
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Medical Hypotheses 146 (2021) 110421

Available online 24 November 2020
0306-9877/© 2020 Elsevier Ltd. All rights reserved.

Combating hypoxemia in COVID-19 patients with a natural oxygen carrier, 
HEMO2Life® (M101) 

Elise Lupon a,b, Alexandre G. Lellouch b,c, Franck Zal d, Curtis L. Cetrulo Jr b,e, 
Laurent A. Lantieri c,* 

a Department of Plastic Surgery, University Toulouse III Paul Sabatier, Toulouse, France 
b Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 
United States 
c Department of Plastic Surgery, European George Pompidou Hospital, University of Paris, Paris, France 
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A B S T R A C T   

Background: Infection with SARS-CoV-2 is responsible for the COVID-19 crisis affecting the whole world. This 
virus can provoke acute respiratory distress syndrome (ARDS) leading to overcrowed the intensive care unit 
(ICU). Over the last months, worldwide experience demonstrated that the ARDS in COVID-19 patients are in 
many ways “atypical”. The mortality rate in ventilated patients is high despite the application of the gold 
standard treatment (protective ventilation, curare, prone position, inhaled NO). Several studies suggested that 
the SARS-CoV-2 could interact negatively on red blood cell homeostasis. Furthermore, SarsCov2 creates Reactive 
Oxygen Species (ROS), which are toxic and generate endothelial dysfunction. Hypothesis/objective(s) 
We hypothesis that HEMO2Life® administrated intravenously is safe and could help symptomatically the patient 
condition. It would increase arterial oxygen content despite lung failure and allow better tissue oxygenation 
control. The use of HEMO2Life® is also interesting due to its anti-oxidative effect preventing cytokine storm 
induced by the SARS-CoV-2. Evaluation of the hypothesis: Hemarina is based on the properties of the hemoglobin 
of the Arenicola marina sea-worm (HEMO2Life®). This extracellular hemoglobin has an oxygen capacity 40 
times greater than the hemoglobin of vertebrates. Furthermore, the size of this molecule is 250 times smaller 
than a human red blood cell, allowing it to diffuse in all areas of the microcirculation, without diffusing outside 
the vascular sector. It possesses an antioxidative property du a Superoxide Dismutase Activity. This technology 
has been the subject of numerous publications and HEMO2Life® was found to be well-tolerated and did not 
induce toxicity. It was administered intravenously to hamsters and rats, and showed no acute effect on heart rate 
and blood pressure and did not cause microvascular vasoconstriction. In preclinical in vivo models (mice, rats, 
and dogs), HEMO2Life® has enabled better tissue oxygenation, especially in the brain. This molecule has already 
been used in humans in organ preservation solutions and the patients showed no abnormal clinical signs. 
Consequences of the hypothesis: The expected benefits of HEMO2Life® for COVID-19 patients are improved sur
vival, avoidance of tracheal intubation, shorter oxygen supplementation, and the possibility of treating a larger 
number of patients as molecular respirator without to use an invasive machine.   

Background 
The world has changed, suddenly and unexpectedly because of 

COVID-19 [1] onset. What began as a regional health crisis in late 2019 
had, by June of 2020, mushroomed into a global calamity the likes of 
which had not been seen for a century, touching virtually every aspect of 

modern life and endangering countless lives, along with the entire global 
economy. Globally, as of 6 November 2020, there have 
been 48,534,508 confirmed cases of COVID-19, inclu
ding 1,231,017 deaths [2], reported to the World Health Organization 
(WHO). These numbers continue to grow every day. 
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Initially, the Surviving Sepsis Campaign panel [3] recommended 
“mechanically ventilated patients with COVID-19 should be managed 
similarly to other patients with acute respiratory failure in the Intensive 
Care Unit (ICU).” Gattinotti et al. stated that COVID-19 pneumonia [4], 
despite falling in most of the circumstances under the Berlin definition of 
Acute Respiratory Distress Syndrome (ARDS) [1], is a specific disease, 
whose distinctive features are severe hypoxemia often associated with 
near normal respiratory system compliance [5]. 

Over the last 5 months, worldwide experiences demonstrated that 
the ARDS in COVID-19 patients are in many ways “atypical”. The mor
tality rate in ventilated patients is high [6] despite the applying the gold 
standard treatment (protective ventilation, curare, prone position, 
inhaled Nitric Oxide (NO)). Furthermore, Guiseppe et al., revealed a 
decrease of hemoglobin content in some patients [7]. Indeed, the mean 
hemoglobin difference of the four individual studies reporting contin
uous values of this parameter showed that the hemoglobin value was 
significantly lower in COVID-19 patients with severe disease than in 
those with milder forms, yielding a Weighted Mean Difference (WMD) of 
− 7.1 g/L; 95% CI, − 8.3 to − 5.9 g/L). Several elements suggested that 
the SARS-CoV-2 could interact negatively on red blood cell homeostasis. 
Firstly, direct signs seem to confirm this theory as the modification of O2 
concentration in the bloodstream by using a hyperbaric oxygen therapy 
report a condition improvement in severe COVID-19 patients (“Naval 
Specialty Medical Center Program Team” document uploaded in the 
attachment section). 

Indirect signs also support this interaction as acidosis, high level of 
lactate, anemia, a high level of ferritin [8] in severe patients are corre
lated with a high mortality rate. 

Therefore, an important physiopathology feature is not thoroughly 
taken into account: “the oxygenation component”. We suggest and 
provide to the physicians a new therapeutic tool to help to struggle 
symptomatically the hypoxemia with a Natural Oxygen carrier off-shelf, 
HEMO2Life®, also called M101. 

The hypothesis 

We hypothesize that the intravenous injection of HEMO2Life® in 
cases of acute respiratory failure, attributable to COVID-19, would allow 
an improvement in oxygen transport to the tissues and that this could 
avoid the progression to multiorgan failure in case of persistence or 
worsening of hypoxemia. 

This molecule has been administered on human for transplantation 
as an additive in conservative solution [9], but never directly intrave
nously (IV), this study revealed the safety of this product considered as a 
medical device of class III. However, several published preclinical data 
showed an effective way to transfer oxygen to hypoxia, in particular to 
the brain, in a study published in the journal of Neurotrauma by the 
Naval Medical Research Centers on Trauma brain injury animal model. 
This work was accomplished across a Cooperative Research and 
Development Agreement (CRADA) with the US Navy [10]. The use of 
HEMO2Life® is also interesting due to its anti-oxidative effect prevent
ing cytokine storm induced by the SARS-CoV-2. Indeed, HEMO2Life® 
has a superoxide-dismutase activity that can address this problem and a 
recent Canadian study revealed an anti-IL6 action during lung trans
plantation [11]. 

Evaluation of the hypothesis 

The first reason to use HEMO2Life® is because of its oxygen carrier 
properties with the main hypothesis that it can improve tissue oxygen
ation without modifying ventilation for COVID-19 patients. HEMO2

Life® is composed by an extracellular hemoglobin coming from the 
lugworm Arenicola marina. This extracellular hemoglobin has an oxygen 
capacity 40 times higher than the HbA of vertebrates. Furthermore, the 
size of this molecule is 250 times smaller than a human red blood cell, 
allowing it to diffuse in all areas of the microcirculation, without 

diffusing outside the vascular sector. This product has been the subject 
of numerous publications [12–24]. This worm is farmed in aquaculture 
in a very strict good manufacturer practice conditions under ISO-13485 
regulation. This molecule is composed of 156 globin chains and 42 
linker chains for a molecular weight of 3.6 MDa (Mega Dalton). The 
quaternary structure of this molecule is a hexagonal-bilayer with a 
dimension of 25 nm (face view) and 15 nm (profil view) [13]. Each 
globin chain has a heme group similar to human and the linker chains 
possess an anti-oxidative property due to a Superoxide Dismutase Ac
tivity (SOD) activity-like based on copper and zinc [15]. Thus, 
HEMO2Life® can carry up to 156 molecules of O2. Oxygen is released 
against a gradient in the absence of allosteric effectors, providing the 
environment with just the right amount of O2; is active across a wide 
range of temperature (from 4 ◦C to 37 ◦C) [25,26]. 

We showed that this molecule does not have immunogenic effect, 
neither an allergenic effect. Its oxygen affinity is p50 = 7.5 mm of Hg and 
a cooperativity of 2.5 [14] and it does not need cofactor in order to 
release oxygen, these parameters are similar to the HbA inside the red 
blood cells [12]. 

O2 releasing is just done in a partial oxygen gradient, when po2 is 
below the p50, the oxygen is released passively to the tissues, and 
consumed by cells or tissues, avoiding oxidative damages. Two impor
tant points, the p50 of the myoglobin is 2.6 mm of Hg, so below the p50 of 
this oxygen carrier and even this molecule is high oxygen affinity the p50 
is similar of the hemoglobin A (HbA) inside the red blood cell [15]. 
HEMO2Life® has a red color, it is sterile, is pyrogen-free and frozen at 
− 20◦ C (+/3◦ C). HEMO2Life® is packaged in 1 g vials for a volume of 
20 mL at a concentration of 50 mg/mL. The composition of a 20 mL 
bottle of HEMO2Life® e is 1 g of an active substance (extracellular he
moglobin from Arenicola marina), 203.3 mg of Magnesium chloride, 
105.2 mg of sodium chloride, 100.3 mg of sodium gluconate, 73.5 mg of 
sodium acetate, 7.5 mg of potassium chloride, 7.3 mg of calcium chlo
ride, ≤ 35.2 mg of ascorbic acid, 20 mg of water for injection. The half- 
life is 48–72 h, so the washout period is maximum 4 days. The evalua
tion of the dissociation of HEMO2Life® was carried out in vitro under 
human physiological conditions. HEMO2Life® was incubated at 37◦ C in 
human plasma for 96 h in a controlled CO2 atmosphere (5% CO2/95% 
air ambient) [12]. The structure of the active substance HEMO2Life® 
was followed by high-performance liquid chromatography at 414 nm 
and the area under the curve was calculated [14]. Two independent 
studies have been carried out. HEMO2Life® remained present and 
functional for 96 h with a half-life of 36 h [21,22]. Analysis reveals that 
its dissociation is directly correlated to the formation of proteins not 
containing heme (apoproteins): their molecular weight (<150 kDa) and 
the recovery by human serum albumin (HSA) of hemin (free oxidized 
heme) to form metallic albumin, prevent any toxic side effect related to 
free hemin. The globin chain structure of HEMO2Life® is very similar to 
that of humans. We showed that there was no interaction between 
HEMO2Life® and hemopexin, an important plasma protein in the 
clearance of hemolyzed haemoglobin [12]. In this same article, chela
tion of heme by HSA has also been shown. This molecule being close to 
human hemoglobin, it is metabolized by the liver and the spleen. 
Otherwise, the SARS-CoV-2 is an enveloped positive-sense RNA virus 
replicating in the DNA in the nuclei of the target cells [27]. The DNA 
contain in the nucleus of the red blood cells progenitor’s nucleus is 
therefore probably one of the cells targeted by the virus, and this ex
plains leucoerythroblastic reaction described in patient with COVID-19 
infection [28]. Few studies to date have provided detailed blood usage in 
COVID-19 patients. It has been put forward that hospitalized COVID-19 
patients required fewer blood transfusions than other hospitalized pa
tients [29]. Data from Italy showed that 39% of patients required 
transfusion (median duration of hospitalization of 15 days) for the main 
indication of anemia (non-bleeding), with very few patients requiring 
platelets or plasma [30]. If the hypothesis of an improvement in oxygen 
transport by transfusion has been put forward [31], we did not find in 
our literature review any comparative study specifically looking at the 

E. Lupon et al.                                                                                                                                                                                                                                   



Medical Hypotheses 146 (2021) 110421

3

role of treatment by increasing oxygen transport by blood transfusion in 
COVID-19 patients. Only a case report from the early days of the 
pandemic reports improved in a patient after a blood transfusion [32]. In 
July 2020, a Lancet study [33] stated that there is no data available to 
inform whether patients with SARS-CoV-2 infection, with substantial 
respiratory symptoms and oxygen dependency, might benefit from red 
blood cell transfusion to maintain a hemoglobin concentration above 70 
g/L. Convalescence plasma is a treatment strategy that has been further 
studied. However, the results are disappointing with no reduction in the 
progression of the virus to a severe form [34,35]. 

HEMO2Life® is not contained in a cell nucleus and therefore, it will 
not be a target since the COVID-19 will not recognized this oxygen 
carrier not contained in red blood cells. In the paper of Liu Wenzhong 
et al. [36], it seems that the virus must hang on the red blood cell with 
more affinity of AB blood typing which will be not possible with an 
extracellular hemoglobin. Consequently, this molecule seems to be well 
adapted to deliver oxygen in order to avoid hypoxia responsible of 
dyspnea while avoiding being targeted by virus. Another reason to use 
HEMO2Life® is related to its properties to reduce oxidative stress. 
Indeed, SarsCov2 has an action on Angiotensin Converting Enzyme 
(ACE) receptor [37,38]. By bidding on ACE receptor, the virus inhibits 
the transformation of Angiotensin II to Angiotensin 1,7. This last one is 
fundamental to NADPH oxidase. The system is the overload with e- 
(oxidative) and creates Reactive Oxygen Species (ROS), which are toxic 
and generate endothelial dysfunction. HEMO2Life®, by its SOD prop
erties can reverse this phenomenon by changing O2

◦ to O2 or H2O2. 
HEMO2Life® has also an action on Fe and then can potentially stimulate 
Catalase (see Fig. 1). In the past months, several publications have 
appeared in different countries regarding the characteristics of patients 
who become seriously ill. COVID-19 causes prolonged and progressive 
hypoxia due to anemia, coagulopathy, thrombosis and multi organ 
failure [39]. A retrospective cohort study coming from Wuhan and 
published in the Lancet Journal is very instructive on a clinical panel of 
these patients [6]. Damage to the lungs on radiographic scans may come 
from the release of oxidative iron by heme groups, which overwhelms 
the natural defenses against pulmonary oxidative stress and causes 

bilateral ground glass opacities, high level of ferritin is also found in 
non-survivor patient from COVID-19 1435.3 (728.9–2000) against 
503.2 (264.0–921.5) for the survivor. The goal of this protein is to 
detoxify the free heme in circulation, which could provoke high level of 
inflammation. Indeed, when iron ions are stripped of their hemoglobin, 
intubation for ventilation is futile in treating patients and does not attack 
the root of the disease and free iron could be responsible of cytokine 
storm due to its very high pro-oxidant activity [40]. Patients returning 
for rehospitalization days or weeks after recovery and suffering from 
delayed post-hypoxic leuko-encephalopathy [41] reinforce the notion 
that COVID-19 patients suffer from hypoxia despite the absence of signs 
of respiratory fatigue or exhaustion. This clinical panel is called “happy 
hypoxia” and patients could collapse in rapid way if nothing is done. 

Tissue hypoxia, although it has been rarely evaluated in the litera
ture, could represent an interesting complementary evaluation measure. 
Indeed, a recent study assesses the presence of sublingual microcircu
latory and skin perfusion alterations in COVID-19 pneumonia and reveal 
that COVID-19 patients showed altered tissue perfusion [42]. Hypoxia of 
this component could be further evaluated using subcutaneous probes. 
Furthermore, in another Lancet study 15% of the patients will require 
essential care of critical illness or oxygen [43]. Red blood cells carry 
oxygen from the lungs to all organs and the rest of the body. Red blood 
cells can do this thanks to hemoglobin, a protein made up of four 
“hemes” [44]. Hemes have a special type of iron ion, which is usually 
quite toxic in its free form, enclosed in its center with a porphyrin acting 
as its “container”. In this way, the iron ion can be caged and transported 
safely by hemoglobin but used to bind oxygen when it reaches the lungs. 
When the red blood cells reach the alveoli where all gas exchange oc
curs, this small iron ion switches between the Fe2+ to Fe3+ states and 
binds to oxygen, then leaves to deliver the O2 elsewhere. Once the body 
has gotten out of control, with all the oxygen carriers circulating in a 
vacuum and tons of the toxic form of iron floating in the bloodstream 
[45,46], other defenses are triggered. While the lungs are occupied with 
all of this oxidative stress that they cannot handle, the organs are 
starving for O2 and the liver is trying its best to remove and store iron 
[47]. However, this organ is overwhelmed and starving for oxygen too 

Fig. 1. Pathophysiology of the oxidative 
stress reducing activity of HEMO2Life®. 
ACE: Angiotensin Converting Enzyme; ANG 
1.7: Angiotensin (1–7); AT-II: alveolar Type 
II Epithelial Cell; e-: electron Fe: iron; GSH: 
Reduced glutathione; GSHPX: Glutathione; 
Peroxidase G-S-S-G: Glutathione disulfide; 
SARS-CoV-2: Severe acute respiratory syn
drome coronavirus 2; H2O: water; H 20 2: 
Hydrogen peroxide; NADP: Nicotinamide 
adenine dinucleotide phosphate; NADPH: 
Nicotinamide adenine dinucleotide phos
phate carrying electrons and bonded with a 
hydrogen; SOD: Superoxide dismutase 
activity.   
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and releases an enzyme called alanine aminotransferase (ALT). The 
patient’s immune system does not fight the virus in time before its ox
ygen saturation in the blood drops too low, ventilator or not, the organs 
start to stop. The only way to try to keep them alive is the maximum 
amount of oxygen, and perhaps the best would be with a hyperbaric 
chamber [48], if available, with 100% oxygen at several atmospheres of 
pressure, just to give functional hemoglobin a chance to transport 
enough oxygen to the organs and keep them alive. There is not enough 
hyperbaric chamber and it is currently estimated that more than 1,350 
hospitals in the US offer Hyperbaric Oxygen Therapy (HBOT) services 
and Medicare covers HBOT for more than a dozen conditions [49]. 
Furthermore, HBOT could create oxidative damages since O2 needs to be 
delivered to the patients in a physiological way, not the case with HBOT 
at the opposite of HEMO2Life®. 

Otherwise, HEMO2Life® may be important in addressing the 
microthrombosis phenomena described in CoV-2-SARS infections. In 
fact, skin and lung histological analyses of a report of 5 cases showed a 
complement associated microvascular injury and thrombosis in the 
pathogenesis of severe COVID-19 infection [50] and a retrospective 
study of 183 patients reveals abnormal coagulation results, especially 
markedly elevated D-dimer and fibrin degradation product are common 
in COVID-19 deaths [51]. This micro thrombosis is due to a cascade of 
events causing the destruction of vascular endothelium by iron-derived 
reactive oxygen species [52]. Indeed, as discussed previously, in a 
hypoxemic environment as created by COVID-19, the production of 
reactive oxygen species [53] by the cytotoxic free haem [54] leads to 
endothelial cell oxidative damage [55]. This cytotoxic heam is itself 
released by the red blood cell destruction caused by the virus [56]. The 
very high ferritin levels found in the blood in patients hospitalized with 
COVID-19 reflect this massive release of toxic iron [57]. This micro 
thrombosis phenomenon cause acute respiratory failure and systemic 
coagulopathy, which are critical aspects of the morbidity and mortality 
characterizing infection with the SARS-CoV-21, [58,59]. As HEMO2

Life® is 250 times smaller than red blood cells and extracellular [13], it 
can cross the thrombus generated by the SARS-CoV-2. This hypothesis is 
also supported by the fact that we have shown in a rat model affected 
with traumatic brain injury [10] and therefore highly susceptible to 
intravascular microthrombosis[60] that our oxygen carrier could 
rapidly reduce acute brain hypoxia tissue, by overcoming classic, post- 
traumatic vascular size reduction without inducing vasoconstriction it
self. Indeed, HEMO2Life® does not have a vasoconstriction effect 
compared to with other HBOC of first or second generation developed so 
far [15,19]. Finally, the hypothesis that the COVID-19 could remove the 
heme on β-globin chain and removed its iron has been put forward [36] 
at least on red blood cell progenitors with the nucleus. If this hypothesis 
proves to be correct, the use of HEMO2Life® will find here an additional 
reason for its usefulness in the treatment of COVID-19 hypoxemia. 
However, this potential inactivation of the Hemoglobin by fixation of 
SarsCov2 on hemoglobin has been called into question by a recent study. 
It tends to disprove the plausibility of this last, theoretical hypothesis 
[61]. The biocompatibility of HEMO2Life® has been verified experi
mentally. The preclinical studies were selected according to Interna
tional Organization for Standardization SO 10993 (Biological evaluation 
of medical devices, part 1), using a biological risk assessment method
ology and considering the intended use of the product. The following 
evaluations were performed: cytotoxicity, inflammation by cytokines, 
platelet interaction, the effect on the complement, skin irritation, 
delayed hypersensitization, systemic toxicity, genotoxicity, biodegra
dation in human plasma, immunotoxicity and pyrogenicity. All these 
studies have demonstrated the safety of HEMO2Life®. HEMO2Life® was 
found to be well tolerated and did not induce toxicity. It is non- 
pyrogenic and devoid of mutagenic effects, is not cytotoxic and is not 
irritant [14]. When administered intravenously to hamsters and rats by 
Pr. Intagliatta group in San Diego, a well-known group specialist on 
Hemoxygen-Based Oxygen Carriers (HBOC), HEMO2Life® showed no 
acute effect on heart rate and blood pressure and did not cause 

microvascular vasoconstriction [14]. In another study [12], fluo
rescently labeled HEMO2Life® was administered to mice (60 mg/kg, 
600 mg/kg, 1200 mg/kg) and was found to be safe, the animals showed 
no abnormal clinical signs and a half-life of 2.5 days was found. In these 
preclinical in vivo models, HEMO2Life® has enabled better tissue 
oxygenation, especially in the brain (direct tissue measurements) [10]. 
Extracellular hemoglobin HEMO2Life® was evaluated in humans’ kid
ney transplantation in the OXYOP study (NCT02652520) [9]. This 
study, the first in humans, demonstrated that adding the oxygen trans
porter HEMO2Life® to the kidney transplant preservation solution is 
safe. Although this study was not designed to show the superiority of 
HEMO2Life®, the analysis of the secondary efficacy criteria offers 
significantly less Delayed Graft Function (DFG) and better renal function 
in recipients of kidneys preserved with HEMO2Life®. This study calls for 
the use of HEMO2Life® in organ conservation, and for new in
vestigations assessing the cost-effectiveness and long-term benefit of 
HEMO2Life® (OXYOP2 NCT04181710 study in progress). It also jus
tifies new research lines and the use of HEMO2Life® in diseases linked 
to ischemia–reperfusion injuries and hypoxia HEMO2Life® was used in 
the first face re-transplantation for graft preservation [16]. Some oxygen 
carriers have been the subjects of studies demonstrating their effec
tiveness in the ARDS preclinical model. 

Thus, in 2004, Henderson et al. [62] evaluate whether hemoglobin- 
based oxygen-carrying solution (HBOC)-201 (Biopure) is an effective 
alternative to donor blood for extracorporeal membrane oxygenation 
support in a porcine model of ARDS. HBOC-201 appears to be an 
effective alternative circuit-priming agent for use during extracorporeal 
membrane oxygenation, offering the advantages of rapid availability 
and diminished donor blood cell exposure. In a rodent study conducted 
in 2006 [63] of shock-induced PMN-mediated acute respiratory distress 
syndrome (ARDS), the simulated prehospital administration of an HBOC 
markedly attenuated lung injury. 

However, more recently in 2018, Voelker et al. [64] showed that 
pulmonary vasoconstriction by hemoglobin glutamer-200 combined 
with inhaled nitric oxide did not improve arterial oxygenation in ARDS 
in a rodent model. HEMO2Life® has not yet been the subject of a specific 
preclinical study for this pathology but we can expect superior effi
ciency, as it did not provoke vasoconstriction as demonstrated in com
parison with the HBOC of the first and second generation [15]. Patients 
in profound hypoxemia admitting in intensive care in the context of the 
COVID-19 pandemic could constitute a population likely to benefit from 
the intravenous administration of HEMO2Life®. 

Consequences of the hypothesis 

Given its oxygen carrier property and its oxidative stress reduction 
action, we suggest adding HEMO2Life® (i.e. M101) to the current 
treatment protocols of COVID-19 as it might be effective in tackling 
hypoxia and oxidative stress due to SARS-CoV-2. 

From our previous studies, we evaluate that the intake of 5 g of 
HEMO2Life® for a subject of 70 kg (70 mg/kg) whose blood volume is 
estimated at 5 L represents an increase in arterial O2 content of 1 mL of 
O2 per 100 mL of blood (or 5% of “physiological” oxygen content of 
arterial blood (CaO2) or 7% if Partial pressure of oxygen (PAO2) is at 80 
mmHg). The administration will start with a 10 mg “test dose” to check 
for an anaphylactic reaction. Then, each 20 mL (1 g) vial will be 
administered intravenously using an electric syringe (20 mL in 10 min). 
A tolerance assessment will be performed after administering of each 20 
mL vial, checking for skin rash, bronchospasm, hypotension or sudden 
tachycardia for the next 5 min before proceeding to the next vial. If the 
administration of 70 mg/kg of HEMO2Life® (i.e. 1.4 mL/kg) does not 
significantly improve the tissue oxygenation parameters and if the initial 
dose is well tolerated, we will repeat the administration of 70 mg/kg of 
HEMO2Life® for a total of 140 mg/kg which will correspond to a 10% 
increase in CaO2. As HEMO2Life® has a transport capacity 40 times 
greater than HbA, it could therefore increase the arterial O2 content in a 
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situation where the pulmonary exchanger fails as O2 binding and release 
occur passively in a simple O2 gradient and in the absence of allosteric 
effector. This molecular respirator could improve COVID-19 patient’s 
survival, avoid tracheal intubation and shorter an oxygen supplemen
tation and open the possibility of treating a larger number of patients in 
the event of a lack of respirators. This hypothesis merits clinical trials. 
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