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Abstract

It is a classic topic of social network analysis to evaluate the importance of nodes and identify the node that takes on the
role of core or bridge in a network. Because a single indicator is not sufficient to analyze multiple characteristics of a node, it
is a natural solution to apply multiple indicators that should be selected carefully. An intuitive idea is to select some
indicators with weak correlations to efficiently assess different characteristics of a node. However, this paper shows that it is
much better to select the indicators with strong correlations. Because indicator correlation is based on the statistical analysis
of a large number of nodes, the particularity of an important node will be outlined if its indicator relationship doesn’t
comply with the statistical correlation. Therefore, the paper selects the multiple indicators including degree, ego-
betweenness centrality and eigenvector centrality to evaluate the importance and the role of a node. The importance of a
node is equal to the normalized sum of its three indicators. A candidate for core or bridge is selected from the great degree
nodes or the nodes with great ego-betweenness centrality respectively. Then, the role of a candidate is determined
according to the difference between its indicators’ relationship with the statistical correlation of the overall network. Based
on 18 real networks and 3 kinds of model networks, the experimental results show that the proposed methods perform
quite well in evaluating the importance of nodes and in identifying the node role.
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Introduction

In social science, social network analysis (SNA) is the analysis of a

social structure that is made up of a set of social actors and a set of

the interactions between these actors. Individual such as human, or

organization such as school, corporation and nation, can be

considered to be a social actor [1]. In recent years, with the

widespread use of social media such as FaceBook and Twitter, a vast

amount of social interaction data has made social network analysis

go beyond sociology and attract researchers from various fields.

The progress of social network analysis has also benefited from

the researches on complex network. Since the late 20th century,

after Watts D. J. and Barabasi A. L. successfully explained the

phenomena of small-world and scale-free [2,3], complex network

has become the fundamental model to understand complex

topological relations and dynamic behaviors in various fields [4],

such as the Internet [5], epidemic spreading [6], etc. In these

fields, evaluating the importance of nodes is of great value [14].

Social network analysis is concerned not only with evaluating

the importance of a node, but also with identifying the function or

position of an important node in a network. As John Scott stated in

1991, it has been one of the key issues of social network analysis to

identify the role of a node [13].

Although various kinds of roles could be defined from different

perspectives, two kinds are widely accepted [37,38]. The first kind

of role bonds a group of nodes together, and has great influence on

other nodes. A node that plays the bonding role usually takes up

the central position of the group, thus it is named as a core in this

paper. In previous studies, this kind of role has also been termed as

a leader, a star, a hub etc. The second kind of role provides

connections between other nodes. A node that plays this role looks

like a bridge and shows its importance in exchanging information

and resources between others [7,8,9].

However, there are still many arguments about the precise

definitions of the core and the bridge. Therefore, instead of

pursuing the precise definition of a role [10], researchers have

proposed many different indicators to assess different topological

features of a node [11,12], such as degree, betweenness centrality,

eigenvector centrality etc. And researchers have usually agreed

that the degree of a core and the betweenness centrality of a bridge
should be great. However, any single indicator is not sufficient to

identify multiple and complex characteristics of a role. For

instance, a core is also an important part of information exchange

particularly between the nodes bonded by the core itself.

A promising solution is to apply multiple indicators to evaluate

the importance of a node and identify its role. However, the

number of different indicator combinations increases exponential-

ly with the number of indicators. For instance, there are 1024

different combinations of just 10 indicators. And the study of how

to select the appropriate combination has not come to a
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conclusion yet [13]. An intuitive solution is to select the indicators

with weak correlations. Its basic assumption is that the indicators

with weak correlations could be good at assessing different

topology features.

However, this solution is not appropriate for analyzing an

individual node, although it may be suitable for a network or a set

of nodes. Because the correlation between indicators reflects the

statistical relationship of a large number of nodes, the particularity

of an individual node would be outlined if its indicator correlation

conflicts with the statistical relationship. Therefore, the indicators

with strong correlations should be selected to highlight important

individuals. This deduction is also confirmed by sociologists’

preliminary analysis of a few indicators. For example, degree is

usually positively correlated with closeness centrality, but if the two

indicators of a node do not satisfy this relationship, the node

should play an important role in connecting with some other

important nodes.

Therefore, this paper proposes to select the multiple indicators

with strong correlations to evaluate the importance of a node and

identify its role in an undirected no-weighted social network.

Besides the correlation between indicators, the paper also takes the

range of application of an indicator, the topology feature evaluated

by an indicator and the topological information required by an

indicator into consideration in selecting desired multiple indica-

tors. Eventually, the indicators, degree, ego betweenness centrality
and eigenvector centrality are selected from 10 typical indicators of

SNA and complex network analysis. Then, the importance of a

node is equal to the normalized sum of its three indicators; the

core candidates are selected from the nodes with great degree and

the bridge candidates are selected from the nodes with great ego-

betweenness centrality. Finally, the role of a candidate is

determined according to the difference between its indicators’

relationship with the statistical correlation of the overall network.

If the node shows its significance in connecting non-adjacent nodes

together and in connecting with other important nodes, the node is

recognized as a core or a bridge. It is noteworthy that the selected

indicators can also be computed based on the ego network of a

node instead of based on the overall network. This feature makes

the proposed method highly adaptable to the large, time-varying

network whose precise and up-to-date global topology is hard to

be obtained. The experimental results show the good performance

of the proposed method, especially in analyzing the scale-free

networks.

The rest part of this paper is arranged as follows: Section 2

analyzes the correlations of 10 typical indicators and shows the

drawback of any single indicator in analyzing individual nodes.

Section 3 proposes the methods EIMI and RUMI to evaluate the

importance of nodes and identify the node role based on the

selected indicators. Section 4 carries out experiments with 18 real

networks and 3 kinds of model networks. Finally, Section 5

summarizes the paper.

Analysis of Indicators’ Correlations

Previous researches have only analyzed the correlation of a few

indicators [16], such as the correlation between ego-betweenness

centrality and betweenness centrality [17,18]. The paper carries

on a more thorough investigation into the correlations of 10

typical indicators listed in Table 1, where the indicators density

and clustering coefficient are treated as one indicator since their

formulas are the same.

In this paper, an undirected unweighted network G is denoted

G(V, E), where V is the set of nodes vi and E is the set of edges

e(vi, vj). The number of nodes and edges are denoted N and M,

respectively. G(V, E) can also be denoted an adjacency matrix

A = (aij)N6N, where aij is equal to 1, if e(vi, vj) exists, otherwise aij is

equal to 0. The degree of node vi is denoted ki; the length of the

shortest path between vi and vj is denoted dij, where the number of

the shortest paths that pass through node vk is denoted gij(k). The

information matrix of G(V, E) is denoted I~(Iij)N|N , where

Iij~(ICiizICjj{ICij)
{1, IC~(B{AzJ){1, B is the diagonal

matrix of node degree on the cater-corner, J is the identity matrix

and the intensity matrix W is thus W~ aij

.X
j
aij

� �
N|N

.

In general, these indicators evaluate three different topology

features of a node. First, the bonding feature, the most typical

indicator is degree. Another indicator may be closeness centrality

that evaluates the closeness of a node to the topological center of a

network. Thus the node with the greatest closeness centrality could

be considered as the most important core in a symmetry network

like a star network. However, this ideal case is not satisfied by most

real networks. Second, the bridge feature, including the indicators

information centrality, betweenness centrality and four structural

hole indicators. The first two indicators show the bridge

performance of a node in the paths of a network. And the

structural hole indicators that are efficiency, constrain, effective

size and hierarchy are usually used together for comprehensive

analyzing whether the neighbors of a node are well connected with

each other. If the neighbors are not, there are structural holes

around the node and the node must play the bridge role. Third,

the topology feature of the sub-network around a node.

Eigenvector centrality evaluates the overall importance of a node

in the sub-network or the overall network, and density/clustering

coefficient shows the density of edges of a node and its neighbors.

It is noteworthy that some indicators can be computed using the

ego network of a node instead of using the topology of the overall

network. In this case, the name of the indicator is usually added

the prefix ‘‘ego’’. The ego network of node vi is composed of vi

(named ego), the nodes that vi connects with and the edges among

these nodes. The two-layer ego network of vi is formed by the ego

networks of the neighbors of vi. For instance, ego eigenvector

centrality can be computed based on the two-layer ego network,

while degree, ego betweenness centrality, ego information

centrality etc. can be computed based on the one-layer ego

network. And the sociological meanings of ego network have been

widely studied in SNA [1,7,8].

First, the section assesses the performance of a single indicator

in analyzing an individual node. Figure 1.(a) takes a simple

double-star network as an example. Obviously, v1 and v13 are the

core nodes that have the same degree but the different ego

networks, and v7 is the bridge node in the network. In this case,

any single indicator fails to identify the roles of these nodes and

fails to distinguish their importance differences, as Figure 1.(b) -

Figure 1.(f) show, where the size of a node represents its value of

the corresponding indicator.

Then, the section analyzes the Pearson correlation and

Spearman correlation between the 13 indicators including 3 ego

indicators, based on 18 real networks [19–24,31–36,42–45,48]

and 3 kinds of model networks, including ER, BA and WS. And

10 different networks are randomly generated by the open source

tool Gephi for each kind of model networks. The result is showed

in Table 2 and Table 3. Because the correlation matrix of these

indicators is symmetry, the bottom-left half of Table 2 and

Table 3 shows the average Spearman and Pearson correlation

coefficients between the indicators of these networks and the top-

right half shows the corresponding standard deviation of the

correlation coefficients of these networks. Table 2 and Table 3

also show the average correlation coefficients between degree and
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the other indicators of the model networks. And the corresponding

standard deviations are similar to those of real networks. In this

way, we could judge whether the correlation between two

indicators are strong and stable in the different social networks.

The result shows that: (1) the indicators, including degree, (ego)

information centrality, effective size, (ego) eigenvector centrality,

absolutely (ego) betweenness centrality and relatively closeness

centrality have positive correlations with each other. However, the

correlations between some indicators are not very strong or stable,

for instance the correlations between closeness centrality with the

other indicators and the correlations between ego information

centrality with the other indicators. (2) The correlation between

the indicators of efficiency, density/clustering coefficient, hierar-

chy and constrain is not clear. (3) Two sets of the indicators

referred in (1) and (2) have weak or negative correlations. These

conclusions are satisfied by both the Pearson correlation and the

Spearman correlation, thus form a sound foundation for selecting

the multiple indicators with strong positive correlations.

Node Analysis Based on Multiple Indicators

Selection of multiple indicators
This paper proposes to select multiple indicators that have

strong positive correlations to discover outstanding nodes.

However, there are many different pairs of indicators that are

strongly correlated with each other, for instance 12 pairs have

correlation coefficients larger than 0.7 in Table 2. Therefore, in

addition to the correlation between indicators, the paper also takes

the following rules into consideration to select appropriate

indicators: first, an indicator is preferred for a wider range of

applications, if it has been widely applied and been proved to be

useful for various social networks; second, selected indicators

should evaluate different topology features of a node, and only one

Table 1. Overview of typical indicators.

Indicator Equation Indicator Equation

(relative) degree ki

N{1

(ego) eigenvector
centrality

The ith component of the eigenvector x
of equation Ax~lx

density/clustering
coefficient

2Mi

ki ki{1ð Þ
information centrality

1

N

X
j,j=i

1

Iij

" #{1

absolute (ego)
betweenness
centrality

XN

j,j=i

XN

k,kwj,k=i

gjk(i)

gjk

� � relative closeness
centrality

N{1PN
j~1 dij

structural hole
indicator

efficiency P
j

1{
P
k

wik wjk

�
maxs(wjs)

� �� �
ki

constrain X
j

wijP
s

wis

z
X

k

(
wikP

m

wim

)(
wkjP

n

wkn

)

0
@

1
A

2

effective size X
j

1{
X

k

(
wikP
j

wij

)
wjk

maxs(wjs)

� �0
B@

1
CA

hierarchy P
j

(wij z
P

k

wik wkj )
2

P
j

CIij

� �	
N

0
BB@

1
CCA ln

(wij z
P

k

wik wkj )
2

P
j

CIij

� �	
N

0
BB@

1
CCA

N ln Nð Þ

doi:10.1371/journal.pone.0103733.t001

Figure 1. The performance of single indicator in evaluating the importance and the role of nodes of a double-star network.
doi:10.1371/journal.pone.0103733.g001
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of the indicators evaluating a similar feature would be selected;

third, an indicator that needs only the local topology of a node is

preferred.

These selection rules are concluded as the correlation rule, the

range-of-application rule, the diversity and concise rule and the

local topology rule, respectively. Obviously, after the first indicator

is selected, it would be easier to decide other candidates. The

selection process is stated as follows.

Degree is the first choice, because degree is the most widely used

indicator and has been proved to be essential for identifying the

important nodes [47]. The node with great degree is more likely to

be a core. Table 2 and Table 3 also show that the number of the

indicators that strongly correlated with degree is the most. In

descending order by the correlation coefficient, the indicators that

have the correlation coefficients with degree larger than 0.70 in

Table 2 and Table 3 are information centrality, effective size,

(ego) betweenness centrality, and (ego) eigenvector centrality, while

the correlation coefficients between closeness centrality and ego

information centrality with degree are not very strong or stable.

Thus, the other candidates should be selected from these strongly

correlated indicators. Closeness centrality is not taken into

consideration, because it may fail for asymmetry networks and it

evaluates the similar feature with degree.

Second, ego betweenness centrality is selected as the indicator to

evaluate the bridge function of a node. It has been proved in many

applications that nodes with great (ego) betweenness are critical to

information exchange and collaboration between two non-

adjacent nodes. Ego-betweenness centrality is preferred for

needing no global topology and its correlation coefficient with

degree is also a little bigger than that between betweenness

centrality and degree. The other candidates evaluating the bridge

feature include (ego) information centrality and the structural hole

indicators. However, although the correlation between informa-

tion centrality and degree are very high, the correlation between

the ego version of information centrality and degree is low and

unstable, as Table 2 and Table 3 show. As for the four structural

hole indicators, only effective size is strongly correlated with

degree. We do not select effective size, because it is usually used

along with other structural hole indicators and has not been widely

applied, especially for analyzing the newly emerged large social

networks.

Third, (ego) eigenvector centrality is selected as the indicator to

characterize the ‘‘global’’ prominence of a node in the overall

network or a sub-network. The indicator shows how well

connected a node is to other important nodes, therefore great

(ego) eigenvector centrality would enforce the status of a node as a

core or a bridge. For instance, a bridge is more important, if it

connects with other important nodes. Because Table 2 and

Table 3 show that eigenvector centrality has stronger correlation

with degree than ego eigenvector centrality does, eigenvector

centrality could be better according to the correlation rule. But ego

eigenvector centrality is preferred due to the local topology rule,

and once it is selected, all of the three indicators can be computed

without global topology. This property will greatly improve the

adaptability and the efficiency of our method. Thus, it is a difficult

choice between eigenvector centrality and ego eigenvector

centrality and their performance will be further compared in the

experiments. The other candidate density/clustering coefficient is

omitted because it is not positive correlated with degree.

Finally, this paper selects degree, ego betweenness centrality and

(ego) eigenvector centrality as the multiple indicators to assess

different characteristics of a node, including whether a node has

many ties with other nodes, whether it has more control over the

interactions between other nodes, whether it connects with other

important nodes well. To be more clearly, we summarize the

selection process in Table 4 that generally states the topology

feature of an indicator, whether the indicator is selected and the

reason based on the selection rules.

In general, these indicators would be highly adaptable to

various networks. The selection rules and the process is a

guideline, which can be revised for a specific application by

selecting indicators that are very effective for the application, and

can also be extended by adding new indicators as candidates.

The complexity for computing these indicators is analyzed as

follows. The computation complexity of degree is O(M); the

computation complexity of betweenness centrality is O(N3) using

the Floyd algorithm [25]; and the computation complexity of

eigenvector centrality is also O(N3) using the QR algorithm [26]

and the inverse power iteration method [27]. If all of the selected

indicators are computed based on the ego-network, the complexity

can be greatly reduced. When using ego-networks, the average size

of each node’s one-layer ego-network is (d+1) and the size of its

two-layer ego-network is ((d+1)2+1), where d is the average degree

of all of the nodes. Therefore, the computation complexity of ego-

betweenness centrality is reduced to O(N6d3) and the complexity

of eigenvector centrality is reduced to O(N6d263) based on two-

layer ego-networks, while d and d2 are far smaller than N in most

cases.

Evaluation of node importance
This paper decides a node’s importance as the normalized value

sum of the three indicators, and the method is termed as EIMI
(Evaluation of Importance based on Multi-Indicator) method. The

normalized value of the degree, the ego-betweenness centrality

and the eigenvector centrality of vi is denoted CRDi, CEBiand CE i

respectively. Then, the importance WIM i of vi is thus:

WIM i~CRDizCEBizCE i ð1Þ

Obviously, the performance of EIMI can be further improved

by appointing the different weights a, b and c for the three

indicators, respectively. However, automatic optimization of

weights is still an open problem in machine learning, and the

automatic process depends on the prior knowledge that is quite

rare for social networks, while manually appointing appropriate

weights relies on an expert’s experience that is expensive to obtain

and varies with the networks. Taking these factors into consider-

ation, we simplify the method by setting the weights of the three

indicators as equal.

Compared with other methods, such as PageRank, EIMI not

only shows the importance of nodes but also shows how the

importance is constituted by showing the values of these different

indicators. This feature will be helpful to understand the reason

why a node is important when we refer to the sociological means

of these indicators.

Identification of node role
Studies of social network have shown that the importance of a

node alone isn’t enough to identify its role [28].

Thus, this paper proposes the RUMI (Role jUdgment based on
Multi-Indicator) algorithm that selects the core candidates from

the nodes with great degree and the bridge candidates from the

nodes with great ego-betweenness centrality. The role of a

candidate node is finally determined according to the difference

between its indicators relationship with the statistical correlation of

the overall network. If the node shows the more significant

Identifying Node Role in Social Network
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characteristics of connecting non-adjacent nodes together and of

connecting with other important nodes, it is recognized as a core

or a bridge.

RUMI firstly sorts all of the nodes in descending order by

degree, ego-betweenness centrality and (ego) eigenvector centrality

separately. The rank of a node vi is denoted RRDi, REBi and REi

respectively. And the nodes with the same value of an indicator

have the same rank.

Because the selected three indicators have strong correlations

with each other, RRDi, REBi and REi of an ordinary node vi should

be very similar. Thus, the rank differences CCEBi~RRDi{REBi

and CCEi~RRDi{REi of the node vi should be very small.

Therefore, the general correlation of the overall network can be

evaluated by the average rank difference of all of the nodes. The

average rank difference of the network is computed as follows:

CCEB~
1

N

X
i

CCEBi ð2Þ

CCE~
1

N

X
i

CCEi ð3Þ

If CCEBi§CCEB, its means that the rank of ego-betweenness

centrality of vi is higher than the rank of degree; thus, the node not

only connects with many other nodes, but also shows a more

significant feature of information exchange. If CCEi§CCE, its

means that the rank of eigenvector centrality of vi is higher than

the rank of degree; thus, the node shows a more significant feature

of connecting with other important nodes.

Finally, the role of a selected node vi is determined according to

the following rules:

(1) Iff 1ƒRRDiƒRn, CCEBi§CCEB and CCEi§CCE, vi is a

core node.

(2) Iff 1vREBiƒ2Rn, CCEBi§CCEB, CCEi§CCE and vi is not

a core, vi is a bridge node.

where the threshold Rn is adopted to decide the number of

candidate nodes. If the average degree d of a network is too small

or the network is a scale-free network, we propose to set the value

of Rn as the inflection value of the degree distribution curve of the

network. Otherwise, Rn is preferred to be t�dds. Because some cores

also have very high rank of ego-betweenness centrality, the

number of bridge candidates is set larger than that of core.

Therefore, the role identification process of RUMI is: first,

compute the values of multiple indicators of each node; second,

rank the node according to their indicators separately, see the step

10 and step 11 in Table 5; third, compute the rank difference of

each node and the average difference of the network, see the step

12 to step 20 in Table 5; finally, select the candidates of core and

bridge, then identify the role of selected nodes according to the

identification rules, see the step 21 to step 35 in Table 5. The

pseudocode of RUMI is listed in Table 5. RUMI just selects 3Rn

nodes for role determination and its computation complexity is

O(N6logN) [30] and the complexity for computing indicators is

O(N3) that could be reduced to O(N6d263) if the computation of

the indicators only depends on ego-networks.

Figure 2 shows the process of role identification of the double-
star network. Figure 2.(a) is the rank of each node according to

each indicator. It can be seen that v13 and v1 always have the

highest ranking or the second-highest ranking, thus they are

undoubted cores; v7 shows its significance for connecting other

node-pairs, because its rank of ego-betweenness centrality is much

higher than that of degree. Figure 2.(b) shows the result of role

identification, where the red ones represent the detected cores, the

green represent the detected bridge, and the size of a node

represents its importance computed by EIMI. Compared with

Figure 1, RUMI algorithm correctly identifies the roles of the

nodes v1, v7 and v13.

Experiments and Analyses

The paper adopts various kinds of social networks in the

experiments, including: Karate [19], spare time relationship of

members of a Karate club; Football [21], game relationship of US

college football teams in the regular season; Dolphins [22],

frequent associations between bottlenose dolphins in a group;

Lesmis [24], coappearances of characters in the novel ‘‘Les
Miserables’’; Adjnoun [20], juxtapositions of words in the novel

David Copperfied; Polbooks [23], network of books about US

politics sold by the Amazon.com; Dining_table_partners [31],

dining-table partnership in a dormitory at a Training School;

Freemans_1 [32], the relationships of the early researchers of

SNA; literature_1976 [34], the critical attentions among literary

authors and critics; Sawmill [35], communication network

between employees of a sawmill; Grassland [33], Seagrass [36]

and Ythan [33], the predatory interactions among species in a

place of U.K., of winter’s seagrass and of Ythan Estuary parasites

respectively; series World_trade networks, the trade relationship of

four kinds of goods [48,29] between nations; P2p-1 [42], a

sequence of snapshots of the Gnutella peer-to-peer file sharing

network; UCIonline [43], the online message network of the

Table 4. The overview of the indicator selection process.

Topology Feature indicator Selected Reason

Bonding feature degree Yes The range-of-application rule

closeness centrality No The correlation rule and the concise rule

Bridge feature (ego) betweenness centrality Yes The correlation rule, the diversity rule and the local topology rule

(ego) information centrality No The local topology rule, the correlation rule and the concise rule

Four structural hole indicator No The correlation rule and the range-of-application rule

Sub-network feature (ego) eigenvector centrality Yes The correlation rule, the diversity rule and the local topology rule

Density/clustering coefficient No The correlation rule and the concise rule

doi:10.1371/journal.pone.0103733.t004
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students of UC. Irvine; USpowerGrid [44], the power grid in USA;

Zewail [45], the reference relationship between papers. And the

networks of each synthetic ER, BA and WS model are randomly

generated ten times by the open source tool Gephi’s BA Scale free

Model B, Gephi’s ER G(n, p) Model and by Gephi’s WS small

world Model Alpha, respectively. Detail information of these

networks is listed in the supplementary Table S1. Because the

proposed method aims at analyzing an undirected no-weighted

social network, the direction and weight of edges of some networks

is not adopted in the following experiments.

These networks contain different types of social actors

including: different kinds of individuals, such as the karate,

dolphins and USpowergrid network; or an organization, such as

the football network; or a nation, such as the world_trade
networks. Because the available social networks have no sufficient

prior knowledge about the importance and the role of nodes, we

evaluate the results mainly by visualizing the overall network for

detail observation. Because of the difficulties in visualizing a large

network, the adopted networks are mainly of small size. And 4

large networks are adopted to further verify the performance of the

proposed methods, where the 1395 nodes with zero degree of

Zewail network are eliminated. Finally, 18 real social networks and

3 kinds of model networks are adopted in the experiments. These

networks are the same with those of Section 2.

Table 5. The pseudocode of RUMI.

Pseudocode Description

1. Input: network G(V,E);

2. Output: arrays core_nodes[], bridge_nodes[]; Arrays to record the detected cores and bridges

3. Begin

4. Set N = |V|, M = |E|; Number of the nodes and the edges of the network G

5. Set integer Rn~t2M=Ns; The number of the candidate cores and bridges

6. Set double avg_egobet_dif = 0, avg_eigen_dif = 0; The average rank difference CCEB and CCE of the network G

7. Set integer core_num = 0, bridge_num = 0; Number of detected cores and bridges at current stage of RUMI

8. Set array node_indicator[i] [3], node_rank[i] [3]; The value and the rank of three indicators of all nodes

9. Set array temp[N]; Temporary array used in the computing process

10. node_indicator = Calculate_Indicator(G(V,E)); Computing the indicators’ value of all of the nodes

11. node_rank = Get_Rank(node_indicator); Ranking all of the nodes based on the corresponding indicator

12. for each node i M V do

13. temp[i] = node_rank [i] [2]; Recording the rank of ego-betweenness of node vi

14. node_rank[i] [2] = node_rank[i] [1]-node_rank[i] [2]; Computing the rank difference of degree and ego-betweenness of vi

15. node_rank [i] [3] = node_rank [i] [1] - node_rank[i] [3]; Computing the rank difference of degree and eigenvector of vi

16. avg_egobet_dif + = node_rank [i] [2]; Summing up the rank difference CCEB of all nodes

17. avg_eigen_dif + = node_rank [i] [3]; Summing up the rank difference CCE of all nodes

18. end

19. avg_egobet_dif = avg_egobet_dif/N; Computing the average rank difference CCEB of G

20. avg_eigen_dif = avg_eigen_dif/N; Computing the average rank difference CCE of G

21. for each node i M V do

22. if node_rank[i] [1]. = 1 and node_rank[i] [1], = Rn Selecting nodes with great degree as core candidates

23. and node_rank [i] [2] . = avg_egobet_dif Detecting cores from the candidates based on the rank differences

24. and node_rank [i] [3] . = avg_eigen_dif

25. core_nodes[core_num] = i; Recording the detected cores

26. core_num ++;

27. end

28. if temp[i]. = 1 and temp[i], = 2Rn Select nodes with great ego-betweenness as bridge candidates

29. and node_rank [i] [2] . = avg_egobet_dif Detecting bridges from the candidates based on the rank differences

30. and node_rank [i] [3] . = avg_eigen_dif

31. and i !M core_nodes The bridge cannot be a core simultaneously

32. bridge_nodes[bridge_num] = i; Recording the detected bridges

33. bridge_num ++;

34. end

35. end

36. return core_nodes, bridge_nodes;

37. End

doi:10.1371/journal.pone.0103733.t005
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Table 6 is the overview of these networks, where the

world_trade of manufactures of metal is stated as the representa-

tion of other trade networks. According to the degree distribution,

the karate, adjnoun, literature_1976, Sawmill, grassland, lesmis,
ythan, polbooks, Zewail, UCIonline and USpowerGrid networks

are similar with a scale-free network; the football and Freeman-1

networks are nearly a full-interconnection network that is similar

with a small-world network; the network dining_table_partner and

world_trade are similar with a ER network; the other networks,

including dolphins, seagrass and p2p-1 show no clear degree

distribution pattern, thus could not be classified.

Evaluation of node importance based on multiple
indicators

First, the performance of the EIMI method based on global

topology (termed global-EIMI) and the EIMI based on ego

network (termed ego-EIMI) is analyzed.

In these networks, the series world_trade networks have the

most complete prior knowledge of node importance that equals

the sum of a nation’s trade value of the good with other countries.

We have also tried to generate a synthetic hierarchy network with

complete prior knowledge. In the hierarchy structure, the

importance of a node is highly related with its hierarchy, but the

topology of around non-leaf nodes is similar. To tackle this

problem, we assume that a high hierarchy node has possibility to

connect with low hierarchy nodes. However, the attempt is not

successful. One major reason may be that the additional

connections obscure the importance differences of nodes. For

instance, it is arguable to tell the differences between a low

hierarchy node with a high hierarchy node, where the former

connects with some much higher hierarchy nodes and the latter

has no additional connections instead of those with its immediate

father and subordinates.

Therefore, we evaluate the performance of global-EIMI and

ego-EIMI based on the series world_trade networks of different

goods, and the glass, tobacco and grain networks have 212, 199

and 214 nodes respectively, with 3837, 2596 and 3993 edges

respectively. Similar with the previous ranking studies [49,50],

Table 7 concentrates on the consistency of the Top 10 results of

ego-EIMI with the prior knowledge. 80%, 70%, 80% and 60% of

its TOP 10 nations of the four different world_trade networks are

consistent with the corresponding prior knowledge. The perfor-

mance of global-EIMI is similar to that of ego-EIMI. It can be

seen that the performance of EIMI is acceptable.

For the other networks that have no or incomplete knowledge

about node’s importance, recent studies usually take the widely-

used method PageRank for comparison [40,41]. The paper

follows this way and takes another typical method HITS [46] for

further comparison. In Figure 3 and Figure 4, x-axis shows the

rank of nodes of PageRank; y-axis shows the importance of a node

computed by global-EIMI, ego-EIMI, HITS and PageRank,

which are separately colored with green, blue, purple and red.

Therefore, the consistency of the curve trends reflects the similarity

of the ranking results of the different methods. Because there are a

large number of nodes visualized in Figure 4, the importance

differences of a small part of the nodes may shelter other details of

the figure. Because high ranking nodes are more important in

practice, Figure 4 shows a top-right small figure that compares the

importance of the TOP 100 nodes of PageRank with that of

global-EIMI, ego-EIMI and HITS. Meanwhile, the bottom-left

big figure shows the two lines corresponding to the lowest

importance value of these TOP 100 nodes, which is computed by

global-EIMI, ego-EIMI respectively. Therefore, if a node’s

importance is higher than the line, the node should be ranked

higher by global-EIMI or ego-EIMI.

It can be seen that ego-EIMI performs quite similar with

PageRank for most networks even without using the global

topology that is required by PageRank. And the ranking results of

PageRank and EIMI are quite different with that of HITS. It is

because that both EIMI and PageRank tend to rank a node with

the greater degree higher [47], while the betweenness centrality

and the eigenvector centrality of the node is highly correlated with

its degree. Therefore, ego-EIMI could be applied as a replacement

of PageRank, especially when no global topology is available or

the total computation time is limited.

Figure 2. The process of role identification of RUMI of the double-star network, where a red node represents a core node and a green
node represents a bridge node.
doi:10.1371/journal.pone.0103733.g002
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Second, we analyze the effectiveness of EIMI by comparing

with the result of other multiple indicators. Figure 5 shows the

ranking results of the series world_trade networks with trade value

as the ground truth, and the adjnoun, karate, ythan and polbooks
networks with the result of PageRank for comparison. Fig-

ure 5.(a)–(d) and Figure 5.(i) – (l) compares the selections of other

centrality indicators, where the blue prismatic represents the result

of the indicators of degree and closeness centrality, the green circle

represents the result of degree and information centrality, and the

red star represents the result of ego-EIMI. Figure 5.(e) – (h) and

Figure 5.(m) – (p) compares the selections of some weak or negative

correlated indicators, where the blue prismatic represents the

result of degree, hierarchy and eigenvector centrality, the green

circle represents the result of degree, density/clustering coefficient

and efficiency, and the red star represents the result of ego-EIMI.

The results of other networks are similar to Figure 5.

It can be seen that the indicator selection of EIMI performs

quite well and stable. For instance, although the selection of degree

and information centrality is a little better than EIMI, its

performance for the world_trade of tobacco and polbooks network

is unacceptable. And, the multiple indicators with weak or

negative correlation would greatly reduce the performance.

Third, we show the difficulties in deciding appropriate weight a,

b and c for the three indicators. The most appropriate weights of

a, b and c computed by the Generalized Linear Regression

method for the world_trade of manufactures of metal, are 0.14,

0.72 and 20.03, those of glass network are 0.30, 0.89 and 20.13,

those of tobacco network are 0.42, 0.39 and 20.16, and those of

grain network are 20.20, 0.72 and 0.16. Thus, it is still a hard job

to find a robust method that decides each indicator’s weight

automatically, particularly in the case that no prior knowledge is

available.

Node role identification
Finally, we analyze the effectiveness of the RUMI method in

determining the role of nodes. Table 6 shows the number of cores

and bridges identified by RUMI based on global topology (termed

global-RUMI) and based on ego network (termed ego-RUMI).

For instance, the number of cores of the karate are ‘‘4/4(4)’’,

which means that global-RUMI identified 4 cores, so does ego-
RUMI, and the results have 4 cores in common. It can be seen

that the result of ego-RUMI is remarkably consistent with that of

global-RUMI. Because the t�dds of the Zewail network is too small,

its value of Rn is set to be the inflection value of its degree

distribution curve, which is 4. The value of Rn of the other

networks is equal to t�dds.
Figure 6 visualizes the role identification results of global-

RUMI of 13 real networks and BA, ER model networks, where a

red node represents a core node, a green node represents a bridge

node and the size of a node corresponds to its importance decided

by global-EIMI. The result of WS networks is similar with that of

ER networks.

As we can see from Figure 6, RUMI has detected the core

nodes and the bridge nodes quite well, especially for the BA type

networks. Nearly all of the detected cores and all of the bridges

take the significant position in the networks. Detail analysis is as

follows: (1) for the karate, polbooks, dolphin and lesmis networks

that have the clear two-community structure, the detected cores

locate in the heart of each community and the different

communities are connected through the bridge area that includes

all of the detected bridges. (2) For the adjnoun, Dining-table-
partners, literature-1976, Sawmill and ythan networks that have no

obvious community structure, RUMI detects only one heart area

that contains nearly all of the cores and the detected bridges
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connect the heart area with the outskirt area of the network. (3)

For the Freeman-1, seagrass, football, WS and ER networks,

RUMI detects the cores aggregating together and doesn’t find any

bridge. This result is complied with the feature of a highly

connected network. (4) For the grassland network with multiple

centers, RUMI detects the most significant centers and a bridge

locating at the critical connecting position; for the world_trade
networks, the detected cores aggregating together with a few

bridges located around them; for the BA network with the tree

structure, RUMI not only detects the node roles, but also discovers

the hierarchy of cores or bridges if the importance of nodes

decided by EIMI is taken into consideration.

Although it is very difficult to visualize a large network for detail

observation, Table 6 shows that RUMI has successfully distin-

guished a few interesting nodes for further analysis. It is more

satisfying that the results of ego-RUMI and global-RUMI are the

same.

The experiments show that the proposed method is more

suitable to analyze the BA type networks. As for the ER and the

WS type networks, it identifies about 20% nodes as results, which

Figure 3. Comparison of the ranking result of EIMI with that of PageRank and HITS for 15 small networks. The importance of a node
computed by global-EIMI, ego-EIMI, HITS and PageRank is separately colored with green, blue, purple and red.
doi:10.1371/journal.pone.0103733.g003

Figure 4. Comparison of the ranking result of EIMI with that of PageRank and HITS for 4 large networks. The importance of a node
computed by global-EIMI, ego-EIMI, HITS and PageRank is separately colored with green, blue, purple and red. The top-right small figure compares the
importance of the TOP 100 nodes of PageRank with that of other methods. the straight lines in the bottom-left big figure shows the lowest
importance value of these TOP 100 nodes, which is computed by global-EIMI, ego-EIMI respectively.
doi:10.1371/journal.pone.0103733.g004
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may be too many. The reason lies in that according to the basic

idea of the method, if a few nodes do not comply with the

statistical relationship of the overall network and most of the nodes

do, the proposed method would make more sense. A scale-free

network has some very high degree nodes that unlikely exist in an

ER or a WS network. Previous researches referred a scale-free

type network as a degree heterogeneous network. Because of the

strong correlations between degree with ego-betweenness central-

ity and eigenvector centrality, these topologies selected by the

paper are also heterogeneous in this kind of networks.

We find other cases that our method is not so good. Some local

cores or local bridges that locate at the sparse parts of a network

are not detected, such as the grassland network, although most of

the global ones are detected. In this case, we propose to regard a

sparse part as a new network for further analyses, if the part is

interesting and critical.

The performance of other combinations of multiple indicators

with strong correlations are also evaluated, including degree+ego-

betweenness centrality+clossness centrality, degree+ego-between-

ness centrality+information centrality and degree+ego-between-

ness centrality+effective size. However, these combinations could

not identify node roles effectively. For instance, no core or bridge

is detected by these multiple indicator combinations for the Karate
network.

We also compare our method with the functional cartography

method, another role detection method proposed by ref. [38].

Figure 7 visualizes the detection result of the functional cartogra-

phy. Because community detection is a prerequisite of the

functional cartography, the performance of the functional

cartography is highly sensitive to the community quality. Thus,

we select three networks that have very clear community structure,

including the karate, polbooks and dolphin networks. And we

manually adjust the two communities of these networks discovered

by FN [39] to ensure the high-performance of the functional

cartography. According to the functional cartography, in general,

a node locates at the R3 and R4 zone is a bridge, while a node

locates at the R5, R6 and R7 zone is a core. In Figure 7, the color

of a node corresponding to its role detected by RUMI. It can be

seen that RUMI is better than the method of ref. [38]. A possible

explanation may be that the functional cartography aims at

analyzing metabolic networks whose topology feature is quite

different from that of social networks.

Summarily, the experimental results show the good perfor-

mance of the proposed method in evaluating the importance and

the role of nodes, especially for the heterogeneous networks.

Moreover, the result based on the global topology of a network is

highly consistent with that based on the ego networks of nodes.

Conclusions

On the basis of correlation analyses of typical indicators, the

paper proposes the methods to evaluate the importance and the

role of nodes based on multiple indicators with strong correlations.

The experimental results show the good performance of the

proposed methods in analyzing the heterogeneous networks. And

the result based on the global topology is highly consistent with

that based on ego networks. Therefore, the proposed method

would be adaptable to the large, time-varying network whose

precise global topology is always absent, such as the Internet and

the social network of FaceBook.

The paper also shows that the performance of the role detection

method may vary with fields. For instance, the sound functional

Figure 5. Performance of EIMI under different indicator selections of the series world_trade networks with trade value as the ground
truth, and the adjnoun, karate, ythan and polbooks networks with the result of PageRank for comparison, where the shape and color
of a node correspond to its importance under different indicator selections.
doi:10.1371/journal.pone.0103733.g005
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Figure 6. Role identification results of 15 networks of global-RUMI, where a red node represents a core node, a green node
represents a bridge node and the size of a node corresponding to its importance decided by EIMI.
doi:10.1371/journal.pone.0103733.g006
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cartography method is not good at analyzing some social

networks. We guess that it is caused by the topology differences

between the networks of different fields. But, what kinds of

differences are there, why these differences exist and how the

differences affect the role detection result, still need to be explored

in the future work. Moreover, it is still an open problem to decide

the appropriate weight of different indicators for role identifica-

tion. The automatically method without any or just a little prior

knowledge is preferred.
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