interaction is represented as stimulatory input into the host inflammation 
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pathway, and the microbiota is assumed to be in dysbiosis such that it maintains that 

input and generates a low-level chronic inflammatory response. However, in the future, 

SEGMEnT provides a framework for placing the microbial community in a spatial context 

from the intestinal epithelium to the lumen, and thus allows heterogeneous interactions to be 

modeled between microbes and host.

An uncommon feature that was implemented in SEGMEnT is time delays in the 

transcriptional machinery, translational machinery and transportation of the gene products 

for signaling networks. Standard continuous models (ODEs and PDEs) rely upon the 

reaction rate parameter values to characterize “slow” or “fast” interaction, which is 

physically accurate if all the detailed steps of an interaction are modeled, but oftentimes 

interactions are abstracted with many of the intermediate steps removed. In this case, 

the instantaneous nature of the continuous models is an approximation to the time delay 

from when a signal is received until the corresponding output is actualized. However, time 

delays can be incorporated in continuous models by defining functions that refer to the 

values of those functions at previous times; these are called delay differential equations 

(DDEs). While DDEs have been used in biological modeling [164-166], especially in 

models whereby such delays seem to be critical to behavior, their use is infrequent. Discrete 

simulations such as ABMs have an elegant method for implementing time delays by using 

a queue data structure to “hold” values for an appropriate amount of time steps until 

they are released. Figure 3 demonstrates how a time delay queue operates. Queues can 

be implemented efficiently using standard array structures, and they can readily support 

heterogeneous time delays for different products and even dynamically changing time 

delays. Within SEGMEnT, time delays were introduced for the transcriptional machinery 

based upon the average rate of transcription per nucleotide and the total nucleotide length 

for each gene. Time delays for the translational machinery was based upon the average 

rate of translation per amino acid and the total amino acid length for the protein, and 

transportation delays include moving products between the nucleus, the cytoplasm and the 

extracellular environment. Despite the ease of implementation, use of time delays in ABMs 

is also infrequent. For SEGMEnT, the objective for introducing time delays was to better 

correlate with the observed delays seen in experimental data, however the conclusion was 

that the time delays were insufficient to explain the experimental data. While such time 

delays could account for minutes of delay, it could not account for the multiple hours 

observed in experiments. It remains an open question about what degree of importance 

should be attached to the temporal calibration of models vs. qualitative reproduction of 

dynamic behavior. Including delays into a model that has feedback loops can introduce 

oscillations and other effects, yet it is also known that delays can benefit control [167]. 

This issue is relevant for host immune modeling because the whole system is geared around 

feedback control of sense and response, and the host-microbiota becomes another feedback 

layer that needs to be considered by the control circuitry. Accordingly, there is a growing 

collection of host immune system models that suggest time delays are an important factor to 

be considered [168-170].

Future work is needed to more explicitly define microbial communities. Specifically, the 

challenge is how to obtain sufficient functional characterization of a microbial community 

such that it can be used as an input into a mechanistic computational model, and 
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correspondingly how model outcomes can be matched to experimental data. The host

microbiota interactome acts through multiple routes, yet it is experimentally difficult, if 

not cost prohibitive, to obtain the vertical depth of observation that includes metabolism, 

gene transcription, protein abundance, microbial composition, signal transduction, and 

environmental milieu. It is likely that we will never obtain complete breadth of observation 

except for highly controlled model organism systems. Instead, combining data-driven 

analysis with computational modeling will allow the limited experimental data to be 

incorporated as a way to both calibrate and constrain the exploration of causal mechanisms. 

Such studies are starting to be performed for inflammation [136]. Lagoa et al. utilized 

transcriptomic analysis of liver tissue to test hypotheses generated by a mathematical 

model of inflammation and global tissue damage [171]. Another study utilized principal 

component analysis of inflammatory regulators to suggest principal cytokine drivers of the 

inflammatory response, which was incorporated as putative hypotheses into an existing 

literature-based mathematical model [172]. By demonstrating that the modified model can 

recapitulate inflammatory and physiologic responses, the results provide plausible new 

knowledge about blood-lung inflammatory interactions. In both studies, the experimental 

data is not quantitatively calibrated with modeling variables, which is often not possible 

for complicated biological processes such as inflammation as those variables do not have 

a direct physical correlate. Instead, the first study used clustering and pathway analysis of 

the gene expression data to provide correlation with the modeling outcomes, while the latter 

study suggested potential interactions between biological components with the functional 

form of the interaction provided by the researchers. These studies illustrate that combining 

data-driven and mechanistic modeling is not a straightforward process of matching variables 

to data, instead metrics and higher-level analysis needs to be performed, an area of research 

that requires increasing attention as more of these studies are performed.

An exciting future prospect for computational modeling is the development of in silico 
clinical trials to test the efficacy of therapies and interventions [147,173,174]. Known human 

variation is incorporated into the computational model, and patient cohorts are created with 

a set of randomly generated models. Simulations are performed for a control group and 

an intervention group of patient cohorts, and model outcomes are assessed to determine 

the effect of the intervention. Clermont et al. applied this idea to an anti-TNF (tumor 

necrosis factor) therapy. They were able to identify a window of opportunity when the 

therapy was effective, but also characterized a population that could be harmed by the 

therapy [173]. An alternative utilization of in silico clinical trials, with applicability to 

personalized medicine, is to analyze the modeling outcomes to define the characteristics 

of patients that would most benefit from the therapy, and modify the patient selection 

process accordingly when performing a human clinical trial [175]. With regards to the 

host-microbiota interactome, the accumulation of microbiome data in sequence databases 

provides a rich description of the microbiome variation present in humans in healthy and 

diseases conditions. By explicitly incorporating this variation into host-microbiota models, 

the complexity of the microbiota can serve to constrain the interactome in regions of 

dynamic stability that characterize appropriate host and microbiota responses. However, an 

appropriate mathematical characterization of microbiome variation has yet to be developed. 
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To fully realize such models also requires gathering host genetic variation and other data 

applicable to host immunity modeling.

4. Conclusions

The host-microbiota interactome is the next frontier in the nascent field of translational 

systems biology and bioinformatics. The large collection of host immunity computational 

models plus expanding microbiome databases provide fertile ground for combining 

knowledge-driven computational modeling with data-driven bioinformatics in the 

development of new methods and analyses. Methodological progress is required in order 

to significantly advance our knowledge of the host-microbiota interactome and its impact 

on human health. In this review, we have highlighted some of the main challenges and 

existing gaps with the hope that it will encourage research in new computational methods. 

For microbiome analysis, the primary challenge is extracting functional characterization 

of the microbiota. New methods are required to analyze metatranscriptomic data, and 

integration of multiple data types is needed to provide a more complete reconstruction 

of the microbial community. While there has been significant progress in the metabolic 

modeling of individual microbial species, these models need to be extended to encompass 

a community of interacting microbes and include signaling and regulatory networks. The 

disparate collection of knowledge about signaling and regulatory genes and pathways in 

microbial species needs to be combined into more comprehensive whole organism models. 

This is not purely an exercise of collecting together the parts list of physical components; 

instead multiple techniques for abstracting that knowledge into functional models should 

be devised to address the multi-scale nature of biology. This review has focused on 

the host-microbiota interactome in the human gut, with emphasis on the host immune 

system response, though many of these challenges apply to other epithelial surfaces and 

host organisms. Finally, existing host immunity computational models need to incorporate 

the microbiota and its interaction with the host. Accomplishing this integration requires 

appropriate representation of the microbiota so that it can be coupled with the host in 

a dynamic computational model. Furthermore, new metrics and analysis techniques are 

needed to correlate modeling outcomes with experimental data for calibration, validation 

and prediction. The development and utilization of comprehensive, multi-scale, validated 

computational models of the intestinal host-microbiota interactome could have profound 

relevance for clinical practice in the treatment and prevention of trauma, sepsis, surgical 

infections and chronic inflammatory diseases, as well as a better understanding for the role 

that diet, stress and other environmental factors influence our health.
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Figure 1. 
The Host-Microbiota Interactome. The homeostasis of a healthy host and a benign 

microbiota can shift towards infection and disease in the host and a pathogenic microbiota 

due to many factors such as injury, trauma and genetic disposition, while interventions 

and therapy can shift it back. In actuality, there is a spectrum of physiological states, 

perturbations and interventions between those two extremes as abstractly represented by 

the color gradient. The host-microbiota interactome consists of multiple inter-connected 

components. Metabolic, signaling and regulatory components are shown as tightly

coupled processes within host and microbial cells. Extracellular metabolite exchange and 

competition occurs in the micro-environment shared by host and microbial cells, and these 

metabolites can directly affect metabolism and signaling processes. Signaling pathways 

within host and microbial cells secrete molecules into the extracellular environment, sense 

the local environment by processing extracellular molecules that bind to cell receptors, and 

mediate physical interactions between cells.
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Figure 2. 
Crypt-villus architecture for Spatially Explicit General-purpose Model of Enteric Tissue 

(SEGMEnT) model. Panel (A) shows a histology cross section of ileal tissue (top) and 

scanning electron microscopy of the mucosal surface of ileum (bottom). Panel (B) is the 

topology used by SEGMEnT where crypts and villi are represented with a matrix of 

rectangular prisms. Each crypt and villus is mapped onto a two-dimensional grid (Panel 

(C)), where signaling interactions, morphogen diffusion and cellular actions take place. The 

topology can be replicated and extended to represent any size piece of tissue.
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Figure 3. 
Queue data structure for time delay in a discrete simulation. Values that are produced, 

indicated on the left, are placed at the end of the queue structure. At each time step, values 

are shifted in the queue and the value at the front of the queue is removed. Progression of 

values is shown for two time steps, and the queue length represents a time delay of five time 

steps.
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