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Background: The rarity of neuroendocrine malignancies limits the ability to develop new therapies and thus a better
understanding of the underlying biology is critical.

Methods: Through a prospective, IRB-approved protocol, patients with neuroendocrine malignancies underwent next-generation
sequencing of their tumours to detect somatic mutations (SMs) in 50 cancer-related genes. Clinicopathologic correlation was
made among poorly differentiated neuroendocrine carcinomas (NECs/poorly differentiated histology and Ki-67 420%) and
pancreatic neuroendocrine tumours (PanNETs/Ki67 p20%) and non-pancreatic neuroendocrine tumours (NP-NETs/Ki67 p20%).

Results: A total of 77 patients were enrolled, with next-generation sequencing results available on 63 patients. Incidence of SMs
was 83% (19 out of 23) in poorly differentiated NECs, 45% (5 out of 11) in PanNETs and 14% (4 out of 29) in NP-NETs. TP53 was the
most prevalent mutation in poorly differentiated NECs (57%), and KRAS (30%), PIK3CA/PTEN (22%) and BRAF (13%) mutations
were also found. Small intestinal neuroendocrine tumours (Ki67 o2%/n¼ 9) did not harbour any mutations. Prevalence of
mutations correlated with higher risk of progression within the previous year (32% (low risk) vs 11% (high risk), P¼ 0.01) and TP53
mutation correlated with worse survival (2-year survival 66% vs 97%, P¼ 0.003).

Conclusions: Poorly differentiated NECs have a high mutation burden with potentially targetable mutations. The TP53 mutations
are associated with poor survival in neuroendocrine malignancies. These findings have clinical trial implications for choice of
therapy and prognostic stratification and warrant confirmation.

Gastroenteropancreatic neuroendocrine malignancies are rare,
with an annual incidence of 3.65 per 100 000 based on recent
SEER data (Lawrence et al, 2011). Less than half of patients (27–
46%) with neuroendocrine malignancies present with localised
disease and many of these develop recurrent disease after surgical
interventions for initially localised disease (Hauso et al, 2008). For
unclear reasons, the incidence of these tumours appears to be

increasing and, with the long natural history of these tumours, the
US prevalence is thought to be in excess of 100 000 (Yao et al,
2008). These tumours can be divided into several subgroups
based upon histology and site of origin, with poorly differentiated
neuroendocrine carcinomas (NECs) behaving aggressively with
short-lived responses to therapy and worse outcomes (Yao et al,
2008).
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Although once treated as a uniform disease in part because of
similar histologic appearance, distinctions have been made in
recent years between poorly differentiated NECs, neuroendocrine
tumours (NETs) of the pancreas (PanNETs) and those originating
from other sites in the GI tract. For non-pancreatic NETs
(NP-NETs), somatostatin analogues provide symptomatic benefit
for patients with neurohormonal secretory symptoms, and produce
a clinically significant static effect on tumoural growth (Rinke et al,
2009). Somatostatin analogues and local therapeutics represent the
mainstay of therapy for non-pancreatic carcinoid tumours
and there are recent data supporting the use of mTOR
(mammalian target of rapamycin) inhibitors in nonfunctional
tumours (Yao et al, 2016). In contrast, PanNETs have demon-
strated better response rates than carcinoid tumours to traditional
chemotherapy (5-FU/capecitabine, oxaliplatin, temozolomide,
streptozosin, and doxorubicin) (Bajetta et al, 2007; Strosberg
et al, 2011), and molecularly targeted therapies improve outcomes,
with a VEGF-targeted agent (sunitinib) and an mTOR inhibitor
(everolimus) demonstrating a progression-free survival (PFS)
advantage for patients with advanced PanNETs (Raymond et al,
2011; Yao et al, 2011). However, predictive factors are lacking, and
more definitive results for carcinoid tumours are not yet available.

In contrast, much less is known about poorly differentiated
NECs, and no prospective studies have evaluated those originating
outside of the lung. There is growing recognition that the current
WHO grade 3 (G3) category contains two distinct subsets of
neuroendocrine neoplasms, one with poorly differentiated histol-
ogy (poorly differentiated NEC) and the other with well-
differentiated histology but discordant Ki67 proliferation index
(Basturk et al, 2015; Tang et al, 2016). The poorly differentiated
NECs are very aggressive and usually present with advanced stages
with dismal prognosis. Treatment strategies for poorly differen-
tiated NECs are often extrapolated from the treatment paradigm
for small-cell lung cancer (SCLC) (Walenkamp et al, 2009). These
are generally managed with platinum-based chemotherapy with a
modest PFS (4 months) and overall survival (11 months) (Moertel
et al, 1991; Mitry et al, 1999; Walenkamp et al, 2009; Rindi et al,
2010; Sorbye et al, 2013). After first-line treatment, no further
standard therapy has been established for these patients. Recently,
several small, retrospective, second-line studies with chemotherapy
(temozolomide, oxaliplatin, taxanes, etc.) demonstrate a response
rate between 18% and 30% (Sorbye et al, 2014).

Given the large unmet need in this population and the paucity
of genetic data specifically for this disease, we developed this
prospective study to perform molecular sequencing for patients
with advanced neuroendocrine malignancies. The primary objec-
tive of this exploratory pilot project was to better elucidate the
defining genomic alterations in these tumours. A secondary
objective was to identify prognostic and therapeutic targets in
order to determine feasibility of a more formalised trial of
molecular profiling guiding therapy in this population.

MATERIALS AND METHODS

Patient eligibility and samples. Patients with neuroendocrine
malignancies seen at Fox Chase Cancer Center were enrolled onto
our prospective study after approval by the Institutional Review
Board. Eligibility criteria for this study included consenting adult
patients (X18 years) with histologically confirmed neuroendocrine
malignancies of all grades and sites (excluding SCLC and Merkel
cell carcinoma). Patients had to have adequate tissue available for
sequencing, as determined by pathologist. We excluded small-cell
carcinoma and Merkel cell histology from the poorly differentiated
NEC cohort to allow for a relatively homogenous patient
population and given prior published work on their genomic

alterations (Zheng et al, 2015). Patient records/information were
anonymised and deidentified before analysis. Tumour samples
were obtained from archived formalin-fixed, paraffin-embedded
tissue of primary or metastatic site acquired closest to the
enrolment date. Patients with insufficient tissue to perform
molecular analysis were excluded from the study. At the time of
initial enrolment, a peripheral blood sample was also collected to
rule out germline mutations and only somatic mutations were
reported.

Data collection. Standard demographic data were collected,
including gender, age, race, smoking and alcohol use. Clinico-
pathologic data were collected on primary tumour location and
grade. Date of last follow-up and vital status were collected on all
patients. Further assignment to different subgroups was based
upon the site of tumour origin as determined by the treating
physician: non-pancreatic neuroendocrine tumours or NP-NETs
(p20 mitoses/10 high-power fields (HPFs); Ki67 p20%);
pancreatic neuroendocrine tumours or PanNETs (p20 mitoses/
10 HPFs; Ki67 p20%); or poorly differentiated NECs (poorly
differentiated histology; 420 mitoses/10 HPFs; Ki-67 420%). In
order to study the effect of mutational changes on clinical
behaviour of neuroendocrine malignancies, treating physicians
were also required to classify patients into two arms based on
disease characteristics. Arm A consisted of patients with low risk of
clinical progression (stable and nonprogressive disease in the prior
12 months) and arm B consisted of patients with high risk of
progression (radiographic progression in the prior 12 months,
clinical evidence of worsening symptoms, high initial tumour
burden requiring chemotherapy or poorly differentiated tumours).

Specimen analysis. Histologic confirmation of diagnosis and
grade, and adequacy of tumour samples, was assessed by trained
pathologist with expertise in gastrointestinal and neuroendocrine
malignancies. After this, tumour and normal genomic DNA were
extracted from a portion of the patient’s tumour tissue and
peripheral blood, respectively. Tumour and normal DNA were
used for multiplex PCR amplification of targeted regions within the
50 cancer-related genes listed below using the Ion AmpliSeq
technology (Life Technologies, Carlsbad, CA, USA). Next-genera-
tion sequencing (NGS) was performed using the Ion Torrent
Personal Genome Machine (Life Technologies, Guildford, CT,
USA) and analysed with Torrent Suite Software (v.3.4.2, Life
Technologies). Sequencing results from tumour were compared
with normal to identify tumour-specific somatic mutations
(substitutions and/or small insertions/deletions) within the tar-
geted regions. For clinical testing purposes, the lower limit of
detection of the assay is B10% mutant allele frequency with
variant coverage of at least 250� . Tumour nuclei were required to
represent at least 20% of the nuclei in the tested sample to avoid
false negative results. Reportable tumour-specific somatic variants
were verified using direct sequencing analysis (Sanger sequencing)
when indicated based on standard laboratory procedures. The
cancer-related genes evaluated included ABL1, AKT1, ALK, APC,
ATM, BRAF, CDH1, CDKN2A, CSF1R, CTNNB1, EGFR, ERBB2,
ERBB4, EZH2, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, GNA11,
GNAQ, GNAS, NF1A, HRAS, IDH1, IDH2, JAK2, JAK3, KDR, KIT,
KRAS, MET, MLH1, MPL, NOTCH1, NPM1, NRAS, PDGFRA,
PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, SMO,
SRC, STK11, TP53 and VHL.

The results of genomic testing were issued to the treating
physician and further treatment decisions were left to them, and
the patients’ responses were followed. Actionable mutations were
defined as those with ability to guide therapy using approved or
experimental agents. Imaging follow-up was recommended every
3–6 months. Patients were enrolled into three separate groups
based upon differentiation and site of origin as described in
previous section.
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Statistical methods. The patient population was characterised
using standard descriptive statistics. Frequency tables were used to
describe the distribution of variants identified by sequencing.
These tables were created for all patients, and separately by the
predefined patient cohorts and arms A and B. Mutations that
occurred in X10% of samples were considered for further analysis.
Tumour characteristics and mutation status were compared using
Fisher’s exact test. Survival was assessed using log-rank tests and
Kaplan–Meier curves. All statistical analyses used Stata (version
12.1, StataCorp, College Station, TX, USA). For each cohort, we
defined a future larger study as feasible if at least 10% of patients
had an actionable mutation identified by NGS.

RESULTS

Patient characteristics. We enrolled 77 patients onto the study
between October 2013 and July 2015. Fourteen patients had
insufficient tissue to perform NGS. Patient and tumour character-
istics of the remaining 63 patients are summarised in Table 1.
Median age was 61 years (range 33–84 years) and male to female
ratio was 1 : 1. There were 23 (37%) poorly differentiated NECs,
11 (17%) PanNETs and 29 (46%) NP-NETs.

Mutation analysis. Gene profiling results were available on
63 patients (81%). Mutation frequency differed by tumour type
and grade. The incidence of at least one mutation was 83% (19 out
of 23) in poorly differentiated NECs, 45% (5 out of 11) in PanNETs

and 14% (4 out of 29) in NP-NETs. Thirteen (21%) patients’
tumours harboured more than one mutation (11 poorly differ-
entiated NECs and 2 PanNETs). Incidences of individual
mutations in the three defined subsets are shown in Figure 1.
The most prevalent mutations in poorly differentiated NECs
included TP53 (57%), KRAS (30%), PIK3CA/PTEN (22%) and
BRAF (13%). Table 2 lists the mutations identified by grade and
location of primary. Poorly differentiated NECs for histology
and pancreas for site demonstrated the highest frequency of
mutations. Interestingly, well-differentiated NETs of small intest-
inal origin with Ki67 p2% did not harbour any mutations in the
samples tested (n¼ 29). Potentially actionable mutations, depicted
in Figure 2, were found in 35% (8 out of 23) of poorly
differentiated NECs (BRAF, PIK3CA, PTEN, WNT and CTNNB1).

Mutations and clinical outcomes. Among the PanNETs and NP-
NETs, incidence of mutations was higher in patients with high risk
of progression (designated arm B) than those with low risk
(designated arm A) (7 out of 22 (32%) vs 2 out of 18 (11%),
P¼ 0.01). Only one patient in our cohort was treated with
a mutation-guided therapeutic intervention. In this case, ever-
olimus was used in the second line in a 57-year-old female with
poorly differentiated NEC, harbouring an inactivating PTEN
mutation. She remained on the drug for 5 months when therapy
was interrupted and later discontinued because of development of
brain metastases.

Survival analysis. Over the 21-month period of study conduct
(median follow-up of 17 months), there were 7 deaths and median

Table 1. Baseline patient and tumour characteristics by different groups (poorly differentiated, pancreatic NETs and non-
pancreatic NETs)

Characteristic
Poorly differentiated,

N (%) (n¼23)
PanNETs,

N (%) (n¼11)
Non-pancreatic NETs,

N (%) (n¼29) P-values
Median age (years) 58 58.5 62

o65 19 (83) 8 (72) 18 (68) 0.51
X65 4(17) 3 (28) 9 (32)

Sex
Male 12 (52) 7 (64) 13 (45) 0.63
Female 11 (48) 4 (36) 16 (55)

Ethnicity
Caucasian 20 (87) 8 (73) 25 (86) 0.16
Other 3 (13) 3 (27) 4 (14)

Smokinga

Yes 13 (57) 4 (37) 11 (38) 0.27
No 9 (39) 7 (63) 18 (62)

Alcohola

Yes 12 (52) 2 (18) 11 (38) 0.12
No 9 (39) 9 (82) 15 (65)

PS
0 10 (43) 5 (45) 20 (69) 0.15
1 13 (57) 6 (55) 9 (32)

Stage at diagnosis
I–III 6 (26) 0 10 (43) 0.08
IV 17 (74) 11 (100) 19 (57)

Grade/Ki67
G1 (p2%) 0 1 (10) 16 (70) N/A
G2 (3–20%) 0 10 (90) 13 (30)
G3 (420%) 23 (100) 0 0

Number of patients with mutations 19 (83) 5 (45) 4 (14) 0.41

Number of patients with 41 mutation 11 (48) 2( 18) 0

Site of metastasis
Liver 14 (61) 10 (92) 16 (56) 0.09
Other 9 (39) 1 (8) 13 (44)

Abbreviations: NET¼ neuroendocrine tumour; PanNET¼pancreatic neuroendocrine tumour; PS¼Eastern Cooperative Oncology Group (ECOG) Performance Status.
aSome patients with missing data.
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survival was not reached in any group. Higher grade was associated
with worse survival (median not reached, P¼ 0.004) with 2-year
survivals of 100%, 94% and 71% for tumours with Ki67 p2%,
3–20% and 420%, respectively. The NP-NETs demonstrated
improved survival when compared with PanNETs with 2-year
survival of 100% vs 96% (P¼ 0.04), respectively. The association of
individual mutations with survival was also studied. The presence
of TP53 mutation correlated with worse survival (2-year survival of
66% vs 97% comparing TP53 mutation positive and wild type,
respectively; P¼ 0.003, see Figure 3) but other mutations were not
significantly associated with survival (P40.05, data not shown).

DISCUSSION

There has been significant progress in the understanding of
molecular mechanisms underpinning different gastrointestinal
malignancies that has generated interest in identifying predictive
and prognostic biomarkers (e.g., KRAS and BRAF mutations in
colon cancer). To date, there have been a relatively small number
of efforts to better characterise the molecular abnormalities driving
the growth of neuroendocrine malignancies. They are a hetero-
geneous group of neoplasms with probable varied gene signatures
for poorly differentiated NECs, PanNETs and NP-NETs. We
found that the majority of the poorly differentiated NECs

harbour somatic mutations, some of which are potentially
targetable (BRAF, PIK3CA, PTEN, WNT, etc.). With an incidence
cutoff of 10%, our findings support the feasibility of future clinical
trials using molecularly matched therapies in patients with poorly
differentiated NECs with mutations in the BRAF or PIK3CA/
PTEN pathways. On the other hand, NP-NETs have a relatively
stable genome with a very low incidence of mutations, suggesting
alternate pathways of proliferation (epigenetic or post-transcrip-
tional modifications). TP53 emerged as a prognostic marker in
neuroendocrine malignancies.

In our study, NP-NETs had the lowest rate of somatic mutations
(14%) and none of the WHO G1 NETs (Ki67 p2%) of small
intestinal origin harboured a mutation utilising a 50-gene NGS
panel. These are typically more indolent than other epithelial
malignancies but can nevertheless metastasise (Anthony et al,
2010). Pathogenic mutations in the ‘classical’ signalling pathways
are rare in this subset. Whole exome sequencing of 48 small
intestine NETs performed by Banck et al (2013) represents the first
genome-wide sequencing study for this tumour type. This
important work revealed a 0.1 somatic single-nucleotide variation
per 106 base pairs, suggesting a stable genome for carcinoid
tumours. Most genomic alterations were copy number variations
and were nonrecurrent. The authors noted genomic alterations
in PI3K/AKT/mTOR in 14 patients (29%), suggesting that targeted
therapy might be directed at this particular signal transduction
pathway. The SRC oncogene was found to be upregulated in
11 (23%) cases without an identifiable mutation. Similarly, Francis
et al (2013) reported frameshift mutations and hemizygous
deletions of p27 tumour suppressor (CDKN1B) in 11% of small
intestine NET, thus implicating cell cycle dysregulation in the
aetiology of NET. This particular gene was not a part of our NGS
panel.

Contrary to current evidence, one patient with NP-NET in our
cohort harboured a TP53 mutation (Yachida et al, 2012; Banck
et al, 2013). The primary site was stomach rather than small
intestines and there is paucity of data about the genomic makeup
of NETs of stomach origin that may explain the new finding.

When considering PanNETs, genes implicated in chromatin
remodelling have been found to be altered in the vast majority
of cases in other series (Jiao et al, 2011). Among 68 nonfamilial
PanNETs, 44% carried somatic inactivating mutations in
MEN1 (the multiple endocrine neoplasia type 1 gene )/menin,
a component of a histone methyltransferase complex), and
43% had mutations in genes encoding the subunits of a
transcription/chromatin remodelling complex consisting of DAXX
(death-domain–associated protein) and ATRX (a-thalassaemia/
mental retardation syndrome X linked). Clinically, mutations in the
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Figure 1. Bar graph depicting incidence of mutations in the subgroups
(poorly differentiated, PanNETs and non-pancreatic NETs).

Table 2. Mutation distribution by location and grade of tumour

Poorly differentiated NEC (G3)a Well-differentiated NETs

G2b G1c Total

Site n/N Type of mutation n/N Type of mutation n/N Type of mutation (n/N)
Small intestine 1/1 TP53 2/8 CTNNB1, PIK3CA 0/9 — 3/18

Colon 8/9 KRAS, TP53, BRAF, PIK3CA, PTEN, CTNNB1, APC, RB1 0/3 — 0/1 — 8/13

Pancreas 4/4 TP53, PIK3CA, RB1, KRAS 4/10 KRAS, TP53, IDH-1,
RB1

1/1 ATM 9/15

Other 7/9 PTEN, BRAF, APC, IDH1, TP53,CTNNB1, FBXW7 1/2 TP53 1/6 KRAS 9/17

Total 19/23 7/23 2/17
Abbreviations: Other¼ (G1¼ unknown, stomach; G2¼unknown, stomach; G3¼unknown, breast); n¼ number of patients with mutations, N¼ total number of patients; NEC¼ neuroendocrine
carcinoma; NET¼neuroendocrine tumour.
a420 Mitoses/10 high-power fields (HPFs) or Ki67 420%, poorly differentiated histology.
b3–20 Mitoses/10 HPFs or Ki67 3–20%.
cp2 Mitoses/10 HPFs or Ki67 p2%.
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MEN1 and DAXX/ATRX genes were associated with better
prognosis. The same group also found mutations in genes in the
mTOR pathway in 14% of the tumours. Another study from Asia
found an inverse association of DAXX/ATRX mutations with
prognosis (Yuan et al, 2014). The association of DAXX/ATRX and
MEN1 with prognosis and their molecular role is an area of active
investigation. Our gene panel did not include DAXX/ATRX and
MEN1 genes and we did not identify any mutations in the mTOR
pathway for PanNETs, perhaps related to the low number of these
tumours in our cohort. The PanNETs have paucity of Rb1
and TP53 mutations based on prior literature (Jiao et al, 2011;
Yachida et al, 2012) but our analysis reported Rb1 mutation in one
and TP53 mutation in two intermediate grade PanNET samples
(2–20 mitoses/10 HPFs; Ki67 3–20%).

The molecular mechanisms underlying the aggressive poorly
differentiated NEC subtype and determinants of progression are
unknown. A few studies describing their genomic landscape have
been reported. Abnormal immunolabelling patterns of p53 and Rb
were frequent (p53, 95%; Rb, 74%) in poorly differentiated NECs
of pancreatic origin (small and large cell histologies), whereas
SMAD4/DPC4, DAXX and ATRX labelling were intact in virtually
all of these carcinomas (Yachida et al, 2012). Our study provides
further insight into the mutational characteristics that define these
tumours. Poorly differentiated NECs, despite being considered
equivalent to SCLC in terms of management (Strosberg et al,
2010), may have different genomic alterations. Our study detected
TP53 inactivating mutations in B60% (vs 490% in SCLC), RB1 in
8% (vs 90% in SCLC), KRAS in 30%, BRAF in 13% and PIK3CA/
PTEN in 22% of poorly differentiated NECs (Yokomizo et al, 1998;
Wistuba et al, 2001; Zheng et al, 2015). Mutations in genes
involved in the b-catenin pathway (APC, CTNNB1) were seen in
14% of poorly differentiated NECs. Such mutations are uncommon
in SCLC. These striking differences, in part, may be related to
variations in the primary site of origin for the poorly differentiated
NECs. Thus, sequencing may increase confidence of a GI origin for
poorly differentiated NECs presenting with this signature, and the
‘default’ strategy of treating poorly differentiated NECs like SCLC
may in fact not be appropriate for some patients. Newly developed
therapies and clinical trials may offer opportunities to further

assess molecular profiling and targeted agents in these tumours.
The ECOG/ACRIN 2142 study is currently comparing first-line
platinum-based therapy to a combination of capecitabine and
temozolamide for high-grade NETs but therapy is not guided by
predictive biomarkers. Snyder et al (2014) described the impor-
tance of tumour genetics in defining the basis of the clinical benefit
from checkpoint blockade and immune checkpoint inhibition. In
their study, mutational load and expression of neo-antigens
correlated with improved overall survival and response to
immunotherapy (Snyder et al, 2014). We found a staggering
83% (19 out of 23) incidence of mutations and 47% rate of
41 identified mutations (on the limited 50-gene panel) in poorly
differentiated NECs. This suggests that a high level of genomic
instability would likely be detected on whole exome or genome
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Figure 3. Adjusted Kaplan–Meier survival curves for patients without
and with TP53 mutations (2-year survival 97% vs 66% (P¼ 0.003)).

1 (grey) refers to non-actionable mutations
2 (yellow) refers to actionable mutations

Columns with no values represent cases without identified mutations
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Figure 2. Heat map describing somatic mutations identified in each case. Each column represents one sample, and each row represents one
gene. Nonactionable somatic mutations are shown in grey (1) and potentially actionable mutations are shown in yellow (2). Only genes in which a
somatic mutation was detected in one or more samples are depicted.
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sequencing of the poorly differentiated NECs, thus making
checkpoint inhibition an additional therapeutic strategy worthy
of testing. The presence of TP53 mutations correlated with worse
survival in our cohort but the results may reflect the higher
number of poorly differentiated NECs in the mutation-positive
group.

We have previously reported a 16.5% incidence of actionable
mutations from a retrospective analysis of 1350 cases of
infradiaphragmatic neuroendocrine malignancies (all grades
and sites), but most mutations were not seen more than once
(BRAF, CTNNB1, KIT, EGFR, FGFR2, PIK3CA, NRAS and APC)
(Astsaturov, 2014). Our group has also reported a near
complete response to imatinib seen in a patient with KIT-
mutated metastatic NET (Perkins et al, 2014), supporting the
theory that modulation of these targets with specific inhibitors
carries the potential for beneficial clinical application and
highlights the need for molecularly driven studies in neuroen-
docrine malignancies (Perkins et al, 2014). In our current study,
the incidence of potentially actionable mutations was particu-
larly high in the poorly differentiated NEC population
(PIK3CA/PTEN (22%) and BRAF (13%)). A future larger study
of molecular-guided therapy in this cohort of patients may be
feasible as 10% of patients had the mutation identified by NGS.
Whether this will result in clinical benefit requires further
follow-up and research.

Our study is limited by the number of mutations assessed in
the targeted cancer gene panel (n¼ 50 of cancer-related genes).
Banck et al (2013) noted genomic alterations (copy number
variations rather than mutations) in the PI3K/AKT/mTOR path-
way in 29% of carcinoid samples through whole exome sequen-
cing) compared with the relatively low number of PIK3CA or
mTOR mutations found in our study (4%). This in part can be
attributed to the lack of gene amplification and copy number
variation data in our samples. In addition, mutations that may
characterise PanNETs like DAXX/ATRX were not on our panel
(Jiao et al, 2011). A minority of the poorly differentiated NECs in
our cohort did not harbour any mutations (4 out of 23) and this
may be related to the small number of genes tested on the panel.
However, our platform incorporated most common driver
mutations known to date for which targeted therapies are actively
being developed, making the results clinically relevant in the
present time. A second potential limitation is that we utilised a
single archived tumour sample (primary or metastatic site) for
mutation analysis rather than a fresh biopsy. The utility of an
archived primary tumour specimen vs a fresh metastatic tumour
biopsy remains an important unresolved question. Another
limitation of our study is the smaller sample size of cohorts with
specific mutations. This limited the comparative and multivariate
analysis between subgroups. The presence of TP53 mutations
correlated with worse survival in our cohort but the results were
not adjusted for other clinicopathologic and molecular factors.
A final potential limitation is that we did not mandate follow-up
treatment in our study. Thus, the data represent real-world
outcomes for this patient population. Patients in our study were
given routine clinical care, and some were treated locally with
periodic follow-up at an academic centre, potentially explaining the
very low percentage of patients treated with mutation-driven
therapy (difficult to do outside the context of a clinical trial).
Furthermore, providing patients with mutation-specific therapy
can be challenging because of a lack of clinical trial availability,
uncertainty regarding considerations of clinical benefit vs risk and/
or off-label drug acquisition.

In summary, we found in this prospective study, clinically
significant mutations in poorly differentiated NECs that most
commonly included PIK3CA/PTEN and BRAF. Although rare in
well-differentiated NETs, the presence of mutations was associated
with higher risk of progression and may portend worse survival.

Likewise, TP53 mutations are associated with poor survival. These
findings have potential implications for neuroendocrine malig-
nancies in terms of choice of therapy, clinical trial enrolment,
primary site determination and prognostic stratification, thus
supporting the role of molecular sequencing in the setting of
clinical trials.
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