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Abstract: This article aims to develop a system capable of estimating the displacement of a moving
object with the usage of a relatively cheap and easy to apply sensors. There is a growing need for
such systems, not only for robots, but also, for instance, pedestrian navigation. In this paper, the
theory for this idea, including data postprocessing algorithms for a MEMS accelerometer and an
optical flow sensor (OFS), as well as the developed complementary filter applied for sensor fusion,
are presented. In addition, a vital part of the accelerometer’s algorithm, the zero velocity states
detection, is implemented. It is based on analysis of the acceleration’s signal and further application
of acceleration symmetrization, greatly improving the obtained displacement. A test stand with
a linear guide and motor enabling imposing a specified linear motion is built. The results of both
sensors’ testing suggest that the displacement estimated by each of them is highly correct. Fusion of
the sensors’ data gives even better outcomes, especially in cases with external disturbance of OFS.
The comparative evaluation of estimated linear displacements, in each case related to encoder data,
confirms the algorithms’ operation correctness and proves the chosen sensors’ usefulness in the
development of a linear displacement measuring system.

Keywords: stationary state; zero velocity; ZV; accelerometer; optical-flow sensor; OFS; symmetriza-
tion; linearization; complementary filter; double integration

1. Introduction

Indoor and outdoor positioning and displacement estimation constitute an important
aspect of research nowadays concerning many engineering applications, such as robots
navigation, earthquake engineering, as well as systems for health monitoring, elderly care,
gait measurement, and pedestrian navigation. In each application, the focus is placed on
identifying the angular orientation, such as the roll, pitch, and yaw angles, and/or on the
X, Y, and Z linear displacements [1,2].

One of the commonly used methods for the displacement estimation of objects, such as
a computer mouse, and robots is the application of an optical flow sensor (OFS). The optical
flow is defined as the velocity of relative motion between the observer and adjacent objects
such as surfaces, edges, or contrasting points, in consecutive observational frames [3,4].
In [5], a developed flow computing system based on FPGA was used for displacement
estimation, but difficulties arose in differentiating between rotation and lateral translation
of the robot. In order to minimize the possible errors, two OFS were applied for robot
navigation in [6] and in [7]. Eight such computer mice sensors were combined and used
for translation and rotation estimation in a ground robot’s odometry. Other examples of
OFS usage for visual odometry in that case of ground robots include, for instance, [8,9].
Furthermore, in [10], OFS was studied for outdoor odometry calculation possibilities and a
velocity first order correction algorithm, based on the linearization of velocity dependance,
was developed. In the case of [11] the OFS was supplemented by an afocal system to
compensate for the possible error of displacement estimation caused by the sensor’s
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change in vertical height over the ground. In [12] the same idea as in [11] was applied
with another sensor, and a gyroscope was used, but not as additional tool in distance
estimation, but rather to obtain the orientation data. So, the idea in [12] was to improve the
operation of OFS itself, while in the case of this article’s research, the aim is to supplement
OFS usage with another sensor serving as the second source of displacement data. This
is similar to [13], where mobile robot odometry was calculated with the usage of OFS for
displacement estimation. Sensor fusion was also applied in this article, but only for the
well-known case of angular orientation obtained from an additional inertial measurement
unit (IMU) sensor, as in [14]. In addition, OFS-based sensors are even offered by companies
like RoboteQ [15] for acquiring a mobile robot’s X-Y localization and yaw angle orientation.

Various other sensors and methods are applied for displacement estimation including
not only OFS, but also inertial navigation systems (INS) using sensors such as accelerom-
eters, gyroscopes, and IMU sensors [16,17], as well as magnetometers [18] or EMG sig-
nals [19]. For low-cost and simplicity reasons, the application of only inertial sensors is
often intended, such as in [20], where the usage of sensors other than an accelerometer
and a gyroscope was avoided, and unaided inertial positioning was achieved. Moreover,
in comparison to other navigation systems based on GPS, magnetometers or even optical
sensors [21], INS have a greater resistance to external interferences, since the gravitational
field is a much more accurate reference. Therefore, INS may function in environments such
as a building’s interior, underwater, or underground, where GPS signal is restricted. The
external influences are also limited, since inertial sensors do not need antennas or openings
in their casings.

Furthermore, there are navigation systems designed specifically for gait estima-
tion/pedestrian navigation and, in consequence, focus on displacement estimation, often
with the usage of inertial sensors [22]. In addition, human gait is a repeatable activity
and provides the opportunity to detect individual states of gait. As a result, a sensor’s
zero velocity/acceleration can be associated with the detected still phase, which allows
one to implement drift/error corrections [17,23]. Specifically, this is the idea behind the
zero-velocity update (ZUPT), which assumes resetting the velocity in stationary states [16].
However, such methods cannot be easily applied in a general case of distance estimation
when a non-regular movement occurs. For such situations, the zero velocity (ZV) state
detection algorithm may be also determined on the basis of, for example, acoustic noise
accompanying the motion. It is an essential factor providing decent information about an
object’s movement [24].

The above examples suggest that, in addition to the kind of applied sensor, an equally
important aspect of displacement estimation is computations and applied algorithms. For
instance, a FIR-filter type displacement estimation algorithm eliminating low frequency
drifts is presented in [25]. In another example [26], the application of neural networks
and a virtual IMU sensor based on machine learning and the human leg kinematic model
is shown. The applied algorithms are essential in the case of an accelerometer, where
detecting the zero-velocity (ZV) state (stationary state/still phase) is often required as
the reference for the mentioned ZUPT algorithm. The signal processing procedure with
the measurements from gyroscopes or an accelerometer is used in most methods of ZV
identification, for instance in the local acceleration standard deviation-based approach
in [16], where a still-phase or swing phase is detected when this parameter is below
the defined level. An adaptive value of such a threshold limiting the ZV detection is
applied in [21] for multi-sensor fusion between the accelerometer, gyroscope, and pressure
sensor. In [27], for the estimation of stride length and orientation, a ZUPT algorithm
with a complementary Kalman filter was used. Again, ZUPT was used in [16] to assist
the foot-mounted INS in the extended Kalman filter (EKF) system called INS-EKF-ZUPT
(IEZ) to reduce the accumulated accelerometer error and, in consequence, the accumulated
velocity error. Even further research resulted in an idea of applying fast Fourier transform
(FFT) in various parts of the displacement estimation algorithm. For instance, in [18], a
foot–mounted IMU positioning algorithm based on magnetic constraint was supplemented
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with FFT for improving the distinguishing degree of measured features. In [28], walking or
stationary state was detected by using FFT on angular velocities measured by a smartphone.
A similar goal, step-detection and step-length estimation, was achieved in [29] with the
acceleration signal smoothed by FFT.

The mentioned cases of hardware usage and methods applied are close to this article’s
subject of proposing a displacement estimation algorithm. However, our research focuses
on displacement estimation in a general case, when the movement is not a repeatable gait,
but a motion with unpredictable characteristics. The main aim is to propose a novel sensor
fusion of both OFS and accelerometer with usage of a developed complementary filter
in order to further improve the estimated displacement, especially in cases when OFS
encounters external disturbances. The intention is to enhance the stability of readings and
obtain displacement estimation with precision of±10 cm at a distance of 10 m. The usage of
a complementary filter should provide a correct accelerometer OFS measurement system of
velocity with minimum 95% certainty at 0.1 m/s deviation and ensure mutual elimination of
errors from two sensors. Improving the accelerometer’s existing algorithm for zero-velocity
states identification and velocity correction is another new important aspect researched in
this article. The basic preliminary version of the accelerometers data processing algorithm
was described in our previous work [24,30]. Specifically, the accelerometer’s measured
signals are processed according to an algorithm, where ZV detection is achieved through
acceleration and velocity data observations and, in addition, the velocity correction is
further supplemented by applying acceleration symmetrization (linearization), improving
the obtained results. At the end of the paper, the results of displacement estimations
obtained for the accelerometer, OFS, and their fusion are presented and compared. The
main findings demonstrate that zero-velocity detection could be achieved accurately with
the developed accelerometer data processing algorithm. Secondly, the use of sensor fusion
significantly improved the stability of the displacement estimation method based on the
readings from the accelerometer and OFS. Moreover, the applied simple complementary
filter allowed us to detect sensor errors and eliminate them.

2. Materials and Methods
2.1. Designed Test Stand and Studied Sensors

In order to perform experiments with an accelerometer and optical flow sensor (OFS),
it was necessary to design a test stand, as shown in Figure 1, which enabled acquiring linear
movement corresponding to a specified motion equation. The final test stand presented
in Figure 2 is assembled with: a linear guide (1), a servo drive with a planetary gear (2), a
toothed belt HTD 3M (3), a drive wheel (4), a measuring wheel (5), a measuring encoder (6),
a measurement platform placed on a sensor suspension with vibration damping system
(7), a control system (8), a precise machine level with 0.05 mm/m accuracy (9), the servo
amplifier Leadshine DCS303 (10), a kinematic gain controller (11), a power supply (12), a
laptop (13), a measuring track (14), and a steady table weighing 850kg (15).Sensors 2020, 20, x FOR PEER REVIEW 4 of 21 
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Figure 2. Built test stand for sensors linear displacement measurements.

The studied sensors are placed on a platform attached to the toothed belt moved by
the drive wheel. A controlled and repeatable displacement can be imposed on the test
stand. The obtained translational movement, provided by the used drive and gear, reach a
max. speed of 1 m/s, while the average acceleration is at maximum 6 m/s2. The location
of the studied sensors can be calculated with a resolution of 0.012 mm by utilizing an
encoder with 720 pulse/rate resolution. Primarily, Matlab software was used to analyze
the data, but eventually the developed algorithm code was implemented in the SAM3X8E
microcontroller on the Arduino Due board.

In order to determine the algorithm’s performance, efficiency comparative stud-
ies were performed on 2 sensors, the ADXL345 accelerometer (Figure 3a) [31] and the
PMW3901 optical flow sensor (OFS) (Figure 3b) [32]. The tested OFS communicates via
SPI, while the accelerometer has an analog output. Throughout the tests and final exper-
iment, the platform produced acoustic noise while moving on a fairly flat surface. This
smoothness allowed us to assume that the platform’s orientation remains unchanged,
with the exception of the yaw angle. However, since this research concentrated on linear
displacement, this angle was stabilized and the need to refresh it was omitted. It was
assumed that the tolerance for the ground flatness deviation did not exceed 1 cm over
an area of 25m2. The distance to the ground was constant. Light was dosed by artificial
lighting and the measuring area for the optical sensor was isolated from the influence of
external light.
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The following subsections present the algorithms applied for measured data post-
processing in the case of the studied accelerometer and OFS. Finally, a method of both
sensor fusion with usage of a complementary filter was developed, and this is introduced
in Section 2.4.
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2.2. Accelerometer—Displacement Estimation Algorithm

The overall algorithm is shown in Figure 4, including procedures for the accelerometer,
OFS, sensor fusion and results evaluation in the form of error calculations. The algorithm’s
operations and steps are explained below, as supported by the equations and figures. The
first step is acceleration data acquisition, with the usage of an accelerometer supplemented
with an analog filter to remove spikes. These data are presented in Figure 5 as a blue line
and are indicated as araw_ACC. In order to be usable in real applications, the acquired data
had to be further properly filtered.
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The accelerometer measured the acceleration in a local coordinate system in 3 axes.
The orientation of this coordinate system in accordance to the Earth gravitational field was
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not known, but it created a bias of measurements in all 3 axes, which had to be compensated.
It was performed by measuring the accelerometer’s indications, in a stationary state, in
each axis for about 1000 samples and calculating their average. Subtracting these initial
values from each axis eliminated the influence of gravity. In the case of the presented
algorithm and experiments, only the linear acceleration in the direction of movement
is important, so the other two axes were omitted and all considerations concerned only
measurements of this axis. Acceleration values after bias compensation are indicated in
equations as the aLIN_ACC. Furthermore, in order to remove the measuring noise, saturation
of the obtained data is applied to obtained aSAT_ACC, following Equation (1) expressed as:

aSAT_ACC n =


0

aLIN_ACC n−1
aLIN_ACC n

f or aLIN_ACC < aSAT_MIN
f or (aLIN_ACC n−1 − aLIN_ACC n) ≥ aSAT_MAX

f or other cases
(1)

It means that too small values of acceleration (lower than assumed value of aSAT_MIN)
are neglected and treated as 0. In addition, the measurement errors of too fast increases
in values reaching at least the aSAT_MAX are corrected by checking the derivative. The
parameters such as aSAT_MIN, aSAT_MAX, and others in the following parts of the article have
constant values and are defined experimentally (by analyzing graphs), when tuning of the
filter is performed. If an error is detected, the incorrect value is replaced with the previous
one. After that, the values of acceleration are scaled from bit form to m/s2, indicated as
aSCAL_ACC, filtered with Butterworth filter, and presented as a red line in Figure 5 (Acc Filt).
The filtering operations of bias compensation, saturation, and scaling constitute the second,
third, and fourth steps of the algorithm indicated in Figure 4.

The first calculation of velocity VI (Figure 6) is performed, by simple integration of
filtered acceleration values, according to Equation (2) expressed as:

VI n = ∑n
n=0 aSCAL_ACC n ∗ dt (2)
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The obtained velocity VI is used together with acceleration aLIN_ACC in the next step of
the algorithm, which is zero velocity state (ZVS) detection (Figure 4). Below, the parameter
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ZVS is introduced in order to indicate the detection of zero velocity state (ZVS = 1) defined
by Equation (3) as follows:{

ZVS = 1
ZVS = 0

f or
f or

(Ta(aLIN_ACC ≤ aNoise) ≥ TMIN) ∧ (VI ≤ VMIN)
aLIN_ACC ≥ aNoise

(3)

where Ta denotes the detected period of time in which acceleration is lower than the
assumed level of aNoise. Specifically, the ZVS is detected when the obtained value of earlier
acceleration aLIN_ACC is close to 0 for an identified experimentally minimum length of time
period TMIN. This introduces a delay, but is necessary to avoid ZVS detection when, for
instance, acceleration quickly passes the 0 value as it changes its sign. For this reason, in
Figure 7, it is visible that the ZVS (green) detection starts with a delay after the acceleration
(blue) decreases to 0. In fact, a moving object never has a velocity so perfectly constant
that the accelerometer would not detect some changes. The object always accelerates
or decelerates a little. In addition, to avoid detection of ZVS in cases of experiencing
approximately uniform motion (without acceleration), the values of velocity VI (Figure 7
cyan) are checked for being below the assumed level VMIN (close to 0). This way, the ZVS
detection according to acceleration is supplemented by the search for movement periods
according to velocity. Generally, ZVS is detected only when both conditions for low values
of acceleration and velocity are met for a determined period of time, and therefore in cases
of high enough values of velocity (larger than VMIN), or non 0 acceleration (larger than
aNOISE), it is impossible to distinguish the ZVS.Sensors 2020, 20, x FOR PEER REVIEW 8 of 21 
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According to ZVS detected in Figure 7, the first velocity correction is performed,
following Equation (4), by subtracting a velocity correction coefficient VCOR equal to the
velocity measured from time to time in detected ZVS. This way, the velocity value is
brought to 0 in the stationary states. The results of such corrected velocity are presented in
Figures 7 and 8 as a black line compared with the uncorrected velocity VI as a cyan line.
A fault is visible at the beginning of the detected ZVS area, for instance at about the 4th
second in Figure 7.

VI_COR(VI , ZVS) =
{

0
VI −VCOR

f or ZVS = 1
f or ZVS = 0

(4)
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After the above operations, the algorithm’s key 2nd velocity correction is performed
(Figure 4). The detected idle periods (ZVS in Figure 7) are first used to perform symmetriza-
tion (linearization) of acceleration aSCAL_ACC from Figure 5. The result of this operation
is shown in Figure 9. Symmetrization is based on a simple fact that in order to achieve
zero velocity, its increase and decrease in the neighboring periods of acceleration and
deceleration have to be the same. Specifically, it is performed by checking the areas under
the acceleration waveform and comparing the results for adjacent phases. The previously
detected ZVS periods are used in order to determine the borders for each acceleration and
deceleration phase and so limit the calculated areas. The calculated differences between
the adjacent areas enable us to determine an acceleration correction coefficient aACC_COR,
defined in Equation (5), taking into account also the number of samples in each area.

aACC_COR =
1

(end− start)

n=end

∑
n=start

aSCAL_ACC n (5)
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The correction coefficient is then subtracted from or added to each value of accel-
eration (Figure 9—blue line) to achieve equal areas under the plot in the negative and
positive parts of the acceleration waveform where the acceleration and deceleration took
place. The final corrected values of acceleration after symmetrization are denoted as aACC
(Figure 9—red line). However, the symmetrization procedure can be performed only after
a certain phase of movement is finished (ZVS start and end detected), which results in a
delay in this correction. For this reason, the first correction of velocity is necessary and
useful, as it can be performed continuously in real time.

In order to clearly show the symmetrization effect, specifically the difference between
the acceleration measured and obtained after symmetrization, part of Figure 9 is magnified
and presented in Figure 10. The correction of the acceleration seems to be minor in relation
to the scale of the graph, but it has a colossal impact on the further obtained values of
velocity and displacement (way), enabling increasing the accuracy and correctness.Sensors 2020, 20, x FOR PEER REVIEW 10 of 21 
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The next step is to use the acceleration after symmetrization to calculate the velocity
VACC, shown in Figure 11 as a red line, according to Equation (6). The obtained result is
compared with the velocity achieved with the previous 1st correction (black line). They
are mostly consistent with each other. However, even this small difference between
them has a huge impact on the obtained displacement. Therefore, symmetrization of
acceleration proves to be a much better velocity correction method than the method used
previously, subtracting the coefficient determined on the basis of detected ZVS, and after
symmetrization, the best effects of estimated velocity are achieved.

VACC =
n=end

∑
n=start

(aSCAL_ACC n − aACC_COR) ∗ dt (6)
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Finally, the accelerometer estimated displacement SACC calculated on the basis of
final velocity data VACC, obtained from symmetrized acceleration, is achieved according to
Equation (7) and presented in Figure 12 as a magenta line. In order to evaluate the result, it
is compared with displacement obtained from an encoder (blue line). In addition, the red
line in Figure 12 refers to the displacement estimated from velocity after first correction, so,
based on the velocity indicated with a black line in Figure 11:

SACC = SINIT +
n=end

∑
n=start

VACC n ∗ dt (7)

where SACC denotes displacement taking place from the measurement starting at n = 0, and
SINIT denotes the initial position in case of this research equal to 0.
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Displacements obtained from both corrections of velocity are close to the encoder
outcomes. However, surprisingly, the results from the 1st velocity correction method
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(Figure 12, red line) seem to be more consistent with the encoder. On the other hand, what
is important is the correctness in stationary parts of movement. This is also more suitable
for further intensions of using the accelerometer with OFS and applying sensor fusion.
In the red line at about 7.3 s, a small peak is visible, indicating a detected change in the
position during a stationary state. It occurred that in other trials, this peak could be much
larger, disturbing the whole measurement. This error is not present in the magenta line,
indicating the correct displacement based on the symmetrization of acceleration.

2.3. Optical Flow Sensor—Displacement Estimation Algorithm

The second instrument applied for distance estimation is an optical flow sensor (OFS).
Its raw readings regard linear velocity data and, scaled to m/s, these are presented in
Figure 13 as cyan line. The optical flow sensor is calibrated by taking one measurement
of velocity (also measured by encoder) in both directions, at a fixed distance from the
ground. Figure 14 shows even more clearly that the raw data obtained from OFS has a lot
of noise and in the velocity waveform seems to produce areas rather than a line. Due to
the poor nature of raw OFS readings, an alpha-beta filter, chosen for its simplicity and fast
response, is applied to define an envelope, shown as a magenta line in Figures 13 and 14,
over the obtained velocity data. Moreover, it is also necessary to correct the sensor’s
offset, as its readings are always misleading, implying slightly faster movements in the
forward or backward direction. The velocity correction coefficient, depending on direction
of movement, is defined experimentally.Sensors 2020, 20, x FOR PEER REVIEW 12 of 21 
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On the basis of filtered and scaled OFS velocity readings, using derivative and
integral, the acceleration (Figure 15—yellow), as well as the displacement (red line in
Figure 16—OFS) are determined and further compared with displacement measured by
the encoder (blue line). In order to obtain smooth acceleration values, again an alpha-beta
filter has to be applied on the acceleration data, as with the velocity, to get rid of the noise
and stop the third derivative of displacement from being huge. Calculating acceleration is
necessary for the next step of sensor fusion where a complementary filter is applied. The
delay introduced by alpha-beta filter application was eliminated at the stage of OFS accel-
eration calculations by shifting the filtered values, which greatly improved the algorithm’s
response and final outcomes of complementary filter. The comparison of measured and
estimated displacements generally shows a good compatibility between them, proving that
the OFS as a sensor and the presented data postprocessing algorithm can both be used for
the purpose of displacement estimation.Sensors 2020, 20, x FOR PEER REVIEW 13 of 21 
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2.4. Sensor Fusion Algorithm—Complementary Filter

After separately studying both sensors, the accelerometer and OFS, a comparison of
their results also in relation to encoder’s displacement is presented in Figure 16. The visible
fault in the OFS estimated displacement (red line) is the result of an external disturbance,
for example an object shifted under the sensor’s lens. This shows that the OFS should be
supplemented with readings from another sensor in order to avoid this kind of difficulty.
The accelerometer (Figure 12 magenta line) did not detect such a fault, as it does not suffer
from this kind of external disturbances. There is also a dissonance in the sensor’s readings
visible in Figure 17 in the waveforms of accelerations from the accelerometer and OFS
(respectively, the cyan line and green line). This problem may be solved with an application
of a complementary filter enabling proper exchangeable or simultaneous usage of data
from both sensors and obtaining a correct and reliable displacement estimation.
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Due to the above presented reasons, the main idea of this paper is applied and a
complementary filter is used to perform sensor fusion of the data from both sensors. The
rules standing behind the fusion operation are described below, also presenting the used
Equations (8) and (9) applied inside of the complementary filter. The acceleration data
provided by the accelerometer and OFS are compared in order to determine which sensor’s
readings are reliable at a given moment of the measurement and which should be trusted.
Specifically for this purpose, a parameter named balance is introduced, and its value is
determined according to Equation (8). If both acquired accelerations are small, i.e., lower
than a specified limit aLIMIT, or a ZVS is not detected, the balance is acquired as the absolute
value of difference between the accelerations from both sensors.

Balance =


|aSCAL_ACC − aOFS| f or


aOFS ≤ aLIMIT and aSCAL_ACC ≤ aLIMIT

or
ZVS = 0

(aOFS/aSCAL_ACC) + |aSCAL_ACC − aOFS| f or aOFS ≥ aSCAL_ACC and ZVS = 1

(8)

The value of the balance parameter determines the relative importance of velocity
data from each sensor and the weights used for the final calculation of velocity estimation
VFusion according to Equation (9). When balance equals 0, the data for velocity, and in
consequence for displacement estimation, come only from the OFS, and when balance
equals 1, only data from the accelerometer are considered.

VFUSION = Balance ∗VACC + (1− Balance) ∗VOFS (9)

The work of thre complementary filter is also shown in Figure 17, presenting the
aspects on which its operation is based in greater detail. For instance, the difference
between accelerations aScal_Acc (cyan line) and aOFS (green line) can be observed. When this
difference is too big, the reliable outcomes are based on the accelerometer, i.e., these will
be cases when the accelerometer does not show acceleration and OFS does. In addition, a
phase shift in the acceleration graphs between sensors is visible as the effect created by the
alpha-beta filter. However, this is not considered a problem, since the difference is always
the same and it is easily compensated for.

The final values of displacement are denoted as SFUSION and calculated by perform-
ing a derivative of velocity VFUSION. These results of complementary filter application
are presented in Figure 18 as a comparison of displacements, and demonstrate why the
implementation of sensor fusion is useful and necessary. In Figure 18, the displacement
SFUSION is indicated with a green line, whereas a black line shows the values of balance.
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Furthermore, it is visible in Figure 19 that the complementary filter is good at finding
errors from the optical flow sensor. The OFS-estimated displacement (red line) is not
concise with the reference encoder data (blue) and, for instance, at about 5 to 6 s, the OFS
error is evident. Meanwhile, the displacement estimated from the complementary filter
(green) is kept close to the encoder values even when OFS provides data with an error. In
addition, the complementary filter allows earlier detection of velocity change, realized by
the accelerometer, than just by using OFS. This, as a result, reduces the error in the initial
part of the acceleration phase and in the final part of the deceleration phase, when the
actual velocity is too low for the OFS sensor to detect it.
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It should be emphasized that in Figures 18 and 19, the displacement estimated on the
basis of the accelerometer (cyan line) seems to achieve the desired precision and stability.
However, in reality, if the object moves at a constant speed for a long time, it is necessary
to use the reading from the OFS (red line). This approach gives much better results than
the accelerometer in this kind of movement. On the contrary, when the speed changes
rapidly, the accelerometer is much better. This is the basis for explaining the need for
complementary filtration and fusion of the two sensors. Overall, the figures clearly present
the differences between the obtained results and prove that the applied sensor fusion is
useful, appropriate, and meaningful.

3. Results

After the data postprocessing algorithms for each sensor and complementary filter
were determined, they were applied to conduct an experiment using the earlier described
test stand. The experiment followed the same procedure as during data acquisition pre-
sented in Section 2. A planned linear movement of the platform with both sensors was
enforced and the level of accuracy of the displacement estimation was evaluated. In ad-
dition, an external disturbance was again introduced in the form of a flat object placed
under the linear guide in order to measure and evaluate the OFS results in such a case. A
serial interface was used to send the obtained data from accelerometer and encoder to a
computer. Detailed outcomes of experiment are presented as waveforms in Figures 20–23.
Comparison of displacement results measured with an encoder and estimated with the
usage of both sensors was carried out. The values of error calculated by subtracting the
obtained displacements are also presented.



Sensors 2021, 21, 1390 16 of 21

Sensors 2020, 20, x FOR PEER REVIEW 16 of 21 

 

It should be emphasized that in Figures 18 and 19, the displacement estimated on the 
basis of the accelerometer (cyan line) seems to achieve the desired precision and stability. 
However, in reality, if the object moves at a constant speed for a long time, it is necessary 
to use the reading from the OFS (red line). This approach gives much better results than 
the accelerometer in this kind of movement. On the contrary, when the speed changes 
rapidly, the accelerometer is much better. This is the basis for explaining the need for 
complementary filtration and fusion of the two sensors. Overall, the figures clearly pre-
sent the differences between the obtained results and prove that the applied sensor fusion 
is useful, appropriate, and meaningful. 

3. Results 
After the data postprocessing algorithms for each sensor and complementary filter 

were determined, they were applied to conduct an experiment using the earlier described 
test stand. The experiment followed the same procedure as during data acquisition pre-
sented in Section 2. A planned linear movement of the platform with both sensors was 
enforced and the level of accuracy of the displacement estimation was evaluated. In addi-
tion, an external disturbance was again introduced in the form of a flat object placed under 
the linear guide in order to measure and evaluate the OFS results in such a case. A serial 
interface was used to send the obtained data from accelerometer and encoder to a com-
puter. Detailed outcomes of experiment are presented as waveforms in Figures 20-23. 
Comparison of displacement results measured with an encoder and estimated with the 
usage of both sensors was carried out. The values of error calculated by subtracting the 
obtained displacements are also presented. 

In Figure 20, outcomes of the displacement estimation, based on an accelerometer 
(blue), and the application of the developed algorithm described in Subsection 2.2, are 
presented. Displacement measured by the encoder is presented with a green line, whereas 
the red line shows the error between displacements. 

 
Figure 20. Results of displacement: estimated with accelerometer (blue), measured with encoder (green), and calculated 
difference between them (red). 

Similar results achieved with application of OFS are shown in Figure 21. It must be 
emphasized that a fault, in comparison with encoder data (green), is visible, indicating the 
existence of detection error and resulting in the inaccuracy of OFS displacement estima-
tion (blue). This is the result of an external disturbance, also clearly visible in the error line 
(red). 

Figure 20. Results of displacement: estimated with accelerometer (blue), measured with encoder (green), and calculated
difference between them (red).Sensors 2020, 20, x FOR PEER REVIEW 17 of 21 

 

 
Figure 21. Results of displacement: estimated with OFS (blue), measured with encoder (green), and calculated difference 
between them (red). 

Finally, the complementary filter application effects are presented in Figure 22, show-
ing very promising results, since the error (red) is small. In addition, for all three cases, 
the dependency of the displacement estimation error value in relation to velocity of move-
ment is presented in Figure 23. 

Figures 20–23 all show a relatively small error of displacement estimation, but Fig-
ures 22 and 23 prove that the best results are obtained by performing data fusion with a 
complementary filter. 

 
Figure 22. Results of displacement: estimated from sensor fusion between the accelerometer and OFS with usage of a 
complementary filter (blue), measured with encoder (green), and calculated difference of displacements (red). 

Figure 21. Results of displacement: estimated with OFS (blue), measured with encoder (green), and calculated difference
between them (red).



Sensors 2021, 21, 1390 17 of 21

Sensors 2020, 20, x FOR PEER REVIEW 17 of 21 

 

 
Figure 21. Results of displacement: estimated with OFS (blue), measured with encoder (green), and calculated difference 
between them (red). 

Finally, the complementary filter application effects are presented in Figure 22, show-
ing very promising results, since the error (red) is small. In addition, for all three cases, 
the dependency of the displacement estimation error value in relation to velocity of move-
ment is presented in Figure 23. 

Figures 20–23 all show a relatively small error of displacement estimation, but Fig-
ures 22 and 23 prove that the best results are obtained by performing data fusion with a 
complementary filter. 

 
Figure 22. Results of displacement: estimated from sensor fusion between the accelerometer and OFS with usage of a 
complementary filter (blue), measured with encoder (green), and calculated difference of displacements (red). 
Figure 22. Results of displacement: estimated from sensor fusion between the accelerometer and OFS with usage of a
complementary filter (blue), measured with encoder (green), and calculated difference of displacements (red).Sensors 2020, 20, x FOR PEER REVIEW 18 of 21 

 

 
Figure 23. The displacement error in relation to movement velocity for 3 experimental cases. 

The numerical data of distance estimation errors, calculated separately for the accel-
erometer, OFS, and fusion with a complementary filter, are summarized in Table 1. Max 
error is the absolute maximum value of error deviation from zero. AVG error is the aver-
age of deviation from 0. The values of variance error are calculated as the variance of the 
measurement error waveform, where the expected value is 0. 

Table 1. Numerical data of distance estimation error calculated for each experimental case separately. 

Experimental case Max Error [cm] AVG Error [cm] Variance Error [cm] 
Accelerometer 2.61 0.1165 0.3245 

OFS 2.132 -0.812 0.6448 
Fusion 1.0142 0.0331 0.1266 

Generally, the numerical data of error (Table 1) obtained for accelerometer and OFS 
are comparable. The maximum value of error for accelerometer values is about 2.6 cm, 
and is higher than for the OFS, at about 2.1 cm. Meanwhile, the average and variance are 
smaller in the case of the accelerometer. However, the best results are obtained in the case 
of the complementary filter application. All the numerical values characterizing error are 
much smaller than in case of the two sensors used separately. For the fusion case, the 
maximum error is just slightly larger than 1 cm, average values are about 0.03 cm, and the 
variance error does not exceed 0.13 cm. This further proves that the data sensor fusion 
works fine and the obtained precision is satisfying, since the error values are minor. 

4. Discussion 
There is an increasing need for an easy, cheap, and most of all accurate and reliable 

localization system and methodology. This is true not only in the case of mobile robots 
and the growing market of indoor services and their application for outdoor tasks, but 
also personal localization, for instance the in case of pedestrians. In many solutions for 
displacement estimation, the usage of various inertial navigation systems is considered 
[16,20,22]. Mobile robots’ odometry is often calculated by optical flow sensors, as in 
[5,10,13], where inertial sensors are also used, along with the OFS. However, in these 
cases, they are applied to obtain the angular orientation data or evaluate the results, as for 
instance in [12], where OFS is supplemented with a gyroscope. Regarding our goal, our 

Figure 23. The displacement error in relation to movement velocity for 3 experimental cases.

In Figure 20, outcomes of the displacement estimation, based on an accelerometer
(blue), and the application of the developed algorithm described in Section 2.2, are pre-
sented. Displacement measured by the encoder is presented with a green line, whereas the
red line shows the error between displacements.

Similar results achieved with application of OFS are shown in Figure 21. It must be
emphasized that a fault, in comparison with encoder data (green), is visible, indicating the
existence of detection error and resulting in the inaccuracy of OFS displacement estimation
(blue). This is the result of an external disturbance, also clearly visible in the error line (red).

Finally, the complementary filter application effects are presented in Figure 22, show-
ing very promising results, since the error (red) is small. In addition, for all three cases, the
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dependency of the displacement estimation error value in relation to velocity of movement
is presented in Figure 23.

Figures 20–23 all show a relatively small error of displacement estimation, but
Figures 22 and 23 prove that the best results are obtained by performing data fusion
with a complementary filter.

The numerical data of distance estimation errors, calculated separately for the ac-
celerometer, OFS, and fusion with a complementary filter, are summarized in Table 1. Max
error is the absolute maximum value of error deviation from zero. AVG error is the average
of deviation from 0. The values of variance error are calculated as the variance of the
measurement error waveform, where the expected value is 0.

Table 1. Numerical data of distance estimation error calculated for each experimental case separately.

Experimental Case Max Error [cm] AVG Error [cm] Variance Error [cm]

Accelerometer 2.61 0.1165 0.3245
OFS 2.132 -0.812 0.6448

Fusion 1.0142 0.0331 0.1266

Generally, the numerical data of error (Table 1) obtained for accelerometer and OFS
are comparable. The maximum value of error for accelerometer values is about 2.6 cm,
and is higher than for the OFS, at about 2.1 cm. Meanwhile, the average and variance
are smaller in the case of the accelerometer. However, the best results are obtained in the
case of the complementary filter application. All the numerical values characterizing error
are much smaller than in case of the two sensors used separately. For the fusion case, the
maximum error is just slightly larger than 1 cm, average values are about 0.03 cm, and the
variance error does not exceed 0.13 cm. This further proves that the data sensor fusion
works fine and the obtained precision is satisfying, since the error values are minor.

4. Discussion

There is an increasing need for an easy, cheap, and most of all accurate and reliable
localization system and methodology. This is true not only in the case of mobile robots and
the growing market of indoor services and their application for outdoor tasks, but also
personal localization, for instance the in case of pedestrians. In many solutions for displace-
ment estimation, the usage of various inertial navigation systems is considered [16,20,22].
Mobile robots’ odometry is often calculated by optical flow sensors, as in [5,10,13], where
inertial sensors are also used, along with the OFS. However, in these cases, they are applied
to obtain the angular orientation data or evaluate the results, as for instance in [12], where
OFS is supplemented with a gyroscope. Regarding our goal, our research is similar to the
concept presented in the above articles and in [14], where displacement estimation was
based purely on OFS, while the IMU sensor was still used to obtain orientation data.

However, in this paper, the new idea is to apply an inertial sensor (accelerometer)
as a secondary source of displacement estimation, and in this way, with the usage of a
developed complementary filter, achieve sensor fusion and directly supplement the output
data of the OFS, improving the accuracy and reliability. Hence, the paper’s idea is consistent
with the cited articles, but to a certain degree, and only in conclusions of [5] was a similar
idea of using sensor fusion of OSF and an inertial sensor to overcome the possible OSF
problems introduced. Furthermore, this article also intends to improve the ZV detection
algorithm to avoid still-phase leakage detection and over-detection, as mentioned in [16],
where gait was measured. The detected zero velocity states are then used to perform the
first correction of velocity and the acceleration symmetrization (linearization). This novel
approach allowed us to achieve the best observed values of velocity and, in consequence,
distance estimation.

As presented in this paper, the emphasis was placed on the application of inertial
and optical flow sensors for determining a platform’s movement on a smooth surface.
The platform’s concept may be associated with an automated guided vehicle (AGV) robot
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or a computer mouse. For this purpose, a motor-powered test stand with a linear guide
was developed and built. Algorithms for distance estimation from an accelerometer and
OSF were implemented and tested individually. Above all, sensor fusion of both sensors
was applied as a complementary filter of accelerations, for the purpose of improving the
accuracy of displacement estimation procedure.

Observation and analysis of results of each step of the accelerometer algorithm proved
that it works perfectly fine. Of great importance is the implementation of velocity correction
method depending on the detection of stationary state and the symmetrized acceleration,
which greatly enhanced the effects of the displacement estimation. The improvement is
so significant that it seems that the accelerometer could also be used independently for
distance estimation. However, its readings may become less precise with time, due to
its accumulating errors from vibrations. Furthermore, estimation of distance in cases of
movement with constant velocity poses a challenging problem. For such cases, OFS is more
precise and reliable, but this sensor also has a couple of drawbacks and may be distorted.
For this reason, using OFS in combination with another sensor is a good way to supplement
its limitations, compensate for its errors, and help to overcome these possible difficulties.
The goal was to determine, as simply as possible, the moments in which the indications
of one of the sensors were so trustworthy and accurate to become an input data vector
for the temporary “automatic tuning” of the further part of the algorithm’s work. These
states were defined as zero velocity states. It would also be possible to use a recursively
minimized object state vector variance. However, this method, called the Kalman filter,
does not allow a 100% sudden isolation of the algorithm from the sensors’ temporarily
disturbed data. Hence, it was decided to implement some of the algorithm’s operation
in the form of rigid rules defined during the observation of each sensor’s separate errors.
This approach to the problem appeared to be sufficient to detect when the accelerometer
is wrong and when the OFS is wrong. The system receives not only the signal from both
sensors with white measuring noise, but also indirectly information about when to trust
each sensor.

Another goal of the fusion algorithm is to determine the object’s velocity not only in
ZV states, but rather to eliminate the velocity drift problems, which occur at the double
integration of accelerometer data, on the basis of OFS just supplemented with an accelerom-
eter. For this reason, the developed algorithm with a complementary filter is no longer a
ZVS or ZUPT algorithm, but rather may be called a true velocity state algorithm (TVS).
Additionally, an important aspect of the fusion is the ability to detect and compensate for
possible errors of the OFS-based vision system that may arise due to shifting/encountering
an accidental physical object under its lens (external disturbance).

The study of the platform’s estimated displacement and its deviation from the encoder
outcomes was used as the method to evaluate the efficiency of individual algorithms and
improvements when fusion was applied. Obtained results and errors can be indirectly
compared with outcomes presented in [25], where translations were estimated with a
three-axis accelerometer placed on a shaking table. The found displacements shown in
the figures indicate that algorithms are applicable for the displacement sensor to track
moving objects with good precision. A small drawback of the applied fusion algorithm
is visible in Figure 18, which is a delay in calculated displacement, present due to the
application of acceleration symmetrization. However, this is not a problem since the first
velocity correction is performed in real time, meaning that a continuous flow of corrected
displacement is obtained and the correction resulting from symmetrization is executed
from time to time compensating for accumulating errors. The results are repeatable within
the error limits and resistant to noise amplitude changes resulting from the movement of
the object on the ground, providing that the measuring noise does not exceed 2–5% of the
sensor’s measuring range. When the object is moving, the noise always exists, and it is
already a signal for the system regarding non-zero velocity detection. While the flatness
deviation is maintained, the system remains stable. However, the system will not be stable
when the angular orientation of the object with respect to the Earth’s gravitational field
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by changes more than 15’, i.e., when the gravity vector’s projection on the accelerometer
measuring axes changes. For angular orientation deviations larger than 15’, the error is
larger than 3 bits read by the analog to digital converter. This drawback will be eliminated
in future versions of the algorithm being developed. The algorithm is also not resistant
to accelerations with too fast amplitude changes, i.e., too high frequency of changes. This
is the result of a specific and constant maximum sampling rate of the accelerometer at
1100 Hz. All in all, the outcomes of the experiment suggest that the fusion of sensor data is
correct and useful. Therefore, the final aim of this research is achieved and a system that is
able to estimate the moving object’s linear displacement in relation to the ground using
just the OFS and accelerometer is obtained.

Future planned improvements of the system include applying fusion for even more
sensors. The idea is also to use a self-adaptable lens for the OFS and a distance measuring
sensor. This would enable adjusting the focal length in order to obtain the best possible
result of measurement in the case of varying height of the OFS placement above the ground.
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