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Accumulating evidence indicates that heat shock protein 90 (HSP90) plays essential
roles in modulation of phenotypic plasticity in vertebrate development, however, the
roles of HSP90 in modulation of cold tolerance capacity in fish are still unclear. In the
present study, we showed that transient inhibition of embryonic HSP90 function by
a chemical inhibitor or low conductivity stress promoted variation of cold tolerance
capacity in adult zebrafish. Further work showed that embryonic HSP90 inhibition
enhanced cold tolerance in adult zebrafish could be transmitted to their offspring.
RNA-seq data showed that embryonic HSP90 inhibition enhanced cold tolerance
involves variation of gene expression related to proteasome, lysosome, autophagy, and
ribosome. Experiments with zebrafish ZF4 cells showed that two differentially expressed
genes atg9b and psmd12 were up-regulated by radicicol treatment and provided
protective roles for cells under cold stress, indicating that up-regulation of autophagy
and proteasome function contributes to enhanced cold tolerance. The present work
sheds a light on the roles of HSP90 in regulation of phenotypic plasticity associated with
thermal adaptation in fish.

Keywords: Hsp90, zebrafish, cold tolerance, embryonic, Hsp90 inhibitor

INTRODUCTION

Heat shock proteins (HSPs) are a family of stress proteins that are expressed in prokaryote and
eukaryote cells and tissues both constitutively and in response to biotic and abiotic stressors, acting
as molecular chaperones that protect the cell against denatured proteins (Terasawa et al., 2005).
HSPs are organized by molecular mass: for example HSP90 (85–90 kDa), HSP70 (68–73 kDa)
and low-molecular-mass proteins (16–47 kDa) (Terasawa et al., 2005). It is well accepted that
HSP90 helps correct folding of nascent proteins, refolding of misfolded proteins, and removal of
incorrigibly misfolded proteins. HSP90 is required for the maturation, stability, degradation of over
400 client proteins, which are involved in multiple cellular functions including signal transduction,
DNA replication, and biosynthesis (Taipale et al., 2010; Samant et al., 2012).

Heat shock proteins are thought to play a role in long-term adaptation to extended
periods of environmental stress (Zabinsky et al., 2019), HSPs increase after the initial
exposure to stress and protect tissues from structural damage during subsequent exposures
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(Hoekstra et al., 1998; Lei et al., 2009; Li and Mak, 2009).
In addition to their immediate action after stress exposure,
compromised HSP90 activity during development results in
generation of novel phenotypes. Impaired HSP90 function in
Drosophila failed to buffer the pre-existing cryptic genetic
variants, and the expression of these genetic variants resulted in
various morphological abnormalities (Rutherford and Lindquist,
1998). Further study showed that impaired HSP90 function
in Drosophila led to the induction of morphological mutants
via transposon activation (Specchia et al., 2010). Although the
relationship between HSP90 inhibition and generation of new
phenotypes has been documented in various species (Yeyati et al.,
2007; Chen et al., 2012; Karras et al., 2017), how HSP90 modulates
the ability of fishes to survive at low temperatures has not been
reported so far.

Zebrafish (Danio rerio) is a major model system widely
used for studies of development, disease and other biological
processes. Zebrafish can survive a wide range of temperature of
16∼38◦C (Engeszer et al., 2007), making itself an ideal model
for study of thermal adaptation and acclimation. Study of cold
acclimation or response in zebrafish has revealed characteristic
cold adaptive variation of transcriptome and methylome (Long
et al., 2012, 2013; Han et al., 2016), suggesting the existence of
variable cold adaptive phenotypes.

In the present study, zebrafish embryos were subjected
to a transient treatment with a HSP90 chemical inhibitor
radicicol, and increased variation of cold tolerance capacity
of adult zebrafish was observed. Further work showed that
HSP90 inhibition enhanced cold tolerance in adult zebrafish
could be transmitted to the next generation. RNA-seq data
showed that HSP90 inhibition enhanced cold tolerance involved
variation of transcriptome related to proteasome, lysosome,
autophagy, and ribosome. Among the differentially expressed
genes, up-regulation of atg9b and psmd12 by radicicol was
shown to protect zebrafish ZF4 cells under acute cold stress.
Low conductivity condition also perturbed HSP90 function in
zebrafish embryos and resulted in enhanced variation of cold
tolerance capacity in adult zebrafish. Our data indicated that
interference of HSP90 function during development by chemical
inhibitor or environmental stress promotes variation of cold
tolerance in zebrafish.

MATERIALS AND METHODS

Zebrafish Maintenance and Treatment
The experimental protocol was approved by the Animal Ethics
committee of Shanghai Ocean University and abides by the
Guidelines on Ethical Treatment of Experimental Animals
established by the Ministry of Science and Technology, China.
Zebrafish were maintained and staged according to standard
methods (Kimmel et al., 1995). The wild-type (AB) zebrafish was
used for all experiments. Breeding fish were maintained at 28◦C
in a circulating water system on a 14-h light/10-h dark cycle.
Embryos were collected by natural spawning and staged.

For treatment, about 100 embryos collected from breeding
pairs were incubated in system water at 28◦C, and each spawning

was split into two groups. A half of embryos were treated, while
the other half was kept as control. Treatment with 5 µM radicicol
(553400, Sigma, dissolved in DMSO at 5 mM) was initiated at
50% epiboly and continued to 48 hpf, followed by the removal of
the drug using three rinses, the whole process was carried in the
dark because the light sensitivity of radicicol. Control group were
treated with identical doses of DMSO. Each experiment had three
biological replicates.

For cold treatment, 3-month-old zebrafish from radicicol
and control group were used. To avoid variability between
experiments, each group have equal zebrafish about 25∼30
tails in fish tank with 10 L of system water, which was
separated with fine meshed Fishnet in the middle. Then the
two groups were subjected to a stepwise cooling process at a
rate of ∼1◦C/h to 18◦C by strict temperature control in a low
temperature incubator (LY-36VL, Percival Scientific). The fishes
were maintained at 18◦C for 12 h, then subjected to another
stepwise cooling process at a rate of ∼1◦C/h to 8◦C. Each
experiment had three biological replicates. The death was defined
when zebrafish experienced a loss of equilibrium and entered a
coma. The survival time was calculated from the beginning of
cold treatment to the time of death.

Immunoblot and Antibodies
After treatment, fishes or embryos were washed twice with
phosphate-buffered saline (PBS), drained, cut into small pieces,
and 0.5 ml of lysis buffer (20 mM Tris-HCl, pH 7.5, 150 mM
NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM
sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM
Na3VO4 and 1 µg/ml leupeptin) supplemented with protease
inhibitors was added to each 100 mg of tissue. After 5 min on
ice, the samples were sonicated. After centrifugation at 4◦C and
15,000 × g for 10 min, protein aliquots containing 30 µg of
protein were separated on denaturing and reducing Laemmli 12%
polyacrylamide gels and transferred to nitrocellulose membrane.
The membrane was blocked in PBS containing 5% milk powder
and 0.1% Tween 20, and incubated at 4◦C overnight with primary
antibody and for 1 h at 25◦C with horseradish peroxidase-
conjugated secondary antibody. Antibody binding was visualized
using chemiluminescence detection reagent with Amersham
Imager 600. Antibodies: Rabbit anti-HSP90 (ab13495, Abcam);
Mouse anti-β-Actin (A1978, Sigma), HRP-linked goat anti-rabbit
IgG (7074S, Cell Signaling Technology).

Quantitative RT-PCR (qRT-PCR)
Total RNA was isolated using TRlzol reagent (15596-026, Life
Technologies) following standard protocol. One microgram of
total RNA was reverse-transcribed to cDNA using QuantiTect
reverse transcription kit (205311, Qiagen). Gene expression was
measured by quantitative PCR using Roche LightCycler 480
System and LightCycler 480 SYBR Green I Master (04707516001,
Roche). RNA level was normalized to glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) mRNA level. Relative
mRNA level was analyzed by the comparative CT method.
The primers designed to detect the target genes are shown in
Supplementary Table S1.
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Library Construction and
High-Throughput Sequencing
Three zebrafish from radicicol group showing significantly
increased survival times under cold stress and three zebrafish
from control group were selected for RNA-seq, 3 replicates in
each group. Muscle tissue was separated and used as materials for
RNA-seq. Total RNA was extracted using TRlzol reagent (15596-
026, Life Technologies) following the manufacturer’s instructions
and checked for a RIN number to inspect RNA integrity by
an Agilent Bioanalyzer 2100 (Agilent Technologies). Qualified
total RNA was further purified by RNAClean XP Kit (A63987,
Beckman Coulter) and RNase-Free DNase Set (79254, Qiagen).
Total 6 libraries were constructed using VAHTS Total RNA-
seq (H/M/R) Library PrepKit for Illumina (NR603-02, Vazyme).
Libraries were pooled and sequenced using the Illumina HiSeq
machine as 150-bp paired-end sequencing reads.

Bioinformatic Analysis of RNA-seq Data
The raw reads were trimmed and filtered using Seqtk1. Low
quality (Q < 20) bases were trimmed from 3′ ends of
the reads and the trimmed reads were filtered with read
length ≥ 25 bp. Clean RNA-seq reads for each sample
were aligned by HISAT2 (2.0.4) with default setting to the
zebrafish genome assembly using the Ensembl annotation
DanRer10 (Danio_rerio.GRCz10.84.gtf) (Kim et al., 2015).
The number of reads mapped to the genes was counted
by StringTie and normalized by TMM (trimmed mean of
M values) method (Robinson and Oshlack, 2010). We next
calculated fragments per kilobase per million mapped reads
(FPKM) of each gene to indicate gene expression level. Genes
with low read counts (count-per-million < 1, at least in
3 samples) were filtered out before differentially expression
analysis. Fisher’s exact test was then used to identify differentially
expressed genes (DEGs) by edger with a fold change > 2 and
P-value < 0.05(Robinson et al., 2010).

GO and KEGG Pathway Enrichment
Analyses
Database for Annotation, Visualization and Integrated Discovery
(DAVID) v6.8 web tool2 were used to perform GO and KEGG
enrichment analyses with a significance of P < 0.05 (Huang da
et al., 2009; Huang et al., 2009).

Cell Culture and Treatment
ZF4 cell line was purchased from the American Type Culture
Collection (ATCC, Cat No. CRL2050). The cells were grown
at 28◦C, 5% CO2, in Dulbecco’s modified Eagle’s medium/F12
nutrient mix (SH30023.01B, Hyclone, Thermo Scientific)
supplemented with 10% fetal bovine serum (10099141, Gibco,
Life technologies), 1% penicillin-streptomycin-glutamine
solution (SV30082.01, Hyclone, Thermo Scientific).

For cold treatment, ZF4 cells were seeded at 40–50%
confluence and the next day moved into an incubator at 10◦C,

1https://github.com/lh3/seqtk
2https://david.ncifcrf.gov/

5% CO2, in the same medium. For cell viability assay, cells were
prepared into a cell suspension and stained with 0.4% trypan blue
solution (w/v) for 5 min, then counted with a hemocytometer. All
experiments were performed in triplicate.

shRNA Lentivirus Production and Cell
Transduction
DNA oligos for zebrafish atg9b and psmd12 genes
(Supplementary Table S1) were synthesized by Shanghai
Sangon Biotechnology (Shanghai, China). After annealing, the
double-strand DNA was cloned into the shRNA expressing
vector pLKO.1-puro. In all, 3 µg of appropriate packaging
plasmids pCMV-VSVG: pCMV-DR 8.91 (1: 5) and 5 µg of
shRNA expressing vector were co-transfected into 2.5 × 106

HEK-293T cells using PolyFect transfection reagent (301105;
Qiagen). Seventy-two hours later, the media containing lentivirus
particles were collected and centrifuged at 1500 × g for 10 min.
Then the supernatant was collected and used to infect ZF4
cells immediately in the presence of 10 µg/ml hexadimethrine
bromide (a.k.a. polybrene, H9268; Sigma-Aldrich). Forty-eight
hours after infection, cells were collected for analysis.

Motif Enrichment Analysis
We performed motif enrichment analysis to identify the key
transcription factors (TFs) that drive gene expression up-
regulated. The promoter sequences (−1000 bp, +500 bp) of
up-regulated genes were used as input data and uploaded to
online motif analysis tool- CentriMo (Bailey and Machanick,
2012). The significant preference motifs were identified with
default parameter. The motif logo were plotted by R package
motifStack (Ou et al., 2018).

Statistics Analysis
Statistical analysis of survival time variance was performed in
R program using two-sided F test. qRT-PCR statistical analysis
was assessed using two tailed t-test with the GraphPad Prism
5 statistical software package. All data were shown as standard
deviation (SD) of three independent experiments. P-value < 0.05
was regarded to be statistically significant. ∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001.

RESULTS

Radicicol Treatment Inhibits HSP90
Function in Zebrafish Embryos
To compromise HSP90 function during embryonic development
of the zebrafish, a well-characterized and highly specific inhibitor
radicicol was used (Hadden et al., 2006). In our previous
study, 5 µM radicicol treatment showed minor abnormal
developmental traits and death, while 10 µM radicicol led to
obvious developmental abnormalities and embryo death (Luo
et al., 2017). So we chose 5 µM radicicol for further study,
zebrafish embryos were treated with 5 µM radicicol from 50%
epiboly to 48 hpf, then the inhibitor was removed. Inhibition
of HSP90 function was confirmed by significantly increased
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FIGURE 1 | Inhibition of HSP90 function in zebrafish embryos by radicicol.
(A) Zebrafish embryos were treated with 5 µM radicicol (radicicol group) or
DSMO (control group) for indicated times, then the mRNA levels of BAG3 and
HSPB1 were detected using qRT-PCR. (B,C) Zebrafish embryos were treated
with 5 µM radicicol for 24 h, then HSP90 mRNA (B) and protein (C) levels
were determined by qRT-PCR and immunoblot. n = 3, two tailed t-test,
***P < 0.001.

expression of two marker genes bag3, hspb1 (hsp27) for HSP90
inhibition, and HSP90 itself (Figures 1A–C), indicating the
impairment of chaperone activity of HSP90 (Rohner et al., 2013).
The results showed that 5 µM radicicol treatment inhibited
HSP90 function effectively in zebrafish embryos.

Inhibition of Embryonic HSP90 Function
Promotes Variation of Cold Tolerance in
Adult Zebrafish
To investigate the impact of embryonic HSP90 inhibition on
cold tolerance of zebrafish, 3-month-old zebrafish from radicicol
group and control group were exposed to cold stress. Figure 2A
shows the process of cold exposure. Most zebrafish survived
reaching a final temperature of 8◦C except for several zebrafish
from radicicol group (Figure 2B), indicating severely impaired
cold tolerance capacity for these zebrafish, then the survival
time of each zebrafish was recorded at 8◦C. Compared with
control group, we observed both significantly increased and
decreased survival times in zebrafish from radicicol group
(Figure 2B), which results in a statistically significant increase
in the standard deviation (SD) of radicicol group compared
with control group (two-sided F test, P = 0.0006). Meanwhile

a decrease of the median lethal time (LT50) was observed in
zebrafish from radicicol group (Figure 2B), suggesting globally
impaired cold tolerance for radicicol group despite the fact that
some zebrafish showed extended survival times. We observed
no significant correlation between body weight or body length
and survival time for both groups (Figures 2C,D), excluding
the possibility that observed variation of cold tolerance is
attributed to body weight. These data indicated that embryonic
HSP90 inhibition released increased variation of cold tolerance
capacity in zebrafish.

HSP90 Inhibition Enhanced Cold
Tolerance Is Inheritable
Above results showed that embryonic HSP90 inhibition led to
both significantly enhanced and impaired cold tolerance capacity.
To investigate if these new traits are inheritable, we examined
the zebrafish with enhanced cold tolerance from radicicol group
(named as cold tolerant zebrafish, red boxed in Figure 2B), since
these cold tolerant zebrafish were still alive when all zebrafish
in control group died from cold stress (Figure 2B). Then we
obtained F1 zebrafish of these cold tolerant zebrafish, meanwhile
F1 zebrafish by the parental zebrafish from control group were
also obtained. And 3-month-old F1 zebrafish were exposed to
cold stress following the protocol in Figure 2A, and we observed
that F1 zebrafish of cold tolerant parental zebrafish showed
increased survival times accompanied by a significant increase
(79 h vs. 62 h) in the median lethal time (LT50), compared with
F1 zebrafish of control group (Figure 3A). Meanwhile, we also
obtained F1 zebrafish by breeding between those cold tolerant
zebrafish and control group zebrafish, the resulting F1 zebrafish
also showed increased survival times (LT50: 72 h vs. 67 h),
compared with F1 zebrafish of control group (Figure 3B). The
data supported that HSP90 inhibition enhanced cold tolerance
could be transmitted to the next generation.

Variation of Gene Expression Pattern in
Cold Tolerant Zebrafish
Most new traits are, at least partly, the results of altered gene
expression pattern. To investigate the underlying mechanisms
how embryonic HSP90 inhibition caused enhanced cold
tolerance in adult zebrafish, RNA-seq was performed with the
muscle tissues of cold tolerant zebrafish (CT) from radicicol
group (red boxed in Figure 2B) after a one-month recovery from
cold pressure, and the muscle tissues from untreated zebrafish
from control group were used as control, with 3 replicates
in each group. The numbers of raw reads were 157,068,718
and 163,472,400 for cold tolerant and control RNA libraries,
respectively. After trimming low quality bases and filtering reads
with length < 25 bp, we obtained 150,559,696 (control) and
155,605,275 (cold tolerant) high quality clean reads. Compared
with control zebrafish (CON), a significantly varied expression
profile was observed in cold tolerant zebrafish (CT), with 306
up-regulated and 477 down-regulated genes (Figure 4A and
Supplementary Table S2). KEGG pathway analysis showed
affected pathways including proteasome, lysosome, autophagy,
and ribosome (Figure 4B and Supplementary Table S3). Gene
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FIGURE 2 | Impact of embryonic HSP90 inhibition on cold tolerance of zebrafish. (A) Schematic diagram of the cooling time course. The temperature decreased
from 28 to 18◦C at a rate of 1◦C/h, remained at 18◦C for 12 h (overnight), then decreased at a rate of 1◦C/h until reaching a final temperature of 8◦C. (B) Zebrafish
from control and radicicol group were exposed to a temperature of 8◦C according to the protocol in (A), then survival time and the median lethal time (LT50) were
measured. Dotted blue line (bottom) indicates the starting time at 8◦C. Broken orange lines indicate the range of survival time of zebrafish of control group. Red box
indicates zebrafish with increased survival time (cold tolerant zebrafish). (C,D) Body weight and length of fishes with different survival time for both groups.

Ontology analysis showed differentially expressed genes (DEGs)
involved in protein synthesis and degradation, autophagy, and
muscle development (Figure 4C and Supplementary Table S4).
We also performed motif enrichment analysis to identify the
key transcription factors (TFs) that drive gene expression
up-regulated. Among the enriched motifs, we found highly
significant enrichment for Klf1, Klf7 and Egr1 binding sites
(Figure 4D and Supplementary Table S5). It is plausible
that TFs binding to these sites play roles in up-regulation of
genes. These data indicated HSP90 inhibition enhanced cold
tolerance involves functional variation of protein synthesis and
degradation, autophagy, and muscle development, and that
these functional variation may contribute to enhanced cold
tolerance in zebrafish.

Validation and Function Analysis of
Selected Differentially Expressed Genes
Above RNA-seq data showed the gene expression variation
in cold tolerant zebrafish. The RNA-seq data were validated
using qRT-PCR with six selected differentially expressed genes
(Supplementary Figure S1), among which the roles of atg9b
(autophagy-related protein 9b) and psmd12 (proteasome 26S
Subunit, Non-ATPase 12) in cold tolerance were further studied

using zebrafish ZF4 cells. ZF4 cells were infected with lentivirus
expressing shRNA targeting atg9b or psmd12, cultured at 28◦C
for 24 h, and moved to an incubator at 10◦C for cold treatment,
then cell viability under this acute cold stress was examined. As
expected, radicicol treatment could increase the expression of
atg9b (Figure 5A) and psmd12 (Figure 5D) in ZF4 cells, which
is consistent with above RNA-seq data. Lentivirus infection could
down-regulate the expression of atg9b (Figure 5B) and psmd12
(Figure 5E). And atg9b shRNA (Figure 5C) and psmd12 shRNA
(Figure 5F) both decreased the cell viability of ZF4 cells under
cold stress, indicating that HSP90 inhibition up-regulated atg9b
and psmd12 played protective roles in ZF4 cells under cold stress.

Low Conductivity Stress During
Embryonic Development Inhibits HSP90
and Promotes Variation of Cold
Tolerance in Zebrafish
Above results showed that embryonic radicicol treatment led
to increased variation of cold tolerance in zebrafish, however
whether HSP90 plays roles in modulation of cold tolerance
in fish under natural conditions still remains unclear. It has
been reported that low conductivity of surrounding water
can compromised HSP90 function in cavefish (Rohner et al.,
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FIGURE 3 | HSP90 inhibition enhanced cold tolerance is inheritable.
(A) Three-month-old F1 zebrafish of cold tolerant parental fish (Radicicol-F1)
and control F1 zebrafish (control) were exposed to cold pressure as in
Figure 2A, then survival time and the median lethal time (LT50) were
observed. (B) Three-month-old F1 zebrafish by breeding cold tolerant and
control parental fish (Radicicol-con-F1) and control F1 zebrafish (control) were
exposed to cold pressure as in Figure 2A, then survival time and the median
lethal time (LT50) were observed.

2013), here we also investigated the effect of low conductivity
condition on the cold tolerance of zebrafish. Zebrafish embryos
were incubated in de-ionized water (conductivity: 0.067 µs/cm)
during 1–48 hpf, zebrafish embryos incubated in regular water
(conductivity: 400 µs/cm) were used as control, then 3-month-
old zebrafish were subjected to cold pressure as in Figure 2A.
Inhibition of HSP90 was indicated by increased mRNA levels
of bag3 and hspb1 (Figure 6A). Compared with control group,
we also observed increased variation of survival times in the
zebrafish from treatment group, which results in a statistically
significant increase in the standard deviation (SD) (two-sided F
test, P < 0.0001) (Figure 6B). Increased survival times were also
observed in F1-zebrafish from cold tolerant parental zebrafish
of treatment group, and in F1-zebrafish from breeding between

cold tolerant zebrafish and control zebrafish, indicating the
inheritance of HSP90 inhibition enhanced cold tolerance capacity
(Figures 6C,D). Our data here suggested that low conductivity
during embryonic stages interfered with HSP90 function and led
to increased variation of cold tolerance in zebrafish.

DISCUSSION

Increasing evidence indicates that HSP90 plays an essential role
in buffering the expression of cryptic variation, and that HSP90
inhibition induces the expression, inheritance and enrichment
of abnormal phenotypes (Milton et al., 2006; Wong and Houry,
2006). Water temperature is an important factor for survival and
evolution of fishes. Although some researches showed that HSPs
are directly involved in thermal tolerance in fish and other species
(Nakano and Iwama, 2002; Connolly and Hall, 2008; Stetina et al.,
2015; Hassanpour et al., 2016; Stefanovic et al., 2016; Kelly et al.,
2017), how embryonic HSP90 inhibition affects adaptive capacity
to water temperature in zebrafish remains unclear.

As expected, radicicol treatment led to a strong increase
of in the expression of bag3 and hspb1 in zebrafish embryos.
Radicicol can competitively bind to the ADP/ATP binding
pocket of HSP90 and inhibit its ATPase activity, leading to
the inactivation of HSP90 chaperoning activity. Bag3 (BCL-2–
associated athanogene 3) is a HSP70 co-chaperone, and Hspb1
(also called heat shock protein 27) is a member of the heat shock
protein family. It has been observed that the expression of bag3,
hspb1 and HSP90 increases in response to inactivation of HSP90
chaperon activity, which makes bag3 and hspb1 two maker genes
for HSP90 inhibition (Rohner et al., 2013).

In zebrafish from control group, we observed different survival
times under cold stress, which reflects the existing variation of
cold tolerance capacity in zebrafish caused mainly by natural
genetic variation. Compared with control group, we observed
significantly increased and decreased survival times in zebrafish
from radicicol group, indicating that significantly increased and
decreased cold tolerance capacity was released after embryonic
radicicol treatment. The results showed that embryonic radicicol
treatment facilitated the release of increased variation of cold
tolerance capacity in zebrafish. It has been previously reported
that unusually large variation in eye size in larval fish was
observed when A. mexicanus surface fish were raised in the
presence of radicicol (Rohner et al., 2013). These data support
that HSP90 inhibition helps the release of new phenotypes in fish.

In the present work, we also observed enhanced cold tolerance
in the offspring of cold tolerant parental fish from radicicol
group (Figure 3). These findings indicated that embryonic
HSP90 inhibition enhanced cold tolerance is persistent and
inheritable in zebrafish. Considering the factors inhibiting HSP90
(chemical inhibitor and low conductivity stress) were removed at
48 hpf, some persistent and inheritable changes that happened
during embryonic zebrafish must have been maintained in the
adult zebrafish, and then been transmitted to their offspring. It
has been also reported previously that incubation temperature
during embryonic development has persistent effects on thermal
acclimation capacity in zebrafish (Scott and Johnston, 2012),
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FIGURE 4 | GO and KEGG pathway enrichment analyses of DEGs by RNA-seq. The total RNAs from the muscle tissues of three cold tolerant zebrafish from
radicicol group (CT) and three control zebrafish (CON) were subjected to RNA-seq and subsequent analyses. (A) The Volcano plots of DEGs between cold tolerant
(CT) and control (CON) fish. Abscissa represents log2 (fold-change), and ordinate represents –log10. Red dots denote the significantly up-regulated genes. Green
dots denote the significantly down-regulated genes. Gray dots denote the non-differentially expressed genes. (B,C) GO and KEGG pathway enrichment analyses of
up-regulated and down-regulated genes, respectively. Red bars represent up-regulated genes. Green bars represent down-regulated genes. Abscissa represents
fold enrichment. (D) Motif enrichment analysis of up-regulated genes.

indicating a mechanism associated with genetic and epigenetic
regulation. In mammalian cells HSP90 inhibition also causes
durable changes, conferring a selective advantage under stress
(Lawag et al., 2017). Above data indicates that HSP90 inhibition
induces persistent and inheritable phenotypic plasticity via
genetic/epigenetic mechanisms.

Usually genetic/epigenetic changes will lead to changes in
gene expression, so we investigated the transcriptional variation
related to HSP90 inhibition enhanced cold tolerance through
RNA-seq. Analysis of the differentially expressed genes in the cold
tolerant fish showed that ribosome function, protein synthesis,
and muscle development were down-regulated, and that
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FIGURE 5 | Roles of atg9b and psmd12 in cold tolerance in zebrafish cells. (A,D) zebrafish ZF4 cells were treated with 5 µM radicicol for indicated times, then the
mRNA levels of atg9b and psmd12 were examined using qRT-PCR. (B,E) Zebrafish ZF4 cells were infected with shRNA lentivirus targeting atg9b or psmd12 for
24 h, then the mRNA levels of atg9b and psmd12 were examined using qRT-PCR. (C,F) Zebrafish ZF4 cells were infected with shRNA lentivirus targeting atg9b or
psmd12 for 24 h, then the cells were moved to an incubator at 10◦C for 24 h, then cell viability was examined using trypan blue staining. All experiments were
performed in triplicate. n = 3, two tailed t-test, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

autophagy, lysosome, proteasome, and protein ubiquitination
were upregulated. Repression of protein synthesis and enhanced
protein folding and proteasome function have been also reported
in the previous study about the gene expression variation induced
by cold acclimation (Long et al., 2012; Scott and Johnston,
2012). We also noticed some characteristics of HSP90 inhibition
enhanced cold tolerance such as up-regulated autophagy and the
absence of strong variation of mitochondrial redox signaling.

Cell stress including cold stress will interfere with protein
folding, and accumulation of misfolded proteins then overloads
molecular chaperones including HSP90. Misfolded proteins can
also be removed by proteolysis, which is mainly mediated by
the ubiquitin (Ub)-proteasome system (UPS) and the autophagy-
lysosome system (Gregersen and Bross, 2010). Several molecular
chaperones such as the cochaperones CHIP (a cochaperone for
HSP70 and HSP90) and BAG3 play important roles in decision
making when targeting substrates for proteasomal or autophagic
degradation (Ji and Kwon, 2017). Misfolded proteins lead to
the generation of oxidative stress, which in turn induces cell
death via damage of macromolecules such as DNA and protein.
Autophagy plays essential roles in cell survival under various

stress and contributes to fasting enhanced cold resistance in
fish (Lu et al., 2019). Proteasome also plays roles in cells under
stress (Stone, 2019), and proteasome inhibitors induce ROS
production and apoptosis (Paniagua Soriano et al., 2014). The
present study showed that atg9b and psmd12, which were up-
regulated in cold tolerant fish, could play protective roles in
ZF4 cells under cold stress. These data suggest that increased
expression of atg9b or psmd12 contribute to HSP90 inhibition
enhanced cold tolerance, probably through up-regulation of
autophagy and proteasome function (Wang et al., 2017; Du
et al., 2020). And it has been reported that Atg9b up-regulates
autophagy and inhibits apoptosis (Wang et al., 2017), and
that psmd12 encodes the non-ATPase subunit Psmd12 (aka
RPN5) of the 19S regulator of 26S proteasome (Du et al.,
2020). Meanwhile, suppressed protein synthesis also helps reduce
misfolded proteins, ROS production and subsequent changes of
mitochondrial redox signaling. Rpl22l1 (Ribosomal Protein L22
like 1) is a large ribosomal subunit protein and required for
general protein synthesis (Zhang et al., 2017), down-regulation
of Rpl22l1 indicated suppressed ribosomal large subunit assembly
and protein synthesis in cold tolerant zebrafish.
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FIGURE 6 | The impact of embryonic low-conductivity stress on cold tolerance of zebrafish. (A) Zebrafish embryos were incubated in low-conductivity water or
regular embryo water for indicated times, the mRNA levels of BAG3 and HSPB1 were determined by qRT-PCR (n = 3, two tailed t-test, ∗∗∗P < 0.001).
(B) Three-month-old zebrafish were subjected to cold pressure as in Figure 2A, then survival time was measured. (C) Three-month-old F1 zebrafish of cold tolerant
parental fish (low-conductivity-F1) and control F1 zebrafish (control) were exposed to cold pressure as in Figure 2A, then survival time was observed.
(D) Three-month-old F1 zebrafish by breeding cold tolerant and control parental fish (low-conductivity-con-F1) and control F1 zebrafish (control) were exposed to
cold pressure as in Figure 2A, then survival time was observed.

Gene expression is likely to be regulated at the transcriptional
level through programmed interactions between cis-regulatory
elements and trans-factors (e.g., TFs). Here the motif enrichment
analysis of up-regulated genes identified enriched motif binding
sites of TFs, including Klf1, Klf7 and Egr1. Klf1 and Klf7 are
members of Krüppel-like transcription factor family, Klf1 is an
erythroid-enriched transcription factor and a critical regulator of
erythropoiesis (Manwani and Bieker, 2014). It was also reported
that KLF1 regulates genes involved in autophagy, cell cycle and
mitosis (Magor et al., 2015). Klf7 acts as a negative regulator of
adipocyte development and inhibits expression of adiponectin
and insulin (Hsieh et al., 2019), Klf7 overexpression suppresses
hematopoietic stem and progenitor cell function (Schuettpelz
et al., 2012). Egr1 (Early growth response 1) is an immediate
early transcriptional factor which acts as a coordinator of the
complex response to stress, Egr1 controls the expression of a wide
range of genes involved in metabolism, cell proliferation, and
inflammation (Magee and Zhang, 2017). Egr1 also regulates the
neuronal proteasome associated genes, including psmb9, SGK,
and Tap1 (James et al., 2006). The analyses suggest these TFs
may contribute to the regulation of autophagy and proteasome
function in cold tolerant fish.

How HSP90 inhibition related expression variation was
produced, maintained and transmitted remained unclear
in this study. Considering all above phenomena happened
in the absence of constant HSP90 inhibition, some existing
mechanisms including regulation of transposon mobility
(Ryan et al., 2016), buffering the effects of mammalian
endogenous retroviruses (Hummel et al., 2017), and
induction of aneuploidy (Chen et al., 2012) could be
under consideration. Accumulating reports suggest that
epigenetic mechanisms may play roles in this kind of
process, since HSP90 induced phenotypes could be impaired
by sodium butyrate, a chemical inhibitor for histone
deacetylases (HDACs) (Sollars et al., 2003; Lawag et al.,
2017). Some reports also showed interaction between
HSP90 and multiple epigenetic enzymes including KDM4B
(Ipenberg et al., 2013). So it is possible that embryonic
HSP90 inhibition established variation of epigenetic
modifications during embryonic development that resulted
in inheritable gene expression variation in zebrafish.
Further work will focus on global change of epigenetic
modification associated with HSP90 inhibition to elucidate
the underlying mechanism.
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