
sensors

Article

Earthquake Probability Assessment for the Indian
Subcontinent Using Deep Learning

Ratiranjan Jena 1, Biswajeet Pradhan 1,2,* , Abdullah Al-Amri 3, Chang Wook Lee 4,* and
Hyuck-jin Park 2

1 Center for Advanced Modeling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and
Information Technology, University of Technology Sydney, Sydney 2007, Australia;
Ratiranjan.Jena@uts.edu.au

2 Department of Energy and Mineral Resources Engineering, Sejong University, Choongmu-gwan, 209,
Neungdong-ro Gwangin-gu, Seoul 05006, Korea; hjpark@sejong.edu kr

3 Department of Geology and Geophysics, College of Science, King Saud University, P.O. Box 2455,
Riyadh 11451, Saudi Arabia; amsamri@ksu.edu.sa

4 Division of Science Education, Kangwon National University, Kangwondaehak-gil, Chuncheon-si,
Gangwon-do 24341, Korea

* Correspondence: Biswajeet.Pradhan@uts.edu.au (B.P.); cwlee@kangwoon.ac.kr (C.W.L)

Received: 22 May 2020; Accepted: 1 August 2020; Published: 5 August 2020
����������
�������

Abstract: Earthquake prediction is a popular topic among earth scientists; however, this task is
challenging and exhibits uncertainty therefore, probability assessment is indispensable in the current
period. During the last decades, the volume of seismic data has increased exponentially, adding
scalability issues to probability assessment models. Several machine learning methods, such as deep
learning, have been applied to large-scale images, video, and text processing; however, they have
been rarely utilized in earthquake probability assessment. Therefore, the present research leveraged
advances in deep learning techniques to generate scalable earthquake probability mapping. To achieve
this objective, this research used a convolutional neural network (CNN). Nine indicators, namely,
proximity to faults, fault density, lithology with an amplification factor value, slope angle, elevation,
magnitude density, epicenter density, distance from the epicenter, and peak ground acceleration (PGA)
density, served as inputs. Meanwhile, 0 and 1 were used as outputs corresponding to non-earthquake
and earthquake parameters, respectively. The proposed classification model was tested at the country
level on datasets gathered to update the probability map for the Indian subcontinent using statistical
measures, such as overall accuracy (OA), F1 score, recall, and precision. The OA values of the model
based on the training and testing datasets were 96% and 92%, respectively. The proposed model also
achieved precision, recall, and F1 score values of 0.88, 0.99, and 0.93, respectively, for the positive
(earthquake) class based on the testing dataset. The model predicted two classes and observed
very-high (712,375 km2) and high probability (591,240.5 km2) areas consisting of 19.8% and 16.43%
of the abovementioned zones, respectively. Results indicated that the proposed model is superior
to the traditional methods for earthquake probability assessment in terms of accuracy. Aside from
facilitating the prediction of the pixel values for probability assessment, the proposed model can also
help urban-planners and disaster managers make appropriate decisions regarding future plans and
earthquake management.

Keywords: deep learning; GIS; earthquake probability; Indian subcontinent

1. Introduction

Earthquakes are devastating natural disasters that can cause mass destruction and result in the
loss of properties and human lives. Therefore, earthquake prevention, prediction and probability
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monitoring are essential, along with hazard, risk and mitigation preparation. Countries, such as
China, Taiwan, Japan, USA and Chile have developed early warning techniques and are highly
advanced in earthquake research. However, traditional approaches are not used in the recent hazard
assessment or monitoring of earthquakes because these methods are unable to achieve good results [1,2].
Waveform autocorrelation is a popular method for earthquake prediction from seismogram records [3];
meanwhile, deep learning is the latest technique for both earthquake prediction and probability
assessment. However, some precursors can also be used for the probability and prediction of
earthquakes. Seismological gravity monitoring was adopted in China after the occurrence of the 7.2
magnitude Xingtai earthquake in 1966 [4]. A mobile gravity survey that satisfactorily recorded gravity
readings was conducted to measure gravity near the earthquake epicenter. Therefore, earthquakes can
be predicted on the basis of precursors through recent knowledge of gravity and magnetic changes
in the earthquake-prone areas [5]. Some major earthquakes in the world have occurred in India,
and the development in earthquake study has started early in this country [6]. Therefore, India is
currently developing seismic codes, code-compliant, and earthquake-resistant structures, institutional
development, education, training, manpower development, and necessary research facilities [7].
India had experienced a huge number of earthquakes and the updated total deaths and injuries due to
earthquake events are presented in Figure 1.
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Figure 1. Statistics showing the deaths and injuries caused by earthquakes in India since 2000.

1.1. Global Earthquake Probability Assessment

Krinitzsky [8] calculated probabilistic earthquake ground motions by implementing the Gutenberg-
Richter magnitude and recurrence relationship. However, several assumptions in probabilistic seismic
hazard analysis were considered during the analysis. Therefore, though it is needed to make
some essential assumptions in probability theory, it nevertheless has limited validity that leads to
unsatisfactory results for critical structures. Hardebeck [9] mentioned that in quantitative earthquake
probability assessment, the main concepts must be incorporated such as stress triggering and fault
interaction. He introduced a novel method for translating to earthquake probability from stress
changes. The proposed method could be potentially used with fault models. He concluded that
stress change calculations would be useful for low slip-rate faults only in the long-term assessment.
Nevertheless, stress-triggering calculations are generally applied in the short-term followed by a major
earthquake. Parsons [10] pointed out that earthquake rate changes due to stress change. However,
he answered some questions such as earthquake probability changed due to stress change and data used
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to generate parameters for forecasting. According to his study, a fault system with an understandable
history of earthquakes, a ratio of stress change to stressing rate should be a minimum of 10:1 to
20:1 that can skew probabilities with >80–85% confidence level. Shapiro et al. [11] investigated the
distribution of event magnitudes and described that with constant injection pressure, the probability
of a magnitude >4 Mw could originate. They analyzed the injection time in bi-logarithmical law
with a coefficient of proportionality. They observed that the diffusion process of pressure diffusion
obeying a Gutenberg-Richter relationship in a poroelastic system with sub-critical cracks which
were randomly distributed well explains the observations. Hagiwara [12] estimated the large-scale
earthquake probability geodetically from crustal strain in a seismic prone area. He implemented
the Weibull distribution function, generally used for research on quality control. Therefore, it was
implemented in this study for probabilistic crustal strain treatments. Shcherbakov et al., [13] described
that unexpected occurrence of earthquakes could trigger subsequent events that can lead up to powerful
earthquakes. They developed a methodology to compute the extreme earthquake probabilities to
be above some specific magnitudes. Authors combined the extreme value theory with the Bayesian
method, having an assumption of the Epidemic Type Aftershock Sequence process. They applied and
analyzed the proposed methodology to the 2016 Kumamoto earthquake sequence in Japan. Their study
might help to find out the probabilities in several stages of an earthquake sequence for large events.
Brinkman et al. [14] described that for mitigation purposes, there is a requirement of forecasting seismic
events. Authors in this study present a simple earthquake model to investigate if the correlation
between small earthquakes and tidal stresses could inform about the probability of large events.
The model shows that the significant correlations between periodic stresses and low magnitude events
could lead to large earthquakes. The recent observations agreed with the obtained results. It is expected
that important input parameters and fault-specific information in the model could provide new tools
in achieving the improved probabilities of large earthquakes. Wyss and Wiemer [15] described in their
study that the landers event redistributed the stress in southern California, shutting off the earthquake
in some locations while leading to increasing seismicity in neighboring locations until date. In more
recent work, Jena et al. [16] developed an integrated model of artificial neural network-analytical
hierarchy process (ANN-AHP) for earthquake risk assessment and applied it to the Aceh province in
Indonesia. They observed that the southwest part of the city is highly probable for earthquakes based
on the ANN technique with an accuracy of 84%.

1.2. Probabilistic Earthquake Hazard Assessment in India

Parvez and Ram [17] estimated the probability of recurrence of large events with magnitude greater
than 7.0 based on four probabilistic models such as Gamma, Weibull, Lognormal, and Exponential in NE
India. The parameters were estimated using the Method of Moments (MOM) and Maximum Likelihood
Estimates (MLE). The estimated cumulative probability ranges from 0.881 to 0.995 for 40 years from
1964 until 1995. The conditional probability was estimated and it was expected a great earthquake
would hit NE Indian peninsula at any time in the future. Tripathi [18] conducted a probabilistic study
on the occurrence of large earthquakes (Mw ≥ 6.0 and Mw ≥ 5.0) using models such as Weibull, Gamma,
and Lognormal. The 180 years of earthquake catalog having magnitudes ≥5.0 Mw used in this study.
However, MLE was applied for earthquake hazard parameters. For events (Mw ≥ 5.0), the cumulative
probability estimated as 0.8 based on Lognormal and Gamma models while it is 0.9 based on the Weibull
model. However, for Mw ≥ 6.0, the probability is 0.8 while it is 0.9 in the next 53, 54, and 55 years based
on Weibull, Gamma, and Lognormal models, respectively. Yadav et al. [19] worked on the probabilistic
recurrence of earthquakes in Northeast India. Wei-bull, Gamm, and Lognormal models were
implemented along with the earthquake catalog spanning the period from 1846 to 1995. The resulted
cumulative probability for a large earthquake of magnitude 7.0 can be reached to 0.8 after about
15–16 years and 0.9 after about 18–20 years from the time of the last earthquake (1995) in the study area.
Thaker et al. [20] performed the probabilistic seismic hazard analyses in the Surat region, where five
seismotectonic sources were considered. The results obtained from the study focus on bedrock level
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peak ground acceleration (PGA) and response spectra using the local site effects. The values of PGA
and spectral acceleration observed as 0.01 s and 1.0 s whereas the calculated probability of exceedances
is 10% and 2% in 50 years. Gupta and Singh [21] examined earthquake occurrences before 30 December
1984 and the earthquake on 6 August 1988. They considered seismicity examples and applied the
preparatory swarm theory of Evison [22] to develop a prognosis. Four micro-earthquake overviews
were presented from 1983 to 1986 through an impermanent five-station system in various parts of
the Shillong Plateau and neighboring regions [23,24]. The chronological change in the miniaturized
scale of the seismicity rate was examined. Sitharam et al. [25] estimated the spatial variation of the
spectral and peak horizontal acceleration (PHA) values in South India. Sitharam et al. [26] also studied
probabilistic seismic hazard assessment in India using a topographic gradient.

In the current study, a convolutional neural network (CNN) model was developed for earthquake
probability assessment. To date, no study has been conducted using deep learning and GIS for the
earthquake probability assessment. However, this model was implemented for the Indian subcontinent
for the first time. The current study aims to update the earthquake probability map of the Indian
subcontinent. Some researchers have conducted probabilistic seismic hazard mapping in India.
However, they have used traditional methods that exhibit many uncertainties. As the Earth’s internal
structure is complicated, therefore traditional models consider some assumptions such as (a) considering
segments of a specific fault as one based on uniform seismicity, (b) local attenuation equation to calculate
PGA (c) earthquakes occur randomly through time and space. However, these assumptions were not
considered in the current study, which could lead to uncertainties on data and accuracy of results.
Therefore, mapping the probability of earthquakes and updating old maps are essential. The specific
objectives of this study are as follows: (1) to develop a CNN model for prediction of earthquake
classification and (2) to develop a probability map based on the CNN prediction of classification results.
The model will enable performance accuracy evaluation and loss estimation. The proposed model was
tested in India and covered nine probability factors. The estimation result was analyzed by calculating
and comparing area and length with those of published old seismic hazard maps.

2. Seismic Tectonics of the Study Area

Study Region

The Himalayas is located in the northern part of the Indian subcontinent, which is seismically
dynamic [26]. The study area is situated at a latitude and longitude of 20.5937◦ N and 78.9629◦ E based
on the WGS 84 geodetic coordinates system, respectively (Figure 2). This area is the seventh-largest
nation by territory, the second most populated country in the world. The total population in India is
1,324,171,354, and the total country area is 3,287,263 km2 [27]. The most common rock types in the
Himalayan Mountains are oceanic and ophiolite rocks. In the past decade, four extraordinary seismic
tremors (M > 8) occurred along the Himalayas, along with countless moderate-sized quakes. Nearby
seismic systems are confined toward the western Himalayas and the Assam area. Hence, seismic
tremor hypocenters for the Himalayan earthquakes depend on the teleseismic areas. Nevertheless,
the focal depths of these quakes can exhibit errors of up to 50 km. The distortion of the Himalayas
is due to the gravitational distribution in the area. The main boundary thrust is the present active
fault system of the Himalayan arc based on data recorded by teleseismic earthquakes. Medium-sized
thrust-type quakes suggest that numerous chances of great Himalayan earthquakes can occur along
the same detachment region.
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Figure 2. Location of the study area showing the tectonics and detailed geology of the Indian
subcontinent with earthquake events of Mw > 4 in the Himalayan region (events and faults information
were collected from articles [27–29]). (A: Archean, Ap: Archean and Proterozoic, Cmsm: Cambrian
sedimentary and metamorphic rocks, Cs: Carboniferious sedimentary rocks, D: Devonian rocks,
H20: other regions, JTr: Triassic and Jurassic rocks, Jms: Jurassic metamorphic and sedimentary rocks,
Jks: Jurassic and Cretaceous sedimentary rocks, Ks: Cretaceous sedimentary rocks, MzPz: Paleozoic
and Mesozoic metamorphic rocks, Mzi: Mesozoic intrusive rocks, N: Neogene sedimentary rocks,
Osm: Ordovician metamorphic and sedimentary rocks, Pg: Paleogene sedimentary rocks, Pr: Permian
rocks, Pz: undifferentiated Paleozoic rocks, Pzi: Paleozoic igneous rocks, Pzl: Lower Paleozoic
rocks, Pzu: Upper Paleozoic metamorphic rocks, PzPc: Paleozoic undivided Precambrian rocks,
Q: Quaternary sediments, Qs: Quaternary sand, S: Silurian rocks, TKim: Cretaceous and Tertiary
igneous and metamorphic rocks, TKs: Cretaceous and Tertiary sedimentary rocks, TKv: Cretaceous
and Tertiary volcanic rocks, Ti: Tertiary igneous rocks, TrCs: Upper Caboniferious–Lower Triassic
sedimentary rocks, Tims: Triassic igneous and sedimentary rocks, Ts: Tertiary sedimentary rocks,
and Pc: Precambrian rocks).

3. Geopotential Data Acquisition and Analysis

3.1. Catalog

Kolathayar et al. [28] developed an earthquake catalog for India and its adjoining regions. This catalog
comprises data from the literature and different national and international agencies. The aforementioned
authors designed relationships that combine different extent scales and standardized the catalog in a
combined moment extent scale. In an earthquake study, using only a complete catalog is insufficient in
probability mapping. However, data from single or multiple sources can be collected. Several public and
private organizations provide open access earthquake catalogs for research purposes. These accessible
sources include the United States Geological Survey (USGS), Advanced National Seismic System (ANSS),
Northern California Earthquake Data Center (NCEDC), and the National Earthquake Information
Center (NEIC). The catalog of Kolathayar et al. [28] contains information collected from USGS,
with specifications of magnitudes, depth, and location with coordinates of latitude between 9.269◦ N
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and 37.435◦N and longitude between 66.533◦ E and 97.822◦ E based on the WGS 84 geodetic coordinates
reference system. This distributed earthquake catalog and data from USGS were used to train the
model, predict classifications, and generate the probability map in the present study.

3.2. Local Sources

Local sources refer to the raw data sources in India used in this study. The Geological Survey of
India published the seismotectonic atlas [29], which is regarded as an authentic referral for seismic
source identification. Iyengar and Ghosh [30] conducted studies in Delhi and produced a micro-zonation
map of earthquake hazards. Nath et al. [31] performed micro-zonation in Sikkim as a case study.
Boominathan et al. [32] conducted earthquake hazard mapping in Chennai using local site effects.
Kanth and Iyengar [33] studied seismic hazards in Mumbai. Anbazhagan et al. [34] and Vipin et al. [35]
researched seismic probability in Bangalore and South India, respectively. Detailed information about
lineaments, faults, shear zones, and several features in India was documented by Narula et al. [29].
In the present study, a detailed geological map representing earthquake hazards in India and showing
faults, thrusts, and earthquakes stronger than 4 Mw was used to generate several thematic layers and
implemented in CNN model [36,37]. This information, along with lithology information, was processed
in the present study through the digitization and georeferencing of available maps using ArcGIS 10.4.
and the clustered earthquake information. The final map superimposed all the information prepared
in thematic layers. Table 1 summarizes the list of input paramters and their sources.

Table 1. Earthquake probability parameters and their characteristics.

Parameters Data Source Resolution Scale Description

Slope
Elevation

DEM (USGS) https:
//earthexplorer.usgs.gov/

30 m 1:250000 Derived from raster DEM

Fault density
Distance from fault Geological map of India, GSI Derived from image

digitization in ArcGIS
Magnitude density
Epicenter density
Distance from epicenter

USGS earthquake catalog
(https:
//earthquake.usgs.gov)

Derived using Joyner and
Boore (1981), Campbell
(1981)

PGA density USGS earthquake catalog
PGA can be derived using
(MMI = 1/0.3 ∗
(log 10 (PGA∗980) − 0.014)

Lithology and
amplification factor

Geological map of India, GSI
(www.gsi.gov.in),
(bhuvan.nrsc.gov.in), (USGS
World Geologic Map)

Derived from image
digitization in ArcGIS
1. Unknown:1
2. Hard rock:0.55
3. Soft rock:0.70
4. Medium soil:1
5. Soft soil:1.30

3.3. Thematic Layers

In this study, various thematic layers (Figure A1) were produced after an extensive review of the
literature [38]. An underlying process is linked to an analytic framework to construct a map using
a geographic information system (GIS). The data used in this study does not support choropleth
maps. Cartogram and chorochromatic maps were produced using statistical software, MS Excel,
and ArcGIS (http://www.pbcgis.com/normalize/). Probability assessment is challenging without
selecting appropriate criteria on which the model fully depends upon. To achieve good accuracy in
producing a probability map, the most essential and useful steps are selecting important indicators
and removing noise and heterogeneity from the data. In this study, freely available 30 m resolution
digital elevation model (DEM) data was used to generate several layers. The UTM/WGS 1998
reference system was used to map and produce thematic layers. The following thematic layers were
derived from several sources: Euclidean distance from normal, strike-slip and thrust faults (including
major photo lineaments), fault density, lithology with an amplification factor value, slope angle map,
elevation, magnitude density, epicenter distance, depth density, distance from the epicenter, and PGA

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthquake.usgs.gov
https://earthquake.usgs.gov
www.gsi.gov.in
bhuvan.nrsc.gov.in
http://www.pbcgis.com/normalize/


Sensors 2020, 20, 4369 7 of 23

density [39–42]. The layers were presented in a stretched format starting from negative values to
positive values. Table 1 provides an overview of the importance of data layer preparation. These layers
can be understood by uncovering concepts, emerging patterns, themes of objectives, and insight logic.
Pre-processing was performed on the basis of the literature [30]. Subsequently, all the layers were
converted into multiple values by points using GIS tools. All the values for each pixel were produced
in an Excel file. Next, some negative and illogical values were removed because they can result in noise.
Post-processing was performed after the prediction task was completed for the testing dataset [38].
The proposed model predicted the exact values of each pixel. The values were added to the GIS
database, and a point-to-raster conversion tool was used to produce a raster map, which was classified
using the quantile classification technique.

Slope and elevation: Slope and elevation are two main factors used for earthquake potential
zoning and earthquake-induced landslide susceptibility mapping [43]. Rough slopes can be observed
in the hilly areas, where fault length and size are controlled by slope inclination [44]. These factors
are quite important because hilly regions are seismically more active with complicated tectonics and
structure as compared to plane lands. Therefore, these are two major input data used in earthquake
probability estimation.

Fault density and distance from fault: Faults are the main source of earthquakes. High fault
density denotes the areas with complex tectonics, thus increasing the probability of earthquakes [43].
The complex fault system or interconnected active faults can generate a high magnitude and number
of events [45]. Distance from fault is significant because the earthquake potential zones are close to
faults and decrease as the distance from fault increases [46]. In this study, major active faults were
included for thematic layer preparation.

Magnitude, PGA, epicenter density, and distance from epicenter: Likelihood of a particular
magnitude, location, depth, and PGA values depend on tectonic condition [43]. Epicenter density
indicates the clustering of events that denotes the probable locations [46]. Epicenter density analysis
could provide a way to focus on a structure’s riftogenesis study, a cluster of large earthquakes, and the
large active fractures [43]. Such indicators are interlinked to each other because these can provide
information on ground acceleration associated with several lithology types, maximum magnitude
areas, and low seismic zones with the increase in distance from the earthquake source zone [43].

Lithology and amplification factor: Ground shaking depends on the amplification factor and rock
types [43]. These are two major indicators because the amplification value of different rock types varies
and could create either high or low ground shaking [43,46].

4. Methodology

4.1. CNN Architecture

The architecture of CNN for earthquake prediction of classification consists of a sequential model
with four convolutional layers, each of which is followed by a dropout and pooling layer. The details
of the employed CNN layers are described below and presented in Figure 3:

Input layer: Each layer is characterized by a 2D vector. An input sequence of n layers can be
presented by concatenating the mathematical structure with multivalued points. The matrix X ∈ Rd×n,
where X is the network input [36].

Convolutional layer: A set of m convolutional filters is attached to this layer, where h is the length.
X[i:i+h] indicates the concatenation of all data Xi. to X[i+h]. Therefore, the feature Ci can be applied to a
filter F using the following formula [37]:

Ci :=
∑
k,j

(
X[i:i+h]

)
k,j

.Fk,j (1)
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Figure 3. Architecture of the convolutional neural network (CNN) model for prediction of
earthquake classification.

The concatenation of all data points in a layer describes the feature vector C ∈ Rn−h+1. Therefore,
C vectors can be aggregated from all m filters into a feature map matrix C ∈ Rm(n−h+1). During the
training phase, the convolution filters within CNN are learned. A nonlinear ReLU activation function
is applied to pass the output of the convolutional layer before entering a pooling layer.

Pooling layer: The aggregation of the input vectors occurred in a pooling layer, which is the
maximum value over a set of non-overlapping intervals. The resulting pooled matrix can be expressed
as C pooled ∈ Rm×(n−h+1/s), where s is the length of each interval. However, when the stride
value st is observed in the case of overlapping intervals, the pooled matrix can be presented as
C pooled ∈ Rm×(n−h+1−s/st). The fraction result is rounded up or down, depending on the inclusion of

the boundaries.
Hidden layer: A fully connected hidden layer is located at the end of the four convolutional

layers. This layer computes the transformation ∝ (W× x + b), where the weight matrix is expressed as
W ∈ Rm×m, the bias can be estimated as b ∈ Rm, and the ReLU function is ∝. Consequently, the output
can be presented as the x ∈ Rm of this layer, which is similar to the mathematical structure of the
input data [38].

Softmax: A softmax regression layer is connected to the outputs of the previous layer x ∈ Rm,
which provides the largest probability values as y ∈ [1, K] and can be expressed as:

ŷ = arg maxj P(y = j|x, w, a) (2)

= arg maxj
ext

wj+aj∑k
k=1 e

xt
wj+aj

(3)

where wj indicates the weight vector of class j, from which the dot product can be generated with the
input, and aj is the bias of class j.

Optimization: The CNN parameters are learned using the Adam optimizer. The validation and
parameters with the highest value should be computed and selected, respectively, at a fixed interval.

Loss estimation: The loss function is also called the cost function. This function measures
the compatibility among output predictions and uses ground truth labels. In this model, a sparse
categorical cross-entropy function is implemented as the loss function, which is beneficial for binary
classification. However, the mean square error of the continuous values is applied to the regression.
One of the hyperparameters is a loss function that can be determined on the basis of the given tasks.

Network parameters: The parameters learned during the training are as follows: θ =

{X, F1, b1, F2, b2, W, a} (with X is the input data point matrix), where a d-dimensional vector
can be found in each row for a specific layer; Fi and bi are used as the convolutional layer’s filter
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weights and biases, respectively; and W and a are the weight matrices in the softmax layer for the
output classes.

4.2. Learning the Model Parameters and Performance

The parameters of the CNN model were learned through a three-phase procedure: (1) creation of
data point embedding; (2) distant supervised phase, wherein the parameters are tuned by training,
and; (3) final supervised phase, wherein the training is performed using the supervised training data [37].
In the distant supervised phase, heuristic techniques were used to reduce noise in the data points.
This process can be regarded as a pretraining procedure to eliminate data noise and improve accuracy.
The pretraining phase datasets do not necessarily overlap to generate the input embedding. CNN was
trained for 1 epoch on this dataset before the final supervised training of 100 epochs. The weight of the
data layers was updated in the distant and supervised training phases through backpropagation.

Accuracy is a simple measure of a classifier’s performance [36,37].

Accuracy =
Number of correctly labeled samples

Number of all testing samples
(4)

The F1 score is computed from the precision and recall (i.e., the harmonic mean) of each class.

F1 =

precision−1 + recall−1

2

−1

(5)

4.3. PGA, Source to Site Distance and Intensity Calculation

The earthquake catalog from USGS was used to estimate PGA based on the attenuation equation
provided by Joyner and Boore [39]. The source to site distance was calculated using the epicentral
distance provided in Equation (6). To estimate the intensity variation for the proposed study area,
Equation (8) was used. Several attenuation equations have been proposed by various researchers,
however, the current study applied the developed equation by Joyner and Boore [39]. Therefore,
D value can be calculated using the formula written below:

D = (Eˆ2 + 7.3ˆ2) ˆ0.5 (6)

where, E = Epicentral distance; and D = source to site distance.
According to Joyner and Boore [39], PGA can be calculated using the equation presented below:

PGA = 10ˆ(0.249∗M− Log(D) − 0.00255∗D− 1.02, D = (Eˆ2 + 7.3ˆ2)ˆ0.5 (7)

where, M = Earthquake magnitude, R= Radius from the epicenter to the location. There are several
other attenuation relationships which could be implemented in probabilistic hazard analysis [40–42].
The most popular general equation of regression by Boore and Joyner [39] is used for regional and
worldwide datasets for probabilistic analysis. Therefore, MMI (Modified Mercalli Intensity) could be
estimated using the formula:

MMI = 1/0.3 ∗ (log 10 (PGA∗980) − 0.014 (8)

where, the PGA unit is G (Gal).
Three main thematic layers were obtained such as MMI variation, PGA variation, and lithology

with an amplification factor map using GIS along with several other layers from the same dataset. Firstly,
various attributes of earthquakes were investigated in detail as per the requirement of earthquake
probability assessment. Secondly, PGA and MMI were calculated based on the employed attenuation
laws and implemented in GIS. PGA density map and intensity variation layers were utilized in
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earthquake probability mapping and hazard estimation. Several lithological units were extracted from
the geological map and assigned amplification factor values to each unit to generate another thematic
layer. The detailed information regarding the implementation of the CNN model and attenuation laws
to generate the earthquake probability map was described in Section 5.

5. CNN Model Implementation for Prediction and Probability Mapping

The detailed methodological flowchart of the employed model is shown in Figure 4.
The implemented supervised classifier was trained using 75% of the spectrograms (training set)
on a random subset, and performance was evaluated in terms of two-class classification. The trained
dataset comprised 500 samples, with 350 and 150 samples used for training and validation, respectively.
Once the model achieves good accuracy, the model is considered as well-trained. The selected
datasets (20 million points) for testing all of India depend on the training sets that were used for
probability assessment.
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In the first step, a comprehensive earthquake catalog was collected from USGS. Then, several
random non-earthquake points were created to train the CNN classifier using GIS. Nine different
indicators were used to extract multiple values by points and by keeping earthquake and non-earthquake
as the target (Figure 4). In the second step, A CNN model was designed for earthquake prediction of
two classes (0,1) that can continuously scan through several input indicators and convolutional layers
and classify earthquake (1) and non-earthquake (0) values. After inspecting and discarding irrelevant



Sensors 2020, 20, 4369 11 of 23

data, the final dataset contained 250 earthquakes during the training period. The Adam optimizer was
utilized to optimize the model, and then batch size (100), validation split (0.2), and verbose (1) were
applied to avoid overfitting epochs (100). A total of 123,002 parameters were collected during training,
all of which were trainable. The classifier predicted the target as 0 and 1 in the training and testing
datasets for 500 points, respectively. Among the 500 points, 250 points were earthquakes and the rest
were non-earthquakes. In the third step, post-processing was conducted to convert the pixels to raster
to generate the probability map.

The spatial layers generated for probability mapping were elevation, slope, lithology with an
amplification factor, magnitude density, PGA density, depth density, distance from epicenter, distance
from fault, and fault density (Table 1). Training was performed by splitting the data into training (75%)
and testing sets (25%), normalizing and defining the variables, constructing and optimizing the model,
and compiling the results for loss estimation [38]. Highly accurate prediction values can be obtained
by applying the testing set. In this study, the number of earthquakes was determined by filtering the
magnitude of quakes to higher than 4.5 within the period of 1900–2019 because low-magnitude events
can be attributed to human activities and may not be destructive. There is no problem with the number
of indicators to be used in a deep learning model. It has the capacity to run a huge number of indicators.
However, model accuracy depends on the importance and weights of the factors. Therefore, several
authors achieved low accuracy by applying unrelated factors in previous studies [38–44]. Therefore,
these studies achieved low accuracy due to data heterogeneity and unrelated factors, which were
removed from the study, applied nine major and useful factors, and described the importance of each
factor in Table 1. Therefore, several layers from the study were removed such as aspect, hill shade,
epicenter density, etc. This model was a predictive analysis-based probability assessment, wherein
two classes were predicted. Then, the values for each pixel in the study area were predicted using
the testing dataset. Each pixel value was converted into pixels using GIS to generate a probability
map. The value for the probability map varies from 0 to 1. As probability varies between 0 and 1,
then earthquakes (1) and non-earthquakes (0), while the pixels are not falling within these two classes,
have a value between 0 to 1. Therefore, the map presented below is an unclassified probability map
showing earthquakes and non-earthquakes. However, this model attempts to learn the associated
general characteristics of earthquake and non-earthquake parameters from the indicators. Given that
some thematic layers were prepared through GIS digitization, irrelevant pixel values originated can
affect model performance. However, network performance can be further improved by applying all
major indicators and noise removal techniques. Model performance was presented through graphs.
Figure 5 shows the estimated loss and accuracy, and Table 2 lists the parameter details.

6. Results

6.1. CNN Classification and Bi-histogram Results

Major earthquake scenarios experienced in the past 200 years in the Indian subcontinent with
magnitudes 7.0 to 8.0 and above were also included in the current study. Bi-histogram provides a
relationship between magnitude, intensity, and frequency (Figure 6). In total, 11 bins formed for both
the variables. Normal fit for both the magnitude and intensity shows the mirror reflection of each
other. However, the kernel density of both variables does not project mirror reflection. Therefore,
it reflects that the frequency varies for both the variables differently. The conversion of magnitude to
intensity depends on the source-site distance. If the distance is less, then intensity could be higher
for low magnitude events and extreme for high magnitude earthquakes. Similarly, if the distance
is huge, then intensity could be lower for high magnitude events and negligible for low magnitude
earthquakes. Therefore, the intensity values obtained in the current study applied to produce thematic
layers as an indicator to generate a hazard map in the future.
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Figure 5. (a) Accuracy and (b) loss estimation of the CNN model for earthquake prediction.

Table 2. CNN model parameters for prediction.

Layer (Type) Output Shape Parameter

dense_1 (Dense) (None, 200) 2000

dropout_1 (None, 200) 0

dense_2 (Dense) (None, 200) 40,200

dropout_2 (None, 200) 0

dense_3 (Dense) (None, 200) 40,200

dropout_3 (None, 200) 0

dense_4 (Dense) (None, 200) 40,200

dropout_4 (None, 200) 0

dense_4 (Dense) (None, 2) 402

Input number of units = 9
Output = 2
Hidden units = 200
Kernel regularizer = l2(0.0001)
Activation = ‘relu’
Activation = ‘softmax’
Total params: 123,002
Trainable params: 123,002
Non-trainable params: 0
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Figure 6. Bi-histogram of magnitude and intensity comparison using frequency that is used for
probability assessment (Mw: moment magnitude, MMI: modified Mercalli intensity scale).

The strong quakes that happened in India are the source locations that can produce future events
in accordance with active faults. Previous quakes, such as Kutch (Mw = 8.3), Assam (Mw = 8.7), Kangra
(Mw = 8.1), Bihar–Nepal (Mw = 8.3), and Assam (Mw = 8.6), are moving closer to the high hazard zones.
Training is a major component of the CNN model to achieve an accurate result. Therefore, training and
testing accuracies were calculated after the performance evaluation of the proposed CNN framework,
reaching 96% and 92%, respectively. The estimated loss from this model was compared against the
epochs. The obtained baseline error was 7.95%, and the final accuracy was 92.05%. The confusion
matrix (Table 3) and the classification report (Table 4) targeting two classes presented, respectively.
The false negatives in the confusion matrix did not follow any patterns. The result shows that the
precision, recall, F1 score, and support for non-earthquake (0) and earthquake (1) classes were 0.98,
0.85, 0.91, and 71 and 0.88, 0.99, 0.93, and 80, respectively. The micro average and weighted average
were also calculated and summarized in Table 4.

Table 3. Confusion matrix for the prediction model.

Predicted

Positive Negative

Actual Positive 60 11

Negative 1 79

Table 4. Performance of the developed CNN model.

Classification
Report

Precision Recall F1 Score Support

0 0.98 0.85 0.91 71

1 0.88 0.99 0.93 80

Micro average 0.92 0.92 0.92 151

Micro average 0.93 0.92 0.92 151

Weighted average 0.93 0.92 0.92 151

Prediction accuracy: 0.920530
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The CNN model’s accuracy reached 92.05% for the testing dataset. Tables 3 and 4 present the
details of the accuracy, error, and confusion matrices. The loss was estimated and plotted against the
epochs. Loss decreases with an increase in the number of epochs. The predicted earthquakes were
classified under the high- to very-high-hazard zones, indicating that the results are correct and useful.

6.2. Probability Mapping

The probability zones of earthquake-prone areas were mapped for the Indian subcontinent.
The probability map was obtained with values varying from 0 (no-earthquake) to 1 (earthquake)
(Figure 7), and then presented through the classification of the probability (Figure 8). Five susceptible
ranks were selected on the basis of the quantile classification technique to evaluate the probable areas,
all of which fall within the ranks. However, the weight of the classes varies from very-high to very-low
(Figure 8). The very-high-probability zone involves more than 200 events and can be found within
the vicinity of active fault locations in the Himalayas. Very-high- to high-probability areas involve a
source of strong vibration zones with high fault density, magnitude, and PGA values. The probable
areas were determined quantitatively.Sensors 2020, 20, x FOR PEER REVIEW 15 of 24 
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Figure 7. Earthquake probability map.

Table 5 presents the percentage of each zone, including the area (km2) contributing to active
tectonics. The maximum area is within the very-low-probability zone (approximately 1,776,265 km2),
followed by the low-probability (139,123 km2), moderate-probability (378,887.6 km2), high-probability
(591,240.5 km2), and very-high-probability (712,375 km2) zones. Very-high- to very-low-probability
areas comprise approximately 19.8%, 16.43%, 10.53%, 3.87%, and 49.37% of the aforementioned zones,
respectively. A two class-based probability map was developed and presented in Figure 9. Several
states that fall under very-high- to high-probability zones include Jammu, Kashmir, Northern Bihar,
Chandigarh, Delhi, Haryana, Central Madhya Pradesh, Himachal Pradesh, Panjab, Gujrat, Rajasthan,
Uttar Pradesh, Uttaranchal, Maharashtra, and northeastern states, where the total population comprises
approximately half of India’s population based on the current census data (Table 5). The states that
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fall under the moderate- to very-low-probability zones are Tamilnadu, Kerala, Odisha, West Bengal,
Chhattisgarh, Andhra Pradesh, Karnataka, the western part of Madhya Pradesh, Eastern Rajasthan,
Central Bihar, Jharkhand, and some North Indian states.Sensors 2020, 20, x FOR PEER REVIEW 16 of 24 
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Table 5. Earthquake probable areas in km2 and percentage.

Class No. Probability Classes Shape Length (km) Area (km2) Area (%)

1 Very-high 19,788.24 712,375 19.8
2 High 22,309.64 591,240.5 16.43
3 Moderate 26,041.08 37,8887.6 10.53
4 Low 30,004.07 139,123.1 3.87
5 Very-low 25,599.15 1,776,265 49.37

Total 3,597,891 100

Approximately 92% of predicted earthquake classes fall within the Himalayan zones (high- to
very-high-hazard zones). These probable zones provide a holistic view, which is an integration of
several parameters without considering a particular context of the scenario. This finding explains the
severity of earthquake hazards that can originate from these regions in the future and provides an
alarming view to local and national authorities with respect to necessary preparations for the worst
situations with a gradual time course.
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6.3. Result Validation

The validation of results was conducted using a published seismotectonic zonation map and
experts’ feedback. Sitharam et al. [26] reported the estimation of earthquake hazards at the surface
level by applying necessary amplification factors with respect to several site classes based on the VS30

values obtained from the topographic gradient. They obtained a PHA at the surface level, wherein the
return periods are 475 and 2475 years (presented in contour maps).

Vipin et al. [35] estimated a seismic hazard in South India by implementing a probabilistic
seismic hazard analysis. The seismic hazard map of India produced using GSI and the old seismic
micro-zonation map of India show that the developed probability map is accurate and can be used in
future studies on hazard and risk assessments. Five experts’ opinions were also considered to check
the quality of the generated map (Table 6). Out of the five experts, four were highly satisfied (80%)
with the obtained results and one was satisfied (20%).

Table 6. Experts’ profile and feedback on the probability results.

Category No. of
Experts Profession Specialization Recruitment Process Validation Criteria Feedback

Researchers 5

Seismologist,
geologist,
hydrologist,
GIS analyst,
soil
physicist,
geotechnical
researcher

Researcher on
natural hazards
using GIS and
remote sensing,
monitoring,
mapping, GIS,
artificial
intelligence

• Deep learning
application to
earthquake prediction

• Geological mapping
with sensitivity

• Expert in local and
regional earthquake
probability and
risk assessment

• Data
analysis expertise

• Published good
articles in
high-impact journals

• Probability
determinants

• Representation
of spatial maps

• Expected
uncertainties

• Map validation
using old maps
by GSI

• Results
• Communica

bility
• Usefulness to

land
use planning

• Benefit to
local people

• Four
experts are
highly
satisfied
(80%)

• One expert
is satisfied
(20%)
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7. Discussion

The associated earthquake probability with peninsular India was evaluated using a CNN model
that was described in the implementation section of this paper. While integrating uncertainties
associated with various modeling parameters, the most recent knowledge on seismic activity in the
Indian subcontinent was applied to estimate probability. Uncertainties related to data that can be linked
to a catalog or existing probable factors or other parameters involved in hazard analysis. The discussion
part describes the comparison of old probabilistic results and seismic zoning maps with the obtained
earthquake probability map. Most traditional techniques are poorly designed for low-magnitude
events and do not record seismicity [47]. The objective of the current study is to develop a probability
assessment model for independent earthquakes based on several indicators. A deep learning technique
was proposed to achieve robust accuracy for probability assessment. However, CNN’s learning ability
can vary with changes in the parameters [48]. Therefore, the sensitivity of the model was analyzed by
applying changes to the convolutional layer filters and adopting various activation functions. Several
significant changes were observed in the model’s performance. The model that exhibited the most
satisfactory performance was selected. To avoid over-training, dropout rates were set as 0.2 and 0.1 for
the convolutional and input layers, respectively, to facilitate the network in learning and performing
a robust training process. The applied dropout rate exhibits the best trade-off between validation
accuracy and training data misfit.

Khattri et al. [49] developed the first probabilistic seismic hazard map of the Indian subcontinent.
They divided the region into 24 seismic sources for hazard parameter estimation based on peak
acceleration for 50 years, wherein the exceedance probability was 10%. However, the intensity values
for hazard estimation were not used in the present study. Instead, an earthquake probability map based
on predictive analysis was presented. Khattri et al. [49] reported that a maximum peak acceleration
of 0.8 g was expected in the northeast region, and the value varied from 0.03 g to 0.04 g in the
south, southeastern, and central parts. Similar values were observed for Northeast and Central India.
On average, the PGA values of the Himalayan region varied from 0.5 to 1.01 (Figure 7). Bhatia et al. [50]
developed another probabilistic seismic hazard map for India. The hazard level was estimated on the
basis of the PGA values after locating 86 potential sources based on seismicity trends and major tectonic
features. Joyner and Boore’s [51] attenuation equation was applied to this probabilistic assessment.
Aman et al. [52] and Singh et al. [53] performed a probabilistic assessment in the Himalayan regions,
and the two groups of researchers achieved similar results. Lyubushin and Parvez [54] applied a purely
statistical procedure for probability assessment. However, the present study did not focus on hazards.

The probability assessment was completed on the basis of nine factors (Table 1). Figure 8 presents
the results of the predictive analysis-based probability assessment and the probability map. According
to the literature, CNN is one of the most reliable models for probability assessment; ANN provides an
accuracy of 84%. The proposed technique performs better than ANN prediction while significantly
reducing processing time and improving efficiency. In addition to event prediction, the proposed
approach provides the best estimates of probability from the events that already occurred. The plot of
the probable classes (with area and shape length) explains the variation in the probability with respect
to distance and area (Figure 10).

The objective was to produce an earthquake probability map based on experienced events. In this
study, the authors did not implement any technique to predict events based on magnitudes, intensity,
time, or location. This study is a prediction of classification-based probability assessment; therefore,
the areas close to the experienced events will be the probable areas for earthquakes. First, pixels close
to the predicted classes can be interpolated to generate a probability map. Second, the entire area can
be converted into points for testing using the same model to obtain the pixel values for each point and
generate a probability map. Both techniques are effective; however; the second one is more accurate than
the first one. In accordance with the old hazard map of India, the Himalayan region belongs to Zone V,
which includes Gujarat State in the west, and some cities belong to Zone IV. However, in accordance with
the seismic zoning map of India (BIS, 2002), a large part of the Narmada lineament region spreads up



Sensors 2020, 20, 4369 18 of 23

to the northern part of the Godavari graben (https://law.resource.org/pub/in/bis/S03/is.1893.1.2002.pdf).
Therefore, the hazard estimated in this region is higher in contrast with the Indian Standard code.
The current study of probability mapping is linked to the hazard map, which is under Zone IV but with
low probability. Southern portions, including Tamil Nadu, are under passive margin and exhibit higher
ground motion based on the hazard map (Zone III) while presenting low probability in accordance with
the obtained map. The western portions of some states, such as Bengal and Orissa, and the western
part of Madhya Pradesh, Chhattisgarh, Andhra Pradesh, and Karnataka are estimated as moderate to
low probability and low hazard zones on the basis of the seismic zoning map (Figure 10). Therefore,
these areas are considered the stable shield of peninsular India. However, the resulting probable areas
are nearly similar to other parts of the hazard map of India. The resultant earthquake probability
map indicates that priority should be focused on the Central Himalayas and Northwest, Northeast,
and Shillong areas of the Indian subcontinent; because of the complicated tectonics and active faults in
areas where no large earthquake has occurred since the 2011 Sikkim earthquake. Other priority areas
experienced mild events such as Maharashtra, Kachchh region, cratonic regions, and rift basins in India
that can be considered for future hazard and risk studies. A national database of active faults should
be created, and event prediction should be initiated using GIS [55]. The database would enhance
the geological and earthquake hazard-related issues under different tectonic settings using machine
learning techniques [56,57].
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Figure 10. Graphical presentation of probability among classes, area, and distance.

8. Conclusions

On the basis of the recent advances in deep learning, a CNN model was proposed to achieve a
robust prediction of experienced earthquake events to address the shortcomings of existing methods
and develop a probability map for the Indian subcontinent. In the current study, the authors
attempted to estimate the probable areas (spatial) for future earthquakes. The final probability map
achieved an accuracy of 92.05%. Therefore, the proposed model is superior to traditional methods for
earthquake probability assessment in terms of accuracy. From the results, very-high (712,375 km2)
and high (591,240.5 km2) probability areas consist of 19.8% and 16.43% of the aforementioned zones,
respectively. The limitation of this study includes the implementation of CNN, which is time- and
data-consuming, particularly the training data. This study is limited to earthquake figure probability
assessment. The geological and deep learning constraints presented in this research are insufficient for
probability mapping. The detailed analysis of factors, including geophysical and precursor studies,
could be enhanced to improve the accuracy of the probability assessment. Several assumptions
were made and model parameter modification was performed during the entire process, such as the
selection of earthquakes with more than 4.5 Mw, distance criteria, including maximum magnitude

https://law.resource.org/pub/in/bis/S03/is.1893.1.2002.pdf
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scenarios, removal of unwanted thematic layers, and the weighting scheme within the CNN model.
The earthquake probability map presented in this study is intended to highlight nine influencing
parameters that can be changed further with geophysical, geomorphologic, seismic, and field data.
The probability map based on CNN can be useful for earthquake hazard and risk mapping, mitigation,
land use planning, and other related applications. Understanding the relative importance of the
applied factors is crucial for further studies. This study can further support hazard and mitigation
strategies and proper planning for critical facilities, including hydropower projects, dams and tunnels,
nuclear power plants, and other engineering structures. Source-specific paleoseismic parameters,
geodetic considerations, and geophysical parameters can depict micro-level sources in future research.
Accurately dealing with associated uncertainties can be another future focus to achieve a good
assessment in the field of earthquake probability assessment. More research should be done to improve
the seismic probability mapping using state-of-the-art machine learning approaches and advanced
artificial intelligence techniques.
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