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Abstract: The rigorous evaluation of the impact of
combination HIV prevention packages at the population
level will be critical for the future of HIV prevention. In this
review, we discuss important considerations for the
design and interpretation of cluster randomized con-
trolled trials (C-RCTs) of combination prevention inter-
ventions. We focus on three large C-RCTs that will start
soon and are designed to test the hypothesis that
combination prevention packages, including expanded
access to antiretroviral therapy, can substantially reduce
HIV incidence. Using a general framework to integrate
mathematical modelling analysis into the design, conduct,
and analysis of C-RCTs will complement traditional
statistical analyses and strengthen the evaluation of the
interventions. Importantly, even with combination inter-
ventions, it may be challenging to substantially reduce
HIV incidence over the 2- to 3-y duration of a C-RCT,
unless interventions are scaled up rapidly and key
populations are reached. Thus, we propose the innovative
use of mathematical modelling to conduct interim
analyses, when interim HIV incidence data are not
available, to allow the ongoing trials to be modified or
adapted to reduce the likelihood of inconclusive out-
comes. The preplanned, interactive use of mathematical
models during C-RCTs will also provide a valuable
opportunity to validate and refine model projections.

Rationale for Cluster Randomized Controlled
Trials

Significant progress has been achieved in developing, imple-

menting, and scaling- up safe and effective biomedical and

behavioural HIV interventions such as promoting condom use,

male circumcision (MC), and the use of antiretroviral drugs for

treatment and for the prevention of mother-to-child and

heterosexual transmission [1]. Other interventions, such as oral

or topical pre-exposure prophylaxis, are in the late stages of

clinical evaluation [2]. Considered alone, each intervention

provides only partial protection or requires high levels of

individual adherence. The combination of several prevention

interventions could achieve substantial reductions in incidence

even if coverage and adherence to each intervention is suboptimal.

The combination approach is widely seen as the most promising

way to control the HIV epidemic, especially in highly endemic

countries [3,4]. However, the potential population-level effective-

ness or impact of combination prevention packages is difficult to

predict and needs to be rigorously evaluated in real world settings.

The impact of an intervention at the population level can be

very different from its observed efficacy in clinical trials for many

reasons, including differences in implementation (e.g., speed and

quality of scale-up), target population (e.g., universal, or key

subpopulations), and in individual-level factors (e.g., adherence,

uptake, sexual behaviour disinhibition) [5–7]. In addition, the level

of indirect or herd effects on those not receiving the intervention as

a result of the decreasing prevalence of infectious individuals over

time is not captured in individual-based randomized controlled

trials (I-RCTs) and may differ between interventions [5–7].

Cluster randomized controlled trials (C-RCTs; also called

community-based RCTs) are trials in which whole communities,

or clusters of individuals, are randomly allocated to receive either

the intervention or the control condition [5,8]. C-RCTs can be

used to measure the population-level impact of an intervention

[5,8]. Typically, the intervention is implemented across the trial

communities, but the population-level impact is assessed by

measuring the incidence rate among a cohort of individuals in

the intervention group compared with a cohort in the control

group.

Three large C-RCTs commissioned by the US President’s

Emergency Plan for AIDS Relief (PEPFAR) to measure the impact

of combination prevention packages (including expanded access to
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antiretroviral therapy [ART]) on HIV incidence in different

populations will start shortly (Table 1) [9–11]. The different trial

intervention packages focus on the scale-up of ART (i) initiated at

different CD4 levels in Zambia and South Africa, (ii) prioritising

those with the highest viral loads in Botswana, and (iii) in

combination with other interventions in Tanzania.

In a context in which resources generally are becoming

increasingly scarce, obtaining valid answers from these trials will

be critical for the future of HIV prevention. Positive results

showing large reductions in HIV incidence could shift the

paradigm guiding the response to HIV epidemics, whilst negative

results could challenge the case for continued investment in

combination prevention interventions.

Despite being considered the gold standard for measuring the

population-level impact of interventions, the design, implementa-

tion, and interpretation of C-RCTs can be extremely challenging

[5,8,12,13]. In the past, some researchers have turned to

mathematical models once the studies were completed to help

understand ambiguous and counter-intuitive results from C-RCTs

[14–16]. Others have advocated for their use before studies

begin to improve trial design [5,17–21]. All three PEPFAR

trials currently include an HIV transmission dynamic modelling

component to complement traditional statistical approaches

for the analysis of C-RCTs. Mathematical models will be used

in three distinct phases—at the formative stage of trial planning,

during the trial itself to monitor progress, and at the end of the

Table 1. Main characteristics of cluster randomized controlled trials for combination prevention of HIV transmission commissioned
by PEPFAR.

Study CDC/HSPHa JHU/USAID PopART (HPTN 071)

Site Botswana Iringa, Tanzania Zambia+South Africa (Western Cape)

Number of arms 2 2 3

Intervention arm(s) A: Enhanced HIV testing (including mobile
and home-based testing), active linkage to
care and treatment; enhanced MC; ART for all
HIV-infected persons with CD4,350 cells/ml
or with HIV-1 RNA.10,000 copies/ml; and
point-of-care CD4 testing in antenatal clinics
with universal HAART in pregnancy started by
28 wk gestation, as well as HIV retesting at
delivery among women HIV-negative in
second trimester or earlier

A: Treatment by CD4,350 cells/ml;
active scale-up and linkage to MC;
cash transfer for young women;
targeted outreach to the most
at-risk populations (including
female sex workers); social and
behaviour change communication

A: Universal community home-based
testing; active linkage of HIV-positive
individuals to care and immediate
ART according to national guidelines
and/or MC. B: Same as A but ART at
CD4,350 cells/ml

Control arm B: Standard of careb B: Standard of carec C: Enhanced standard of cared

Design Pair matched Stratified Triplet matched

Number of randomized
clusters

Total 30 24 24 (South Africa: 9, Zambia: 15)

Per arm 15 12 8

Average size of randomized
cluster

5,800 8,000–10,000 (,55%.15 y) 50,000 (25,000.18 y)

Overall cohort followed up

Age eligibility 16–64 y 15–39 y 18–44 y

Size per cluster ,500 adults per cluster ,500 adults per cluster ,2,500 adults per cluster

Total size 15,000 12,000 60,000

Primary Outcome HIV incidencee HIV incidencee HIV incidencee

Follow-up duration 3–4 y 2 y 2 y

HIV incidence assumption ,1.5 per 100 person-years 1 .0–1.5 per 100 person-years 1.0–1.5 per 100 person-years

Anticipated HIV prevalence at
baseline

25% 10%–15% 15%

Target reduction in incidence In arm A versus B: ,50% In arm A versus B: ,40%
(35%–50%)

In arm A versus C: 250% to 60%; in
arm B versus C: 225% to 30%

Stages when modelling is
currently planned

Start Start, interim, final Start, final

Status Planning Pre-trial Pre-trial

Data as of 15 March 2012.
aThe design of the intervention and plan of analysis for this trial are still being finalised.
bStandard of care is ART for HIV-positive individuals with CD4,350 cells/ml or AIDS.
cStandard of care is standard referral to MC and ART according to Tanzania guidelines (this will soon change from CD4,200 cells/ml to CD4,350 cells/ml, initially
focusing on HIV-positive people with tuberculosis and pregnant women).
dStandard of care is no home-based testing or home-based visit to facilitate linkage to ART. ART given according to country guidelines; standard referral to MC.
eCumulative HIV incidence measured over the trial duration.
CDC/HSPH, US Centers for Disease Control and Prevention/Harvard School of Public Health; HAART, highly active ART; JHU/USAID, Johns Hopkins University/United
States Agency of International Development; PopART (HPTN 071), HIV Prevention Trials Network.
doi:10.1371/journal.pmed.1001250.t001
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trial to assist in interpretation and evaluation of short- and long-

term impact.

In this review, we draw on results from a range of models to

identify important considerations that should inform the design

and interpretation of C-RCTs of combination interventions. We

then propose how mathematical modelling can be integrated into

the design, conduct, and analysis of the planned trials to

complement traditional statistical approaches.

Considerations for the Design, Conduct, and
Interpretation of Cluster Randomized Controlled
Trials

Previous modelling studies suggest that ART used alone or in

combination with other interventions could significantly reduce

long-term HIV transmission [4,10,22–26]. However, to evaluate

the impact of interventions in the time frame of a trial, which is

usually 2–3 y, it is critical to understand what magnitude of impact

can be expected in the short term, whether the short-term impact

is predictive of the long-term impact, and what implementation

efforts might be required to achieve the desired level of impact.

The answers to these questions are influenced by different

determinants of the magnitude of intervention impact, and of

the measurement and assessment of impact in C-RCTs. The

important considerations and implications for C-RCTs for these

determinants are summarised in Table 2. We provide illustrations

of the main points below.

Determinants of the Magnitude of Intervention Impact
Increase of intervention impact over time. A concern of

particular relevance for C-RCTs is that the full impact of

interventions on HIV incidence at the population level is unlikely

to be generated immediately after the start of the trial [16,26]. For

example, HIV risk might actually increase during the wound

healing period following MC procedures [27]. In the case of ART,

complete viral suppression and reduced infectivity takes time to

occur after initiating treatment. Moreover, if ART eligibility is not

immediate but occurs only once an individual reaches a

predetermined CD4 level, as shown in Figure 1, there will be a

lag between the start of the screening and treatment programme

and the time point when the fraction of eligible HIV-positive

individuals provided with ART is large enough to reduce

transmission at the population level. This differs from I-RCTs,

in which all eligible patients in the trial are immediately provided

with their assigned treatment. In addition, in real-life situations,

ART failure, poorer treatment adherence, and viral blips may be

more frequent than in the ideal conditions of trials such as HPTN

052 [28], thereby reducing intervention impact. Finally, indirect

benefits or ‘‘herd effects’’ accrued through the prevention of

onward transmission, which are measurable in C-RCTs but not in

I-RCTs, manifest more slowly, as these rely on a decreasing

prevalence of HIV infections in some subpopulations [5–7].

Thus, C-RCTs designed to evaluate intervention impact after a

short time will assess an impact that has not reached its maximum

potential [16,26]. For example, in Figure 1, HIV incidence is

reduced by only 34% at 2 y even with a very ambitious

combination intervention, compared with 66% after 25 y (not

shown). Studies that estimate the intervention impact from

changes in HIV prevalence, as is commonly done when

monitoring key populations, have an even slower increase in

intervention impact [13,29]. Finally, because it can take different

amounts of time for each intervention component to have its full

effect, the overall impact of a combination intervention may be

most strongly determined by different components at different

time points after the start of the intervention programme (Figure 1)

[26].

Influence of the epidemiological context. The epidemiolog-

ical context for a given country or population is determined by the

drivers of HIV transmission (e.g., patterns of risk behaviour and

contact, and key biological factors that facilitate transmission) and by

the past trajectory of the epidemic, which determines the distribu-

tions of individuals at different stages of HIV infection [30–36]. The

underlying patterns and strength of transmission interact with the

intervention and make predictions more complex. For example, for

interventions that include expanded access to ART to prevent HIV

(as will be the case in the three trials summarised in Table 1), the

amount of transmission by an individual before treatment initiation,

including during the initial highly infectious period, will determine

the level of treatment required to reduce incidence. The amount of

transmission generated early after infection depends on the number

of concurrent sexual partners, the interval between sexual partner-

ships, the frequency and type of sexual acts, transmission probabil-

ities, the fraction of new sexual partners who are already infected,

and the prevalence of cofactors of HIV transmission, such as other

sexually transmitted infections [36–39].

The effect of the same universal ‘‘test and treat’’ intervention

can differ greatly across populations that have similar HIV

prevalence, incidence, and rate of partner change but differences

in other key sexual behaviours [31]. For instance, an intervention

may reduce incidence by nearly 100% and eliminate the infection

in one population if there is little heterogeneity in risk behaviour,

whereas exactly the same intervention may reduce incidence by

only 60% in another population if there is substantial heteroge-

neity and assortative mixing by sexual activity levels [31]. In a

heterogeneous population transmission can persist within the

highest risk group because individuals transmit rapidly after

becoming infected and before getting ART. Thus, the impact of

the same intervention may vary across C-RCTs conducted in

different populations or settings, and, consequently, the findings

from one trial may not necessarily apply to another setting.

Mathematical models can take into account knowledge of the

drivers of the HIV epidemic and the intervention impact in a

specific trial setting, and help generalise trial results to other

epidemiological contexts [5,13,21,40].

Identifying drivers of short-term and long-term

intervention impact. Although C-RCTs aim to measure the

impact of interventions over a short period, broader public health

interests are usually longer term. Factors that drive short-term

impact may not be the same as those determining long-term

impact and overall success of the programme. For example, one

would expect the short-term impact of ART for prevention to be

driven by factors such as the speed of linkage and retention in care

during the first years after treatment initiation and adherence in

the months following initiation, whereas long-term impact would

be more sensitive to factors such as prolonged maintenance of

retention in care and high adherence, continued frequent HIV

testing, and robust linkage to care [22,23,26,31]. Collection of

data on these long-term factors may not be immediately useful for

understanding the trial results in the short term, but will help

predict the long-term impact of the trial results.

Finally, one important and often neglected consideration for C-

RCTs is that most modelling analysis assumes that the interven-

tion coverage is uniform with respect to different forms of risks and

geography. This is unlikely to be the case in real world settings, as

it is difficult to rollout an intervention with equal intensity in all

settings, particularly if accessibility and outreach to key popula-

tions is poor [4,22–26]. Modelling of a C-RCT of mass treatment

of sexually transmitted diseases in Rakai, Uganda, showed that
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even if a high coverage is achieved overall, differential coverage in

which those with highest sexual activity are not reached can

severely attenuate the impact of the intervention [15]. Conversely,

if those at highest risk can be effectively prioritised as coverage is

increased, the impact of interventions can be enhanced [15,32,40].

Thus, collecting detailed information on programmatic, imple-

mentation, and intermediate outcomes (e.g., changes in behaviour,

CD4 levels, and viral load) by risk group, age, and clinical status in

both the intervention and control communities at different times

during the trial is necessary for evaluation of the short-term and

long-term impact.

Challenges in Measuring Impact
Even if the intervention really does have an impact following

rapid scale-up, high uptake, good adherence, etc., external factors

may compromise our ability to measure a difference in impact

between the intervention and control clusters.

Measuring HIV incidence over the whole trial

duration. When incidence is measured in a single cohort over

the whole duration of a trial, as currently planned in the three

combination intervention trials (Table 1), the measured difference

in incidence between the trial arms will be attenuated compared

with the true difference that would be seen if HIV incidence were

measured only at the end of the trial (Figure 2) [16]. This is

because the measurement of incidence includes exposure while the

intervention activities are still being ramped up and have not yet

reached their full impact. Ideally, incidence should be measured at

the start and end of the trial, using two independent samplings of

the cohorts with shorter follow-ups. However, this solution may

not be feasible in practice because of time constraints or costs.

Thus, caution must be used when using modelling predictions of

intervention impact based on predicted incidence at fixed time

points (i.e., an instantaneous reduction in incidence) to estimate

effect size and inform trial design.

Table 2. Summary of important considerations for the design and interpretation of cluster randomized controlled trials (of
combination interventions.

Important Considerations Implications for Trials

Determinants of the magnitude
of intervention impact

Increase in intervention impact following the start of trial
can be slow due to a number of delays before the full
impact develops

Short-term impact will underestimate the long-term impact; substantially reducing HIV incidence
over a trial of short duration will be challenging even with an ambitious combination intervention
and rapid scale-up; it is important to set realistic expectations about the achievable magnitude of
impact over the trial duration; this slow growth in impact can undermine the utility of stepped-
wedge designs (with staggered randomized time of delivery of the intervention in each community)
to measure a difference in HIV incidence between different interventions or components because
the time interval between steps may need to be unfeasibly longa

The maximum impact of different intervention components
is achieved at different times

The trial duration will influence which type of intervention seems to be the most effective; the
overall impact of a combination intervention will be most strongly determined by different
components at different times

The epidemiological context influences the intervention
impact

The impact of the same intervention may not be the same across trials conducted in different
epidemiological contexts; the results of the trial may not be generalisable to other settings

HIV prevalence and HIV incidence do not exhaustively
describe the epidemiological context

This may introduce imbalance between the intervention and control arms, even after matching for
HIV prevalence or even HIV incidence

The drivers of short-term and long-term impact can be
different

Sufficient information on the epidemic drivers should be collected during the trial to help interpret
trial results and to predict longer term impact

Distribution of coverage matters even at high coverage Intervention impact can be substantially reduced if the intervention does not reach high-risk
individuals; intervention impact can be substantially improved if the intervention does reach high
transmitters; to understand trial results, detailed information on programmatic (e.g., coverage,
uptake) and intermediate outcomes (e.g., change in behaviour, CD4 levels, viral load) by risk groups,
age, and clinical status in both the intervention and control communities will be essential

Challenges to the measurement of impact

Measurement of HIV incidence in a cohort over the whole
trial duration, before the intervention has reached its full
effect, underestimates the change in incidence that is
achieved at the end of the trial

It would be better to measure incidence at the start and end of the trial using two independent
cohorts with shorter follow-up

Evolving standard of care in control arm, as the coverage
or scale-up of standard of care may improve over time

Reduces the contrast between intervention and control communities over time; our ability to
measure a difference between trial arms will depend on the rapid scale-up of the intervention,
having a large number of clusters to enable detection of smaller effects, or having trial duration
longer than 2–3 y, to allow the intervention impact to be seen

Imbalance in key epidemiological characteristics between
trial arms can occur, as HIV incidence and prevalence do
not determine all key epidemiological characteristics that
influence intervention impact

Could lead to a spurious indication that the intervention is working better or worse than it really
did—matching clusters may be desirable; matching on HIV prevalence alone may not be sufficient,
as trajectories in incidence and underlying patterns of risk behaviour across trial communities would
not be captured

Dilution and contamination of the intervention impact may
occur due to movement and sexual partnerships across
multiple communities

The influence of the different sources of contamination on trial results will depend on the type of
intervention; when there is extensive sexual contact between individuals from the trial arms, the
measurable impact may be more strongly determined by acquisition-reducing than infectiousness-
reducing interventions, such as ART; choosing distinct, independent communities will be important,
especially to evaluate ART interventions

aStepped-wedge design can still be useful for programme and intermediate outcomes, as changes in these outcomes can occur more rapidly than for HIV incidence or
prevalence.
doi:10.1371/journal.pmed.1001250.t002
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Evolving standard of care in control arm. One of the

strengths of C-RCT design is that it has a control group. One

inescapable challenge, especially for the Johns Hopkins Univer-

sity/United States Agency for International Development (JHU/

USAID) study, is that coverage with the standard of care in the

control arm may increase over time, albeit more slowly than in the

intervention arm, because of ongoing scaling-up activities for MC

and/or changes in ART guidelines (from CD4,200 cells/ml to

CD4,350 cells/ml). This can potentially reduce HIV incidence in

the control arm and thereby reduce the contrast with the

intervention arm, so compromising the power of the trial.

Imbalance between trial arms. One important and rarely

acknowledged implication of the epidemiological context is that it

could introduce an imbalance between trial arms, despite

randomization and even if clusters are matched according to

HIV incidence and/or prevalence. Such imbalance could lead to

biases in either direction [8,16]. Measurements of baseline HIV

incidence before the start of the trial intervention, allowing the

evaluation of ‘‘within cluster’’ changes in HIV incidence (before–

after comparison), could help reduce this problem. However, this

approach may not necessarily eliminate all confounding if

differences in baseline HIV incidence actually reflect differences

in key baseline epidemiological characteristics that influence how

each community responds to interventions. Statistical adjustment

limited to differences in cluster-level prevalence (or incidence) may

only partially control for these nonlinear effects, especially if valid

measures of most of the key potential confounding factors, and

their interactions, are not available. Despite the benefit of

randomization, which protects against known and unknown

confounding, imbalance remains of particular concern in C-

RCTs, as fewer units are randomized than in I-RCTs. For

instance, there will be ,24–30 clusters in the three planned C-

RCTs versus ,2,000 individuals in many I-RCTs [12].

Ideally, the number of clusters that are randomized needs to be

sufficiently large to minimise the risk of imbalance or to allow

matching of pairs or triplets of similar clusters, as proposed in the

US Centers for Disease Control and Prevention/Harvard School

of Public Health (CDC/HSPH) and PopART trials, using

Figure 1. Predicted short-term impact of three intervention
components linked to HIV testing in KwaZulu-Natal, South
Africa. The model is based on a high-transmission setting under
conditions of the current standard of care versus a high-coverage
combination intervention (see [26]). The instantaneous HIV incidence
rate ratio in the y-axis is intervention versus control. Impact estimates
include an initial 6-mo period of preparation for the study. Assumptions
for the combination intervention: 90% of adults in the intervention
community are tested in the first year and thereafter every 4 y; those
who test positive reduce risk behaviour for 3 y (on average) (25.0%/
12.5% of men/women increase condom use; 25%/25% reduce partner
acquisition); 70% of uncircumcised men are circumcised in the first year
(efficacy = 60%); and all those in need of treatment (CD4 cell count
,350 cells/ml) are immediately treated with ART (efficacy = 92%) with an
annual dropout rate from treatment of 5%. The efficacy of MC in
reducing susceptibility is assumed to be immediate (i.e., the wound
healing period is negligible). Viral suppression for infected individuals
once on treatment is immediate (i.e., no delay between treatment
initiation and viral suppression). Assumptions for the standard of care:
20% of individuals test annually; 12.5%/6.5% of men/women who test
positive increase condom use, and 12.5%/12.5% reduce partner
acquisition, for one year; HIV-positive individuals are treated if
CD4,200 cells/ml (dropout rate of 15%); and 27% of men are
circumcised at baseline and 10% more over 4 y since the start of the
intervention.
doi:10.1371/journal.pmed.1001250.g001

Figure 2. Consequence of measuring HIV incidence over the whole trial duration. Comparison of the instantaneous reduction in HIV
incidence measured at one time point with the cumulative incidence rate ratio (IRR) measured over the whole trial duration (i.e., in a cohort that was
initiated at the start of the trial) in a simulated population in Zimbabwe [16]. The grey dotted line shows the IRR if the full impact were achieved at
the start of the intervention rather than after 10 y. The instantaneous IRR is 0.65 compared with only 0.77 for the cumulative IRR at year 10. From [16].
doi:10.1371/journal.pmed.1001250.g002
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information on the epidemiological indicators available at the start

of the trial. Whilst matching should help increase power if the

matching indicators are highly correlated with the primary

outcome [8], it can also be inefficient and reduce power if the

matching indicators are not strongly related to outcomes. This

could be the case when using only estimates of HIV prevalence. In

addition, matching using several factors might not be feasible, as

only a limited number of communities are available for most C-

RCTs, and this might also limit the types of analyses that can be

done [8,41]. Due to limited information, especially on HIV

prevalence at the cluster level in Iringa, Tanzania, a stratified

approach is being adopted in the JHU/USAID trial.

Dilution and contamination. To minimise the risk of

contamination, the clusters enrolled should be distinct, indepen-

dent epidemiological units. Risk of contamination increases when

individuals move or form sexual partnerships between clusters in

different intervention arms of the trial or communities not enrolled

in the trial. Individuals can also be lost to follow-up or can access

an intervention not assigned to their cluster, thereby diluting the

differences between arms.

The influence of the different sources of contamination on trial

results will also vary for different interventions. For example, the

impact of interventions that reduce acquisition of HIV, such as

MC, should be only modestly affected by sexual mixing between

communities, as long as residents in the intervention community

are sufficiently exposed to the intervention. However, if substantial

mixing occurs between communities, then interventions that

reduce infectiousness such as ART may not have an observable

impact in the intervention community. Choosing communities

that are more isolated will therefore be more important for

evaluating treatment as prevention than behaviour change

communication or MC interventions. Although the risk of dilution

and contamination can be minimised by choosing geographically

separated communities, studies should still aim to collect data on

sexual partnerships between communities; genetic sequencing

technologies may be a useful for this [8,42].

The Role of Modelling in Planned and Future
Cluster Randomized Controlled Trials

As discussed above, mathematical models have been useful to

highlight important considerations relevant to C-RCTs. Based on

this prior knowledge, we describe how mathematical models can

be used before, during, and at the end of trials with reference to

the three planned PEPFAR trials (Table 1), and with suggestions

for future trials that may be planned subsequently.

Modelling Prior to the Start of the Trial: Formative Phase
Informing design and intervention targets. Prior to the

start of the trial, provided that sufficient data are available, models

can be used to better understand the epidemic drivers in the trial

communities and to define the combination intervention package

most suited for the epidemiological context [40]. Then, models

can be used, as in the three planned C-RCTs, to estimate the

potential impact of the selected intervention in a given setting and

to simulate how large a difference in HIV incidence (or

prevalence, which is often used for key populations) will develop

between the study arms over the trial duration, and how quickly it

will develop. These impact estimates should take into account that

the prevention activities occurring in the control arm may also

evolve over the trial duration [13,43]. Models can also be used to

inform the minimum programmatic and implementation targets,

such as the speed of scale-up and coverage of each intervention

component, and/or the intermediate outcomes, such as change in

behaviour, that are required to achieve the desirable impact or

‘‘effect size’’ at the end of the trial. Together, this information

contributes to the overall design of the study.

Once a study design is chosen, models can also be used to

simulate the process of the trial to identify potential difficulties

such as the influence of sources of contamination or imbalance, to

evaluate gain in power from matching clusters, or to validate

sample size and power calculations [5,16,20]. All three C-RCTs

are using models to simulate the influence of possible contamina-

tion. In addition, simulations can be used to control the chance of

obtaining spurious significant results (type I error) when a novel

design, such as an adaptive design that allows preplanned mid-

course corrections, is used (see section on interim modelling

analyses below) [5,16–18,20,47–53].

Refinement of intervention package. Once calibrated to

the specific trial setting using techniques previously described

[13,44–46], models can be used to refine the combination

intervention package by assessing the impact of the different

intervention components, such as promotion of condom use, MC,

or ART, independently and in combination. This assessment can be

achieved by varying the coverage, intensity, and uptake in different

risk groups in the models. These modelling analyses help identify the

minimum combined package (in terms of effort, persons reached,

and resources spent) needed to maximise the short- and/or long-

term impact, since the optimal package may depend on the time

frame used to assess it [5,26,27,32,33]. These analyses can provide

useful information about the attenuation of impact that could ensue

from worse coverage in populations at the highest risk of infection,

or from scaling up one component more quickly than another.

Modelling during the Trial: Interim Modelling Analyses
Although statistical methods for formal interim efficacy review

of phase III I-RCTs can theoretically be adapted for monitoring

C-RCTs [52], they may be logistically more challenging, especially

for short C-RCT trials, if HIV incidence measurements are

required soon after the start of the trial. We propose the innovative

use of mathematical modelling to conduct interim analyses, when

interim HIV incidence data are not available, to allow the ongoing

trials to be modified or adapted to reduce the likelihood of

inconclusive outcomes.

The planned C-RCTs commissioned by PEPFAR are partic-

ularly ambitious, aiming to reduce HIV incidence by 25%–60% in

just 2 or 3 y (Table 1). As currently proposed by the JHU/USAID

team, mathematical modelling can be used to help monitor the

progress of the trial. This can help assess the quality of the

implementation and, if needed, trigger predetermined mid-course

corrections as part of an adaptive design, such as accelerated roll-

out or modified trial duration [48–51]. For example, a minimum

level of coverage (at specific time points) under which the trial will

probably be unsuccessful can be predetermined. In addition,

interim modelling analyses can be done using additional data from

the baseline surveys in each trial cluster (such as sexual behaviour

and updated HIV prevalence estimates) and the most recent

information on process indicators of coverage and intensity that is

available. Robust monitoring and evaluation data will be necessary

to permit these kinds of analyses in a timely fashion. The objective

is to predict the likely impact at the end of trial and to estimate the

probability that an effect size will be detected. This is similar to a

conditional power analysis for futility stopping conducted at the

interim analysis of an I-RCT, after which the trial is stopped if the

interim results suggest that the effect sought is unlikely to be

achieved if the trial continues. This approach is particularly

relevant in situations in which no interim incidence measurements

are available to conduct a formal interim analysis.
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The information gained from this type of modelling can then be

used to guide the conduct of the rest of the trial (Figure 3). The

question of particular interest is to determine, with the level of

coverage and intensity achieved between baseline and interim

analysis, the likelihood of observing a measurable impact at the

end of the trial and whether changes to the implementation of the

intervention or conduct of the study are required to maximise its

usefulness. When considering allowing modifications of some

prespecified aspect of the design based on interim analysis, it is

necessary to consider its possible influence on the overall type I

error (chance of detecting a false positive result). Although the type

I error is usually well controlled with traditional (non-adaptive)

trial designs, this is generally not the case for adaptive trial designs,

where inflation of the type I error is often a concern [48,49,53].

Thus, mid-course corrections should be carefully planned and

implemented using trial simulations to demonstrate that the type I

error will be protected [49–51,53]. The interim modelling analysis

may come to one of the four conclusions shown in Figure 3. For

example, a finding that there is little chance of detecting an impact

even if the study lasted longer (outcome iv) would indicate a high

likelihood of obtaining non-informative results, akin to the concept

of ‘‘futility’’ in I-RCTs.

This information should be used as a warning of potential

problems, and the recommended action might include improving

programmatic targets with or without increasing study duration.

Those decisions should be discussed within the framework of the

independent data monitoring committee that oversees the conduct

of the trial, the quality of the implementation, and impact

projection. The data monitoring committee could endorse the trial

protocol team’s decision and/or recommend modifications of the

trial. At least one or two members of the data monitoring

committee should have expertise in mathematical modelling.

Modelling at the End of the Trial: Evaluation,
Interpretation, and Extrapolation

Depending on the outcome of the trial, models can be used in

slightly different ways to help interpret the trial results (Figure 4)

[5,13–16,29,31,43,44]. The first goal of this final set of analyses is to

test and potentially validate final model predictions of intervention

impact at the end of the trial. To do this, the analyses should use all

the relevant available data on sexual behaviour as well as process

indicators of intervention coverage and intensity collected in each

community and trial arm during the whole trial duration, to inform

prior model parameter distribution and calibrate the model to the

HIV outcomes. For validation purposes, model predictions should

ideally be derived just before the end of the trial, while the modeller

is still blind to the empirical trial results on HIV incidence.

If the model predictions and trial results are similar, then this

validates the model projections, and the model can be used for

further analyses with a greater degree of confidence. If not,

refinements in the statistical analysis, such as adjustment for baseline

factors, and/or in the mathematical model are required until the

source of the discrepancies is identified, as shown in Figure 4.

If the trial results suggest that the intervention has a significant

impact and there is no imbalance in key indicators of epidemi-

Figure 3. Logical flow of interim modelling analyses. This approach uses available data from the baseline surveys in each trial cluster and
information on process indicators of coverage and intensity available for each cluster within each trial arm gathered after the start of the trial. These
data would not include observed HIV incidence. The interim modelling analysis may come to one of four conclusions. (i) The targeted effect size on
HIV is likely to be achieved at the end of the study without having to modify the intervention targets/implementation strategy. (ii) The targeted effect
size is unlikely to be achieved, and therefore the intervention targets/implementation strategy need to be revised. (iii) The targeted effect size is
unlikely to be achieved, even if the intervention targets are improved to their realistic maximum, unless there is a change in the study design (such as
an increase in sample size or study duration). (iv) There is little chance of being able to detect an impact at the end of the trial even if the study
duration is increased. The number of interim analyses should be predetermined at the start of the trial and take into account trial characteristics,
logistical considerations (such as the time and cost required to regularly update programmatic data during the trial and to perform the modelling
analyses), and the statistical effect of the interim analysis and proposed changes on the overall type I error.
doi:10.1371/journal.pmed.1001250.g003
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ological context between the trial arms, the final modelling

analysis can predict the number of infections that would be averted

by the combined package in the intervention arm compared with

the standard package in the control arm over different time

periods if the intervention were continued. The counterfactual

would be simulated using the level of coverage and change in

behaviour and other programmatic outcomes observed with the

standard package in the control arm over the course of the study.

The models could also be adapted to project impact in other

populations with different epidemiological contexts to help

generalise the trial results, and to compare the results with those

of other trials of combination interventions. Provided that good

costing data are also collected (as is planned in all three trials), it

will be possible to link the costing data to the short- and long-term

model predictions for a cost-effectiveness analysis [54]. One of the

challenges will be to understand the costs incurred for the

intervention in the trial, including start-up, small-scale set-up, and

cost of the learning curve, compared with how these costs would

evolve in a large-scale programme over the long term [54].

Currently, C-RCTs are not designed to establish differences

between the different intervention components, as this would require

larger trials with multiple arms, potentially using factorial designs. It

may be possible to model and predict the impact of each specific

component of the intervention package independently, but it will be

challenging. If individuals were exposed to several intervention

components during the trial, it would be difficult to attribute an

observed reduction in risk behaviour, e.g., relating to sexual

behaviour or adherence, to one particular component. Also, with

the acknowledged limitations of the collection of behavioural data, it

is difficult to reliably transduce the effects of reported changes in

behaviour into an impact on transmission. It may be more feasible to

link interventions that have hard end points, such as being

circumcised or starting on ART, to estimated impact. The

epidemiological synergy between interventions, which can make

the impact of combination prevention greater than the sum (or

multiplication) of its parts, may also be an important part of the total

impact. Conversely, redundancy between components may reduce

the combined intervention impact, meaning that the total interven-

tion impact may be lower than the sum (or multiplication) of its parts.

If there is a significant imbalance in key baseline characteristics

between trial arms, it would be useful to assess the extent to which

this imbalance could have biased the observed impact estimate, and

to produce ‘‘adjusted’’ estimates, i.e., estimates revised upward in

the case of a positive trial or downward in the case of a negative trial.

Finally, if a trial produces negative results despite the coverage

of interventions such as ART and MC increasing substantially, the

main points to explore would be the following: to what extent this

lack of impact was because the trial was too short; how long would

it have taken to detect a measurable impact; and whether the level

of contamination in the control group was too high.

The Way Forward

In this exciting new era of HIV prevention technologies, C-RCTs

will be used to test the hypothesis that combination HIV prevention,

including expanded access to ART, can substantially reduce HIV

incidence. Of particular relevance for the three planned C-RCTs is

the observation that it may be challenging to observe a substantial

reduction in HIV incidence (.40% reduction) over the 2- to 3-y

duration of a trial unless the interventions are scaled up rapidly and

the key populations are reached quickly. Models that reflect realistic

delays in implementation and scale-up, as well as delays in the

development of direct and indirect effects calibrated to the specific

trial settings, will be particularly useful. These models will provide

estimates of the effect size that can be expected at the end of the

trial, the programmatic and implementation targets required to

generate this effect, and the projected long-term impact. Ideally, the

effect size should be chosen to be of public health relevance and to

reflect long-term goals [5].

Given the challenges in scaling up interventions rapidly and the

importance of these current trials, interim modelling analysis can

provide a very useful and innovative tool to project the final

intervention impact and to adopt mid-course corrections to

accelerate scale-up and minimise the chance of having inconclu-

sive trial results. However, the adaptive features of this design

require careful statistical considerations so not to inflate the false

Figure 4. Logical flow of modelling stages for the final impact
analyses.
doi:10.1371/journal.pmed.1001250.g004
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positive rate, which in turn requires modelling analysis to

determine when that risk is outweighed by potential benefits.

The proposed modelling analyses will require collection of

detailed data prior to and during the trial about the epidemio-

logical context, and detailed information about the programmatic

outcomes of each component will need to be available in a timely

manner for key populations. Thus, it is critical that efficient data-

capture systems are in place to allow linkage of HIV testing to the

different services and the other components being modelled.

There is also an emerging consensus that collecting detailed data

characterising sexual networks will be important to interpret the

results of the different trials effectively, especially if negative results

are obtained. Efforts are currently ongoing to harmonise survey

instruments across settings. The feasibility and added value of

conducting complementary phylogenetic analyses to help under-

stand transmission networks is also being considered.

Importantly, the interactive use of mathematical models during

C-RCTs in a carefully preplanned fashion will not only be useful

to demonstrate the use of models in designing, conducting, and

interpreting C-RCTs, but will also provide a unique opportunity

to validate and refine model projections. It will also test the

usefulness of this modelling framework, which could then be used

for C-RCTs designed to test prevention interventions for other

infectious diseases with complex transmission dynamics such as

malaria, tuberculosis, and neglected tropical infections.
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