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Abstract: The deficiency of available silicon (Si) incurred by year-round agricultural and horticultural
practices highlights the significance of Si fertilization for soil replenishment. This study focuses
on a novel and economical route for the synthesis of Si fertilizer via the calcination method using
talc and calcium carbonate (CaCO3) as starting materials. The molar ratio of talc to CaCO3 of 1:2.0,
calcination temperature of 1150 ◦C and calcination time of 120 min were identified as the optimal
conditions to maximize the available Si content of the prepared Si fertilizer. X-ray diffraction (XRD)
and Fourier-transform infrared spectroscopy (FTIR) characterizations elucidate the principles of the
calcination temperature-dependent microstructure evolution of Si fertilizers, and the akermanite
Ca2Mg(Si2O7) and merwinite Ca3Mg(SiO4)2 were identified as the primary silicates products. The
results of release and solubility experiments suggest the content of available metallic element and
slow-release property of the Si fertilizer obtained at the optimum preparation condition (Si-OPC). The
surface morphology and properties of Si-OPC were illuminated by the results of scanning electron
microscope (SEM), surface area and nitrogen adsorption analysis. The acceleration action of CaCO3 in
the decomposition process of talc was demonstrated by the thermogravimetry-differential scanning
calorimetry (TG-DSC) test. The pot experiment corroborates that 5 g kg−1 soil Si-OPC application
sufficed to facilitate the pakchoi growth by providing nutrient elements. This evidence indicates the
prepared Si fertilizer as a promising candidate for Si-deficient soil replenishment.

Keywords: available Si; talc; CaCO3; calcination method; Si fertilizer

1. Introduction

Silicon (Si), the second most abundant element in both the crust of earth and soil, has
been broadly acknowledged as a quasi-essential nutrient for the growth of a variety of
higher plants, particularly for crops such as rice, tomato, barley, sugarcane and soybean,
which are crucial to human survival [1–3]. The essentiality of Si lies in its qualitative and
quantitative promotion of higher plants, as it ameliorates soil conditions, increases nutrient
contents in plants and enhances the resistance of plants to biotic (e.g., pathogen and insect
or pest diseases) and abiotic (e.g., salinity, drought and ultraviolet radiation) stresses [1,4].
It is noteworthy that despite its ubiquity and abundance, the majority of Si appears in soil in
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the insoluble form, namely crystalline aluminosilicates that are unavailable for plants [2,5].
The scant presence of monosilicic acid (H4SiO4), known as the soluble and exclusive form
of Si in soil phase that can permeate the root plasma membrane for plant utilization, has
become a critical factor limiting the crop quality and yield in many regions worldwide,
especially tropical and subtropical areas, where the soils are highly weathered [4,6,7]. It
was estimated that the plant-available Si in paddy soil could be exhausted after consecutive
cultivation for 5 years, provided that the crop growth was relied entirely on naturally
occurring H4SiO4 [8].

The need for the elevation of crops yield justifies research aiming at developing
efficient Si fertilizers to replenish the soils where a paucity of plant-available Si exists,
utilizing extracts of natural minerals, chemical products and industrial wastes as starting
materials. The results of field application have corroborated that Si fertilizers are of great
agricultural and horticultural significance, attributed to their superior growth-promoting
efficacy for a wide range of crops [9,10]. Relevant statistics show that, as a result of the
field application of Si fertilizer, a 10 to 50% increment in sugarcane yield was attained
in varying countries in Asia [2]. Nonetheless, the inherent drawbacks of the previously
developed Si fertilizers, in terms of starting materials or the preparation process, severely
limit their large-scale field application. For instance, as a quintessential natural mineral,
wollastonite contains abundant Si (mainly CaSiO3) but suffers the labor-intensive refining
process [1,11]; the use of soluble silicates such as Na2SiO3 and K2SiO3 to synthesize Si
fertilizer is not economically feasible [12]; slag-based Si fertilizers involving carbon–steel
slags, blast furnace slags, silicomanganese slags, phosphorus slags, etc. are relatively
cost-effective alternatives; nevertheless, they raise environmental concerns because they
potentially usher heavy metals into the soil [13]. In this context, it is high time that an
efficient, inexpensive and eco-friendly Si fertilizer is developed.

Talc, a natural mineral with the chemical formula Mg3Si4O10(OH)2, has a three-layer
structure composed of a magnesium–oxygen/hydroxyl octahedra layer sandwiched be-
tween two layers of silicon oxygen tetrahedra [14]. It is extensively employed as a dusting,
coating and filler agent in paints, plastics, pharmaceuticals, rubber, lubricants, cosmetics
as well as ceramics manufacture, owing to the well-documented merits involving great
natural abundance, low-cost, high specific surface area, good physicochemical stability,
etc. [15–18]. Moreover, recent evidence has proven its versatility as an efficacious absorbent
for the elimination of aquatic toxic organic pollutants and heavy metals [18–21]. Given
the foregoing advantages, as well as the fact that talc is known to be Si-rich (Si content of
63.3% in theory) [16] and contains hardly any poisonous heavy metals, it can be therefore
extrapolated that talc holds the potential to be utilized as the raw material for Si fertil-
izer preparation. Notwithstanding, no single study to date covers the prospect of talc in
application to Si fertilizer fabrication.

In this research, a novel Si fertilizer was prepared by the calcination method using
talc and calcium carbonate as starting materials. In particular, the reason why calcium
carbonate was incorporated into the preparation process is chiefly due to its functions
in terms of lowering the melting temperature as well as facilitating the formation of
calcium silicate [22]. The primary objectives of this study are to (1) evaluate how critical
preparation conditions (i.e., the molar ratio of starting materials, calcination temperature
and reaction time) correlate with effective Si content in synthetic fertilizers; (2) figure out
the formation mechanism, surface morphology and physicochemical characteristics of
prepared Si fertilizers; (3) disclose to what extent Si fertilizer application impacts the soil
environment and growth of a target crop (i.e., pak choi).

2. Results and Discussion
2.1. Effects of Process Conditions on Available Si Contents of Prepared Fertilizers

Figure 1a–c delineate the variation of available Si content of the prepared Si fertiliz-
ers with a changing molar ratio of talc powder to CaCO3, calcination temperature and
time. As can be seen from Figure 1a, regardless of the calcination temperature (1000 or



Molecules 2021, 26, 4493 3 of 16

1100 ◦C), the available Si content was increased with the increasing molar ratio of talc
powder to CaCO3 from 1:1.4 to 1:2.0 but decreased following the further augment of the
proportion of CaCO3. This is unsurprising, because the appropriate addition of CaCO3
accelerated (i) the breakdown of talc powder, in view of the fact that the decomposition
reaction (Equation (1)) of CaCO3 occurred along with massive heat release, and (ii) the
reaction between the decomposition product (i.e., CaO) and talc powder to form available
mineral silicates, while excessive CaCO3 dosage led to the decline in the mass percentage of
available Si in the final products due to dilution effect [23]. Figure 1b exhibits that when the
molar ratio of starting materials and calcination time was kept at 1:2.0 and 60 min, respec-
tively, the available Si content was markedly increased from 6.5% at 1000 ◦C to 17.8% at
1150 ◦C, and a higher calcination temperature (1200 ◦C) resulted in an insignificant increase
in the available Si content (p > 0.05). It can be inferred that a calcination temperature of
1150 ◦C was sufficient to allow the almost complete breakdown of talc power, which is
distinctly lower than the reported calcination temperature (1300 ◦C) for accomplishing the
transformation of pure talc [24]. This result suggests that the introduction of CaCO3 in the
preparation process of Si fertilizer is conductive to reducing energy costs.

CaCO3 → CaO + CO2 (1)
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Figure 1. Effects of the (a) molar ratio of talc powder to CaCO3 (1:1.4–1:2.4), (b) calcination temperature (950–1200 ◦C) and
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Figure 1c shows that in the case of the permanent molar ratio of starting materials
(1:1.2) and calcination temperature (1150 ◦C), the extension of calcination time from 10 to
120 min gave rise to the increase in available Si content from 14.6% to 19.1%, implying that
a proper calcination time can enable the complete decomposition of talc powder under the
activation effect of CaCO3, followed by its effective conversion towards mineral fertilizers.
Note that once the calcination time was beyond 150 min, the available Si content began to
decrease. This is likely due to the fact that (i) diverse mineral silicates affiliated to different
crystalline phases could be produced during the calcination process [25,26], and with the
prolonging of the calcination time, those with poor thermodynamic stability were prone to
transform into more stable ones which are resistant to leaching reagents, and/or (ii) the
decomposition of a few mineral silicates into amorphous SiO2, as had been observed in
the preparation process of Si fertilizer performed by Hu et al. [12]. Taken together, the
molar ratio of talc powder to CaCO3 of 1:2.0, the calcination temperature of 1150 ◦C and
calcination time of 120 min were chosen as the optimal preparation conditions, since they
led to the relatively high available Si content in the final product while decreasing the
energy costs to a certain extent.
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2.2. Calcination Temperature-Dependent Microstructure Evolution of Si Fertilizers

According to the analysis results of Figure 1b as well as existing references [12,25,27],
it is evident that calcination temperature is a decision factor affecting the composition and
available Si content of synthetic Si fertilizers in sintering process. The XRD patterns of talc
powder and Si fertilizers synthesized at varying calcination temperatures and/or times are
depicted in Figure 2. Figure 2a shows the major diffraction peaks and intensities coincident
with the structure characteristics of pure talc, according to the PDF 19-0770 powder diffrac-
tion file. After 1 h of calcination at 950 ◦C, the formation of kilchoanite Ca6(SiO4)(Si3O10)
(PDF 46-1479) and clinoenstatite MgSiO3 (PDF 35-0610), as presented in Figure 2b, was
ascribed to the reaction between the talc powder and CaO (Equation (2)). As shown in
Figure 2c, a calcination temperature of 1000 ◦C resulted in the appearance of diopside
CaMg(Si2O6) (PDF 82-0599) and monticellite CaMgSiO4 (PDF 84-1325), presumably asso-
ciated with the interaction of the above primary decomposition products of talc powder
and CaO (Equation (3)). Figure 2d exhibits that at 1050 ◦C, the talc powder was entirely
exhausted, and the new crystalline phases of the final product involve larnite Ca2(SiO4)
(PDF 86-0398), akermanite Ca2Mg(Si2O7) (PDF 83-1815), merwinite Ca3Mg(SiO4)2 (PDF
74-0382) and MgO (PDF 87-0651). This is likely attributed to either the further conversion
reaction of kilchoanite, diopside and monticellite via Equations (4)–(7), or the addition
reaction of intermediate products via Equation (8) [28]. In combination of parts e and f of
Figure 2, it can be inferred that only two crystalline phases, i.e., akermanite and merwinite,
were detected in the final product sintered at 1150 ◦C for 1 or 2 h; increasing calcination
time from 1 to 2 h gave rise to the decrease in the intensity of the merwinite diffraction
peak, along with the increase in intensity of akermanite diffraction peak, perhaps as a result
of the transformation reaction of merwinite towards akermanite via Equation (9) [26,29].

4
talc powder

Mg3Si4O10(OH)2 + 6CaO→
kilchoanite

Ca6(SiO4)(Si3O10) +
clinoenstatite
12MgSiO3 + 4H2O (2)

kilchoanite
Ca6(SiO4)(Si3O10) +

clinoenstatite
7MgSiO3 + CaO→

diopside
4CaMg(Si2O6) + 3

monticellite
CaMgSiO4 (3)

kilchoanite
Ca6(SiO4)(Si3O10) + 2CaO→

larnite
4Ca2(SiO4) (4)

2
diopside

CaMg(Si2O6) + 3CaO→
akermanite

Ca2Mg(Si2O7) +
merwinite

Ca3Mg(SiO4)2 (5)

diopside
CaMg(Si2O6) + CaO→

akermanite
Ca2Mg(Si2O7) (6)

monticellite
CaMgSiO4 + CaO→

larnite
Ca2(SiO4) + MgO (7)

larnite
2Ca2(SiO4) + MgO +

diopside
CaMg(Si2O6) + CaO→ 2

merwinite
Ca3Mg(SiO4)2 (8)

merwinite
Ca3Mg(SiO4)2 →

akermanite
Ca2Mg(Si2O7) + CaO (9)
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Figure 2. XRD patterns of the (a) talc powder and the prepared Si fertilizers after calcination at (b) 950 ◦C, (c) 1000 ◦C, (d)
1050 ◦C and (e) 1150 ◦C for 1 h, as well as (f) 1150 ◦C for 2 h (i.e., the Si-OPC). In all cases, n(Talc powder): n(CaCO3) = 1:2.0.

Figure 3a1–f present the FTIR spectra of the CaCO3, talc powder and prepared Si
fertilizers. The bands at 712, 877, 1430, 1800 and 2510 cm−1 can be attributed to the
bending and asymmetric/symmetric stretching vibrations of C−O and C=O bonds of
CaCO3 [30,31] (Figure 3a1). The band at 460, 617 and 671 cm−1 is associated with the
Si−O−Si bending vibration [24,32], O−Si−O bending vibration and Si−O−Mg symmetric
stretching vibration [12,24] of pure talc, respectively (Figure 3a2). As shown in Figure 3b–f,
in the prepared fertilizers, the disappearance of the characteristic peaks of CaCO3 can
be ascribed to the complete breakdown of CaCO3 in the calcination processes, since a
temperature of 735 ◦C was known to enable the full decomposition of CaCO3 [33]; the
absorption peak at 478 cm−1, relative to Si−O rocking vibration in the fully polymerized 3-
D network [34], is presumably attributed to the generation of mineral silicates with diverse
crystalline phases after calcination. This is also supported by observation of the new peaks
at the 893–998 cm−1 region, which are pertaining to the stretching vibrations of mineral
silicates containing functional groups with varying numbers of bridging oxygen atoms, e.g.,
[Si2O6]4−, [Si2O7]6− and [Si3O10]8− [26,34,35]. By comparing Figure 3(a2, b–f), it is evident
that the Si−O−Si asymmetric stretching vibration was markedly shifted from 1018 cm−1

in talc to 1107 cm−1 in prepared fertilizers, presumably as a result of the occurrence of the
dehydration of talc and the production of mineral silicates after thermal treatment [24,36].
The CO3

2− group-related band (corresponding to the adsorption peak at 1430–1515 cm−1

region [35]) was not found in prepared fertilizers, as shown in Figure 3b–f, implying
the complete decomposition of CaCO3 at diverse calcination temperatures. The band at
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1645 and 3400 cm−1 is assigned to the OH- bending and stretching vibration of absorbed
water on all the tested samples, respectively, possibly arising from the moist laboratory
air [24,33,35]. As displayed in parts e and f of Figure 3, the absence of characteristic
Mg−OH stretching vibration of talc at 3678 cm−1 [37] indicates that the dehydroxylation
of talc was not completed until heating to 1050 ◦C. The occurrence of some minor low-
intensity peaks in parts e and f of Figure 3 is pertinent to the presence of SiO2 (PDF 14-0654)
and Fe2O3 (PDF 39-1346), and the former was likely linked to the decomposition of mineral
silicates [12], while the latter was perhaps due to the oxidization of Fe2+ in talc in the
sintering processes, which is discussed below.
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2.3. Dissolution Property and Physicochemical Characterization of Si-OPC Fertilizer
2.3.1. Available Metallic Element Content and Solubility

Calcium and magnesium are essential elements for crops, as they normally play a
central role in boosting growth and production as well as regulating defense mechanisms
of crops against environmental stresses, but the intense foraging and harvesting of crops
frequently leads to their depletion in large-scale soils [38,39]. Figure 4a indicates that
after citric acid treatment, the released available content of calcium and magnesium in
the Si-OPC was markedly larger than that in the talc powder (p < 0.05), attributed to the
transformation of their metallic form from oxides to silicates; 15.35% and 5.69% of calcium
and magnesium were released from the Si-OPC, which are relatively close to those (0.5–23%
for calcium [12,27,40] and 0.2–4.4% for magnesium [25,27,41], respectively) in the reported
Si fertilizers. As can be seen from parts a and b of Figure 4, similarly to talc powder, the
Si-OPC exhibited poor available calcium and magnesium release capacity (<0.5%) and
low solubility (0.0145 g/100 mL H2O) in the ultrapure water, implying the desirable slow-
release property of the Si-OPC. In contrast, Na2SiO3, a typical quick-acting Si fertilizer
with a high solubility (22.2 g/100 mL H2O), was susceptible to leaching from the root zone
of crops by rainfall and potentially resulted in groundwater pollution [12,27]. Notably,
the presence of Si-OPC in the ultrapure water led to the alkalization of solution, likely
associated with the hydrolysis of merwinite (Equation (10)) and akermanite (Equation (11)).
In this regard, the Si-OPC is particularly employed for nutrients replenishment in acidic
soils, as it provides available Si and metallic elements while regulating soil pH.

SiO4−
4 + 4H2O 
 H4SiO4 + 4OH− (10)

Si2O6−
7 + 7H2O 
 2H4SiO4 + 6OH− (11)
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2.3.2. Surface Morphology and Properties

The SEM images of talc powder are delineated in Figure 5a,b, suggesting the layered
structure as well as smooth, plate-like and folding morphology of talc aggregates [19]. The
irregular coarse and blocky (or granular) morphology of Si-OPC, as shown in Figure 5c,d,
was likely due to the fact that the calcination with CaCO3 at a high temperature led to
the destruction of the crystal lattice of talc power, followed by the reaction of decompo-
sition products to generate silicates. The average grain diameter of Si-OPC was roughly
4.36 µm, in the range (0.8–230 µm) of reported Si fertilizers in the literature [12,40]. BET
surface area analysis results indicate that the surface area of talc powder was 6.57 m2/g,
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significantly greater than that (1.33 m2/g) of Si-OPC. The reduction in surface area after
calcination was presumably associated with the decrease in external pores (between the
particles) and interparticle pores, as a result of the coarsening and densification of sintered
particles [42,43]. According to the measurement results of pore size, the average pore
size of Si-OPC was 18.81 nm, larger than that (14.18 nm) of talc powder, perhaps associ-
ated with the volume and/or grain boundary variations of particles at high temperature
(>750 ◦C) [43]. On the grounds of adsorption isotherms of talc powder and Si-OPC
(Figure 6), it is evident that the adsorption saturation phenomenon was not observed, im-
plying the appearance of capillary condensation agglomeration in the nitrogen adsorption
process [44]. The adsorption curves and desorption curves of talc powder and Si-OPC did
not coincide, and the hysteresis loops were formed in the case of high relative pressure.
With such a distinctive feature of Type H3 loop, the predominant pores of Si-OPC were
speculated to be typical “slit type” mesopores [45].
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2.3.3. Thermogravimetry–Differential Scanning Calorimetry (TG-DSC) Analysis

The DSC curves of talc powder and starting materials (i.e., the mixture of talc powder
and CaCO3) in Figure 7 manifest that weight increase was observed in the tested samples
during the initial heating-up period, possibly attributed to the oxidation of Fe2+ and/or



Molecules 2021, 26, 4493 9 of 16

other unknown ingredients [46]. This is supported by our quantification result concerning
the Fe ions content in talc, revealing that the Fe2+ content was 0.5718 ± 3.31% mg/g,
accounting for 99.4% of the overall Fe ions (0.5754 ± 13.30% mg/g) in talc. The finding
implies the possibility that there existed the oxidization of Fe2+ in talc towards Fe2O3 in the
sintering processes. The apparent weight loss in the DSC curve of talc powder (Figure 7a),
occurring over the temperature range from 800 to 1000 ◦C, was assigned to the generation
of enstatite, amorphous silica and water, as a consequence of the dehydroxylation of talc
powder [24]. In the DSC curve of the starting materials (Figure 7b), the significant weight
loss at 600–734 ◦C was predominantly associated with the breakdown of CaCO3. Analo-
gously, Armina et al. found that the thermal decomposition of CaCO3 could proceed until
735 ◦C [33]. The weak exothermic peak centered at 734 ◦C was perhaps due to the reaction
between CaO and water (generated by the dehydroxylation of talc powder). Another
obvious weight loss after 860 ◦C was likely correlated to the CaO-driven decomposition
reaction of talc powder (Equation (2)). According to the literature, when pure talc was
used in the sintering process, the breakdown temperature of talc was in the temperature
range of 800–1300 ◦C, and the clinoenstatite, an intermediate product of talc, began to
generate at 1200 ◦C [24]. However, in this research, a calcination temperature of 950 ◦C was
sufficient to produce clinoenstatite (Figure 2b). Hence, the presence of CaCO3 is beneficial
for accelerating the conversion process of talc to silicates. This is in line with the findings
obtained by Rashita et al., who reported that the introduction of CaCO3 in sintering process
led to the low-temperature production of wollastonite [47].
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2.4. Effects of Silicon Fertilizer on Soil Environment and Growth of Pak Choi

As depicted in Figure 8a, in comparison to the control treatment, 5–60 g kg−1 soil
Si-OPC dosage led to the increase in exchangeable magnesium, calcium and Si content in
soil from 0.72, 7.77 and 3.87 cmol kg−1 soil to 1.55–5.58, 9.47–12.19 and 6.45–19.10 cmol
kg−1 soil, respectively. In contrast to the variation tendency of Si content in soil, the
relatively slower increasing trend of magnesium, calcium content with the increase in
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Si-OPC application can be ascribed to their co-precipitation with carbonate, phosphate
and hydroxyl ions in soil solution. Soil pH was proven to be significantly correlated to
the uptake capacity of pak choi for macronutrients (e.g., available N and P), and a pH of
6.0–7.0 was the optimal condition for pak choi growth [48,49]. The determination results of
soil pH manifest that once the dosage of Si-OPC was beyond 20 g kg−1 soil, the resultant
alkaline environment might be deleterious to pak choi growth. Notably, the augment of
soil pH with increasing application of Si-OPC was attributed to the hydrolysis of merwinite
(Equation (10)) and akermanite (Equation (11)). Parts c, d and e of Figure 8 exhibit the
correlation between the growth indexes of pak choi and the dosage of Si-OPC. Obviously,
5 g kg−1 soil Si-OPC application amount was mostly effective for pak choi growth; for
instance, it contributed to a 15.63–295.35% significant increase (p < 0.05), in terms of plant
height, germination rate, fresh weight, plant height and root length of pak choi, compared
to those of pak choi without Si-OPC application. Additionally, a dosage of 5 g kg−1 soil
Si-OPC resulted in an available Si content of 11.79 mg g−1, markedly higher than that
(6.44 mg g−1) of the control group (Figure 8f). These findings are in accordance with
previous results that Si fertilization was capable of significantly increasing the yields of
crops such as rice, cucumber, tomato and pak choi [48,50]. Hu et al. found that, compared
to the control group, an analogous Si dosage (4 g kg−1 soil) was sufficient to increase the
germination rate, plant height, root weight and fresh weight of pak choi [12]. With regard
to the declined growth indexes and available Si content in pak choi, as Si-OPC dosage was
increased from 5 to 60 g kg−1 soil, in addition to the soil pH rise, another possible reason
accounting for this phenomenon is the increase in soil salinity, which might give rise to (1)
the inhibition of photosynthesis, owing to the triggered close of stomata and disturbance
of the CO2-to-O2 ratio in leaves [51], (2) and the plasmolysis of plant cell because of the
exorbitant osmotic pressure, and therefore impair the cellular metabolism [6]. In particular,
in the case of the optimum Si-OPC application (5 g kg−1 soil), the resultant exchangeable
calcium content in the soil was 9.47 cmol/kg soil, with this value in the range of moderate
calcium level (5–10 cmol/kg) in soil [52]. Despite the fact that excessive calcium dosage can
hamper the growth and nutrients uptake of plants, owing to the induced ions imbalance
in plants [53], a prior reference suggested that a similar calcium concentration in soil
(10.7 cmol/kg soil) had no adverse impact on plant growth [54].
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3. Materials and Methods
3.1. Materials

Talc with a purity of 97.3% was provided by Guangxi Longguang Talc Development
Co., Ltd., Guilin, China. The chemical composition of talc was determined by ZSX Primus
II X-ray fluorescence spectrometry (XRF, Rigaku Corporation, Tokyo, Japan) with the
results showing that it consists of Al2O3 0.40 wt%, CaO 0.13 wt%, Fe2O3 0.54 wt%, MgO
31.04 wt%, Na2O 0.08 wt%, P2O5 0.03 wt%, SiO2 61.01 wt% and LOI 6.67 wt%. Prior to
thermal treatment, the talc was crushed and ground to powder by a ball mill (QM-3SP2,
Nanjing Keyscience Electronic Technology Co., Ltd., Nanjing, China), and passed through a
75 µm sieve (200 mesh). All the chemicals such as calcium carbonate (CaCO3) and citric
acid monohydrate were of analytical grade, purchased from Sinopharm Group Chemical
Reagent Co., Ltd., Shanghai, China. The obtained talc powder and CaCO3 were dehydrated
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in an oven at 110 ◦C for 3 h to constant weight, and then placed in a desiccator for storage
until use.

3.2. Preparation of Si Fertilizers

To reveal the optimum condition for Si fertilizer preparation, single-factor experiments
were conducted for evaluation of the variation trends of available Si content in the prepared
Si fertilizers, as a function of changing molar ratios between talc powder and CaCO3 (i.e.,
1:1.4, 1:1.6, 1:1.8, 1:2.0, 1:2.2 and 1:2.4), sintering temperatures (i.e., 950, 1000, 1050, 1100,
1150 and 1200 ◦C) and reaction time (i.e., 10, 30, 60, 90, 120, 150, 180 and 240 min). In all
experiments, talc powder and CaCO3 were evenly mixed, followed by the transfer of the
mixture to a ceramic crucible, and the subsequent sintering in a muffle furnace (SRJX-4-13A,
Zhejiang Shangyu Fashion Instrument, Shaoxing, China) operated with a heating power
of 4 kW at air atmosphere. After sintering, the prepared Si fertilizers were cooled down
naturally, and then milled to around 150 µm manually in an agate mortar prior to analysis
and/or use.

3.3. Release Performance and Solubility Tests

To evaluate the available elements release capacity and solubility of Si-OPC (namely,
the Si fertilizer obtained at the optimum preparation condition), experiments were carried
out to examine the contents of available elements such as Si, calcium, magnesium and
aluminum in liquid- and solid- phases, after the Si-OPC was treated by leaching reagents,
i.e., 2% citric acid [55] and ultrapure water; meanwhile, the raw material, i.e., talc powder,
was used as the control. Citric acid was employed as the leaching reagent mainly because
of its massive secretion by the rhizosphere of plants [56], and the superior capacity to form
a thermodynamically stable complex over other commonly adopted leaching reagents (e.g.,
hydrochloric acid) [57]. The detailed experimental processes are the following: 0.5 g of
samples was weighed and mixed with 250 mL of leaching reagents; the mixtures were
shaken for 30 min at 29 ◦C and 190 r/min in a thermostatic reciprocating oscillator (ZD-88,
Jiangsu Dadi Automation Instrument Factory, Changzhou, China); after filtration, filtrates
were taken out for pH and elemental contents analysis, while residues underwent mass
loss analysis.

The available Si contents of filtrates were determined by a UV-Vis spectrophotometer
(UV-6100, Shanghai Mapada Instruments Co., Ltd., Shanghai, China) using the silicon–
molybdenum blue colorimetric method [58]. The measurements of available metallic
elements in the filtrates were performed on an inductively coupled plasma optical emission
spectrometer (ICP-OES, Optima 7000 DV, PerkinElmer, Wellesley, MA, USA), according to
the analytical protocols (NY/T 2272-2012) released by the Chinese Ministry of Agriculture.
The pH of filtrates was measured by a pH meter (PHS-3E, Shanghai INESA Scientific
Instrument Co., Ltd., Shanghai, China). After leaching reagents treatment and filtration,
the residues of Si-OPC and talc powder were placed in a crucible and calcined at 1000 ◦C in
the muffle furnace for 30 min. The solubility of samples was deduced by the determination
of the mass loss after calcination.

The experimental process for quantification of available Fe2+ and overall Fe contents
in talc is as follows: 0.5 g of talc powder was weighed, and then suspended in 100 mL of
aqueous solution (pH = 3); after that, the mixture was vibrated at 29 ◦C and 190 r/min
for 24 h; subsequently, the suspension was taken out for the available Fe2+ and overall Fe
contents analysis, according to the O-Phenanthroline spectrophotometric method (HGT
3539-1990) released by the Chinese Ministry of Chemical Industry.

3.4. Composition and Microstructural Characterization

The surface morphology of talc powder and Si-OPC was studied on an SU5000
scanning electron microscope (SEM, Hitachi Limited, Hitachi, Japan) operating at an
acceleration voltage of 5 kV and an emission current of 110 µA. The pyrolysis characteristics
of the starting materials were investigated using an STA 8000 thermogravimetric analyzer
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(TG-DTA, PerkinElmer, Wellesley, MA, USA) in air atmosphere (gas-flow rate = 20 mL/min)
at the heating rate of 5 ◦C/min from 30 to 1300 ◦C. The chemical composition analysis of
talc powder and prepared Si fertilizers was performed on a X’Pert PRO X-ray diffractometer
(XRD, PANalytical, Almelo, Netherlands) at a scan step size of 0.02◦ in the 2θ range of 5 to
90◦ with a working voltage and current of 40 kV and 40 mA, respectively, using Cu Kα

as a radiation source. The structural analysis of functional group of CaCO3, talc powder
and prepared Si fertilizers was carried out by a Nicolet FT-IR 6700 Fourier-transform
infrared spectrometer (FTIR, Thermo-Scientific, Waltham, MA, USA) in the wavenumber
range of 400 to 4000 cm−1 at room temperature, using the KBr dispersion method. The
Brunauer–Emmett–Teller specific surface area and pore size of talc powder and Si-OPC
were evaluated by nitrogen adsorption at 77 K on a Gemini III-2375 full-automatic surface
area analyzer (BET, Micromeritics, Atlanta, GA, USA).

3.5. Pot Experiments

“Siji” pak choi seeds received from Hezhiyuan Seed Industry were planted in cylin-
drical plastic pots (diameter = 20 cm, height = 19 cm). Before use, the pak choi seeds were
sterilized by immersion in 10% (v/v) H2O2 solution for 15 min, rinsed thoroughly with
distilled water and soaked in water for 24 h. Each pot was loaded with 1.5 kg of air-dried
and sieved (0.85 mm) soil that was obtained from Guilin Yanshan Garden. Completely
mixed basal fertilizers, including 0.35 g kg−1 soil of urea (CO(NH2)2), 0.31 g kg−1 soil of
KH2PO4 and different dosages of Si-OPC (i.e., 0, 5, 10, 20, 40 and 60 g kg−1 soil) were
supplied to every pot. These pots, in which 20 pak choi seeds were evenly planted, were
placed in a greenhouse at a relative humidity of 60% and a day/night temperature of 30 ◦C
(12 h): 25 ◦C (12 h) and watered every 3 days with 100 mL of distilled water throughout
the experimental period. After 10 days of incubation, the germination rates were recorded;
on day 40, the mature plants were harvested for the measurement of height/length, fresh
weight, dry weight and the Si content of plants and/or roots, and the soils were collected
for properties analysis.

The Si concentration of plants was determined according to the method identical to
Yin et al. [2] Briefly, 0.05 g of the dried samples was weighed, milled and transferred to
the crucible for calcination at 550 ◦C for 3 h; then, the remaining ashes were extracted by
the mixture of 40% HF and 0.08 mM H2SO4, followed by detecting the Si concentration of
the extracts. Soil pH was measured in 1:2.5 (w:v) soil/water suspensions [6,59]. Regarding
the quantification of available metallic elements in soil, available Si was extracted by
0.025 mol/L citric acid, and the available calcium and magnesium were assayed after the
soil samples were digested with HNO3-HF-HClO4 system [59].

3.6. Data Analysis

All data were processed by Microsoft Excel 2019 and Origin 2018, and the statistical
analysis was conducted by SPSS 26.0 and Duncan’s method for significant difference analysis.

4. Conclusions

In this work, talc powder and CaCO3 were mixed at a molar ratio of 1:2.0 and calcined
at 1150 ◦C for 120 min to attain the desirable Si fertilizer (i.e., Si-OPC) with an available Si
content of 19.1%. The temperature-driven reactions involving the decomposition reaction
of talc powder and CaCO3 as well as the recombination reaction of their intermediate
products led to the generation of akermanite Ca2Mg(Si2O7) and merwinite Ca3Mg(SiO4)2
as the dominant final silicates products. The preferable nutrient element release amount
and solubility of the Si-OPC in citric acid instead of ultrapure water suggests its potential
as a slow-release fertilizer. The Si-OPC exhibits an irregular coarse and blocky morphology
with an average pore size of 18.81 nm, and its nitrogen adsorption curves conform to a
distinctive feature of Type H3 loop. CaCO3 functioned as the accelerator and participated
in the conversion process of talc to mineral silicates. According to the results of the pot
experiment, an application amount of 5 g kg−1 soil Si-OPC was mostly effective for pak
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choi growth, and a higher dosage resulted in the sharp decline in growth indexes of pak
choi, presumably due to the soil pH rise and/or the increase in soil salinity. Therefore, on
the premise of precise dosage control, Si-OPC might be a potential alternative for boosting
crops production in available Si-deficient soil.
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