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Antagonistic coevolution between hosts and parasites can have a major impact on host population struc-

tures, and hence on the evolution of social traits. Using stochastic modelling techniques in the context of

bacteria–virus interactions, we investigate the impact of coevolution across a continuum of host–parasite

genetic specificity (specifically, where genotypes have the same infectivity/resistance ranges (matching

alleles, MA) to highly variable ranges (gene-for-gene, GFG)) on population genetic structure, and on

the social behaviour of the host. We find that host cooperation is more likely to be maintained towards

the MA end of the continuum, as the more frequent bottlenecks associated with an MA-like interaction

can prevent defector invasion, and can even allow migrant cooperators to invade populations of defectors.
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1. INTRODUCTION
The maintenance of cooperation is an evolutionary con-

undrum: why invest resources if the benefits of the

investment are returned to other individuals? A major

line of explanation for the persistence of cooperation in

the face of non-investing ‘cheats’ is that the benefits gen-

erated by cooperators return preferentially to cooperative

individuals, as a result of non-random population struc-

ture [1–6]. Here, we extend the study of cooperation by

turning our focus to a ubiquitous driver of population

structuring: parasites.

Parasites shape host populations owing to the dele-

terious effects they have on their hosts [7,8]. Given that

parasites rely on their hosts for resources, changes in the

host population composition will also impact upon parasite

demography and genetic structure [9]. A tight genetic

interaction between hosts and pathogens can lead to on-

going host–parasite coevolution, defined as the reciprocal

evolution of interacting hosts and parasites [10]. The inter-

action is usually antagonistic, and selects for hosts to evolve

resistance and parasites to evolve infectivity. A key conse-

quence of coevolution is the impact on genetic diversity

of host and parasite populations, although this will critically

depend on the type of coevolution dynamics. At one

extreme, coevolution follows an arms race dynamics

(ARD), with directional selection for increasing resistance

and infectivity, purging diversity. At the other is fluctuating

selection dynamics (FSD), where parasite genotypes
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specialize on host genotypes, potentially resulting in the

maintenance of large amounts of host and parasite genetic

diversity in time and space [11–13].

An important determinant of coevolutionary dynamics

is the underlying specificity. The two most common rep-

resentations of specificity are the matching alleles (MA)

model and the gene-for-gene (GFG) model, although

other variants exist, for example [14]. MA models are

based upon a system of self/non-self recognition mol-

ecules where hosts can successfully defend against any

parasite genotype that does not match their own

[15,16]. Typical of many invertebrate immune systems,

MA models assume that one parasite genotype will have

a different subset of susceptible hosts than another para-

site genotype. Infection is therefore determined by both

the host and parasite genotypes, with such tight specifi-

city sometimes leading to FSD [17]. The GFG model,

favoured by plant pathologists, predicts whether infection

is successful based on the interaction between resistance

loci and virulence loci [13,18,19]. GFG models are

often characterized by directional ARD [18,20,21],

which can lead to the evolution of generalist parasites

[22], although if there are costs associated with increased

resistance/infectivity ranges, FSD can also arise [13,21].

As with coevolutionary dynamics themselves, MA and

GFG models can be understood as the two extremes of a

continuum of specificity, and the interactions between

most hosts and parasites are likely to lie somewhere

between the two extremes with some degree of specializ-

ation and some generalization. Agrawal & Lively [13]

investigated the dynamics of hybrid MA–GFG models

via the use of a single parameter which formed a conti-

nuum: MA at one extreme and GFG at the other.

Accurate characterizations of specificity patterns have
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Table 1. Interaction parameters (lysis rates) for the four

host–parasite pairs of the coevolution model (§2b).

Ha HA

Va p(;p1) 0

VA qpg(;p3) qpgþ (1 2 q)p(;p4)

Coevolution and cooperation B. J. Z. Quigley et al. 3743
important consequences for predicting the evolution of

virulence [23,24], patterns in local adaptation [25–27]

and the evolution of recombination [18,28]. Now we

ask: how does genetic specificity shape host–parasite co-

evolution, host population genetic structuring and in

turn, the maintenance of host cooperation?

A recent study on cooperation in a bacterial model system

highlighted that strong selection on the host population

(adaptation to the passaging environment and to an antag-

onistic phage virus) allowed a primarily cooperative host

population to purge low-frequency cheats, presumably

owing to cooperator alleles hitchhiking on beneficial resist-

ance mutations [29]. Using a fully stochastic model of

host–parasite dynamics, we dissect this bacteria–phage

interaction, and extend to a coevolutionary time-scale, span-

ning GFG and MA mechanisms of interaction. We predict

that the MA limit is the most favourable for the maintenance

of cooperation because of increased genetic turnover

allowing repeated purges of rare defector alleles.
2. MATERIAL AND METHODS
We follow a stochastic framework widely used in population

dynamics [30]. Numerical simulations were performed

using an exact method, the Gillespie algorithm [31]. The

analysis takes place within the framework of an ecological

model of the infection of bacteria by lytic phages, using sto-

chastic population dynamics. The parameter values used are

based on biologically realistic values [32].

(a) Simple host–parasite model

To start with, we consider a single type of host (a bacterium)

and its parasite (a virus—in particular, a lytic phage). The

changes in the discrete numbers of bacterial hosts nH and

free-living viruses nV are due to four processes: host birth,

competition among hosts, virus death and lysis of a bacter-

ium by a phage (resulting in the instantaneous death of the

bacterium and the release of y copies of the virus; we

assume that the latent period is negligible). They can be

captured using the following reactions:

H �b! 2H; 2H �c! H ; V �d! �; H þ V �p! yV :

From these microscopic reaction rates, we can derive

equations for the average concentrations of hosts and para-

sites (see electronic supplementary material, S1), H and V,

which follow the deterministic trajectories (in a mean-field

approximation):

dH

dt
¼ bH 1� H

b=c

� �
� pVH

and

dV

dt
¼ pðy� 1ÞVH � dV :

The system is similar to a predator–prey system [33], dif-

fering solely in the interpretation and magnitude of the

quantity y which stands for the burst size and is of order

10–100—while in a predator–prey system the quantity

(y–1) would be termed ecological efficiency and takes a

value less than 1.

(b) Host–parasite coevolution model

The simplest scenario that allows for host–parasite coevolu-

tion is that between two types of host and two types of
Proc. R. Soc. B (2012)
parasite. Using the notation of a single locus and two alleles,

we will call the hosts Ha and HA and allow for mutations

among them, and similarly for the two types of parasite

Va and VA.

Depending on the model of specificity, the infectivity and

susceptibility ranges of host and parasite (i.e. the parameters

of the four different lysis reactions that can in principle take

place) will vary. As in Agrawal & Lively [13], we will use

a single parameter q to translate across the MA–GFG

continuum (MA: q ¼ 0, GFG: q ¼ 1). The parameter p rep-

resents the binding efficiency of a specialist virus (which can

only bind to one host type) and pg (�p) the binding efficiency

of a generalist virus (which can bind to two different host

types). We have chosen the form of these interactions to be

a linear interpolation from MA to GFG, as summarized

in table 1.

When q ¼ 0 (at the MA end of the continuum), there are

two specialist host–parasite pairs: (Va, Ha) and (VA, HA).

When q ¼ 1 (at the GFG end), one virus is a specialist (Va

can only infect Ha) but the other one is a generalist (VA can

infect both Ha and HA), albeit at the cost of a smaller binding

efficiency. From the point of view of the hosts, HA carries a

resistance allele (to Va) and incurs in a cost of resistance in

the form of a death rate z that scales with q. Therefore, the reac-

tions that we must add to the ones considered in the simple

host–parasite model are

Ha  !
mH

HA; Va  !
mV

VA; HA �qz! �

and

VaþHa �p1! yVa; VAþHa �p3! yVA; VAþHA �p4! yVA:

Starting from the stochastic formulation and proceeding

as in the previous simple host–parasite model, we can

derive the following deterministic equations for the evolution

of the average concentrations of hosts and parasites (see elec-

tronic supplementary material, S1):

dHa

dt
¼ bHa 1�Ha þHA

b=c

� �
þ mHðHA �HaÞ

�Hað p1Va þ p3VAÞ;
dHA

dt
¼ bHA 1�Ha þHA

b=c

� �
� qzHA

� mHðHA �HaÞ � p4VAHA;

dVa

dt
¼ p1ðy� 1ÞVaHa þ mV ðVA � VaÞ � dVa

and

dVA

dt
¼ ðy� 1ÞVAð p3Ha þ p4HAÞ

� mV ðVA � VaÞ � dVA:

Note that there is no direct competition between para-

sites, only an indirect one due to sharing common prey

(hosts) when q . 0. The effect of q can be interpreted as a

modification of the structure of the host–parasite network
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Figure 1. Relative fitness of cooperators across different start-
ing frequencies, for increasing cost of cooperation w (see

§3a and the electronic supplementary material, S2). Co-
operators demonstrate positive frequency-dependent
selection. The curve is shifted to the right as the cost of co-
operation increases, i.e. higher initial frequencies of
cooperators are required to maintain cooperation. Parameter

values: b1 ¼ 0.2b0 (except in the w ¼ 0 curve, where
b1¼ 0), q ¼ 0, mV ¼ 0, mcd ¼ mH ¼ 1025 h21, b0 ¼ 1 h21,
K ¼ b0/c ¼ 106 ml21, p ¼ 1026 ml h21, y ¼ 50, d ¼ 0.2 h21,
volume ¼ 1 ml, final time tf ¼ 100 h, statistics over 200
runs per parameter set. Initial conditions: Va ¼ 106 ml21,

Caþ Da ¼ 103 ml21, VA ¼ CA ¼ DA ¼ 0.
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of interactions (see electronic supplementary material, S6).

This coevolution model can in fact be taken to be a minimal

motif within a generic host–parasite food web. The change

from q ¼ 0 (MA) to q ¼ 1 (GFG) corresponds to the

change from a modular to a nested network structure (diag-

onal and lower-triangular interaction matrices, respectively).

For a recent study about the structure of experimental

bacteria–phage networks, see Flores et al. [34].

In our model, there is no clear time-scale separation

between the ecological and the evolutionary dynamics

(between the dynamics on and of the host–parasite network).

Evolutionary dynamics here refers to the mutations allowed

within the definition of the model (not to the evolution of

the strength of the host–parasite links i.e. of q itself—that

is left for future work). The stochastic population dynamics

will take the ecosystem through a series of network confi-

gurations, as nodes are populated and links activated—due

to mutations—or removed—due to extinctions. For an

example of a model of community assembly and for further

references, see Capitán & Cuesta [35].

(c) Cooperation and coevolution model

We introduce a third model by adding a cooperation–

defection dilemma to the coevolution model described in

§2b. Now every host has two traits: the original one (that

determines resistance to parasites) labelled by a and A,

plus a social trait labelled C for cooperators and D for defec-

tors. So we consider four types of host in total: Ca, Da, CA

and DA, as well as the two types of viruses Va and VA.

We capture the social dilemma posed by the interaction

between cooperators and defectors by cooperators paying a

fixed cost (w), while providing benefits to every individual

in the local population, be they a cooperator or a defector.

Specifically, we include an extra birth rate for all hosts, pro-

portional to the fraction of cooperators in the population (see

electronic supplementary material, S1). The reactions we

must add are the cost of cooperation and mutations in the

cooperation–defection trait:

Ca �w! �; CA �w! �; Ca  !
mcd

Da; CA  !
mcd

DA:
3. RESULTS AND DISCUSSION
To analyse the influence of host–parasite coevolution on

the maintenance of host cooperation, we take a step-wise

approach. First, we consider the impact of host evolution

on host genetic structure, in the face of a static environ-

mental challenge (following Morgan et al. [29]). We then

introduce coevolutionary dynamics, without explicit

cooperation and defection, to explore the basic impacts

on host structure of reciprocal evolutionary antagonism.

Finally, we analyse the full model, to track the fate of

cooperation in the context of antagonistic coevolution.

(a) Host evolution only

We begin by simplifying the full model (§2c) by removing

parasite evolution (starting with Va only and setting

mV ¼ 0), in order to mimic the system studied in

Morgan et al. [29]. In agreement with Morgan et al.

[29], we find that strong selection on a non-social trait

(here parasite resistance) generates positive frequency-

dependent selection for cooperation (see figure 1 and

the electronic supplementary material, S2). The simple

heuristic model in Morgan et al. [29] offered an interpret-

ation for this effect: because beneficial non-social
Proc. R. Soc. B (2012)
mutations are more likely to arise in the numerically

dominant cooperator population, the cooperation allele

is likely to hitchhike with these beneficial mutations that

sweep through the population. However, the model paid

for its simplicity with a number of stringent assumptions:

no cost of cooperation, no demographic dynamics, deter-

ministic gene frequency change and no coevolution.

Introducing a cost of cooperation in our explicitly

dynamical and stochastic framework illustrated that, as

the relative cost of cooperation increases, cooperators

are required to be initially present at higher frequencies

in order for cooperation to be maintained (figure 1).

When there is no cost of cooperation, the positive

frequency-dependent effect of strong selection favours

the maintenance of the more common genotype (more

than 50%). As the cost of cooperation is increased, this

‘break-even’ threshold is shifted towards higher frequen-

cies of cooperators, as the intrinsic cheater advantage to

defectors becomes increasingly important. This result

aids the interpretation of Morgan et al.’s experimental

results, where the break-even point ranged from about 90

per cent cooperators (environment and phage adaptation)

to about 98 per cent cooperators (environment adaptation

only). These biases from the purely symmetrical ‘survival

of the commonest’ result (figure 1, w ¼ 0) reflect an increas-

ing cost of cooperation, relative to the presumed benefits of

adaptation to the environmental challenge.

The Morgan et al. [29] model predicted that the fre-

quency-dependent effect highlighted in figure 1 would

break down at low densities (as neither cooperator nor

defector lineages are likely to gain resistance) and also

at high densities (as both are likely to gain resistance,
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again removing the relative advantage to either lineage).

In figure 2, we revisit these predictions, and find in con-

trast that the frequency-dependent effect is robustly

maintained at higher densities. Our explicitly dynamical

and stochastic model allows resistance mutations to be

separated in time, so even if at high densities both lineages

are likely to gain a critical resistance mutation, there is

still a decisive advantage to gaining the resistance muta-

tion first—and this is more likely to be the case in the

dominant (higher frequency) lineage.
(b) Host–parasite coevolution

We now turn our focus to the effects of coevolution on the

host population dynamics, first in the absence of any

social conflict (as described in §1b). Note that the recipro-

cally antagonistic nature of the bacteria–virus interaction

can readily lead to instability, and loss of the pairing in a

spatially unstructured population [36]. In order for the

system to be stable (i.e. for hosts and parasites to coexist,

without global extinctions), a substantial cost of general-

ism must be imposed (see the electronic supplementary

material, S4), both on the resistant host and on the gen-

eralist parasite. A cost of wider viral infectivity range is

expressed in our model in terms of a reduced binding effi-

ciency, consistent with experimental data [37] and a

trade-off mechanism based on antagonistic pleiotropy

[38], i.e. mutations that allow the virus to infect a broader

host range trade off against viral productivity. A cost of

generalized resistance is captured in our model via an

intrinsic per capita cost to the bacterial host, consistent

with experimental data [39–43].
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Following the establishment of a robust coexistence

regime (see the electronic supplementary material,

figure S4), we turn to an analysis of host population

bottlenecks as a function of the specificity of the genetic

interaction between host and parasite. Consistent with

Agrawal & Lively [13], we observe a reduced number of

host population bottlenecks as q is increased—i.e.

moving from MA to GFG (figure 3). Underlying each

bottleneck is in fact an attempt of invasion by the A gen-

otype (originated by a mutation) into the resident a

population. The structure of the host–parasite network

of interactions, fixed by the value of q (see electronic sup-

plementary material, S6), determines the outcome.

Invasion attempts fail repeatedly at the MA end, as the

invading HA genotype causes an explosion in its specialist

opponent VA, which in turn abruptly depletes the HA

population in a negative feedback loop (so we observe

many bottlenecks, as the a/A battle continues).

In contrast, a positive value of q stabilizes the system,

preserving a balanced polymorphism in host resistance

alleles. Indeed, at the GFG end HA manages to successfully

invade once and then coexist with the resident Ha due to the

extra link in the network (electronic supplementary

material, S6, its virus VA is devoting part of its resources

to attack Ha too) and because the costs of generalism

come into play: the binding efficiency of VA to HA is

lower; the intrinsic growth rate of HA is also lower due to

the cost of generalism, paradoxically raising its chances of

a successful invasion. It seems that these costs of generalism

increase the period of the HA–VA host–parasite oscillation,

thus enabling the successful establishment of HA (see

electronic supplementary material, S7).

(c) Coevolution and cooperation

We now study the full model of §2c, where there is a

cooperation–defection dilemma for the hosts, as well as

host–parasite coevolution. We can now ask: what is the
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Figure 4. Probability of defector takeover across the MA–
GFG continuum (MA q ¼ 0, GFG q ¼ 1) in the full coevolu-
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ameter values are pg ¼ 0.01 p, w ¼ 0.2 h21, K ¼ b0/c ¼
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ditions: Va ¼ 106 ml21, Ca ¼ 102 ml21, VA ¼ CA ¼ Da ¼

DA ¼ 0. Cooperation is maintained for longer times under
a MA model of specificity.
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fate of cooperation as we move along the host–parasite speci-

ficity continuum from MA (q¼ 0) to GFG (q¼ 1) limits?

The MA model is associated with a diversification of

both host and parasite genotypes [44] and so at first

sight is the most inimical to the preservation of

cooperation, which is typically favoured by local genetic

homogeneity [45]. However, we find that cooperation

is most robust to cheater invasion in the MAs limit

(figure 4). The probability of defector takeover grows

with q as we move from MA to GFG (figure 4). In

other words, cooperation is maintained for longer periods

if host–parasite specificity is MA-like. This result is

robust across a large region of parameter space (although

system stability may be limited—see §3b).

The non-intuitive association between diversifying MA-

type interactions and the preservation of cooperation can be

understood when it is recognized that the diversifying selec-

tion is not acting on the cooperation locus, but only on the

resistance locus. The result of the continual strong alternat-

ing selection on resistance is a continual cycle of genetic

bottlenecks purging diversity at linked loci, which here

means the cooperation locus. In the MA limit, recurrent

a/A bottlenecks prevent rare defectors from invading—so

cooperation is maintained (any DA defectors that may

have arisen are wiped out, just like the majority of CA, due

to the burst in VA). On the contrary, in the GFG limit, a

single switch from a to A hosts paves the way for subsequent

defector takeover on a static A allele background. Examples

of the corresponding typical time series are shown in the

electronic supplementary material, figure S3.

We show that the genetic structure of host–parasite

interaction influences the outcome of their coevolutionary

dynamics. These dynamics in turn determine the
Proc. R. Soc. B (2012)
structuring of the host population via genetic bottlenecks,

which we find to be more numerous towards the MA end

of the MA–GFG continuum. Population bottlenecks are

known to influence the social behaviour of the host [46],

favouring cooperation.
(d) Spatial structure

The assumption that individuals encounter one another at

random in well-mixed populations is made primarily for

mathematical simplicity and tractability [47,48]. In natural

populations, however, this assumption is misplaced.

Biological populations are largely broken up into subpopu-

lations linked loosely by migration [49,50], known as a

metapopulation. Within a single patch, cheats have a selec-

tive advantage and cooperation inevitably breaks down

[51–53]. However, in the context of a metapopulation,

cooperating demes grow to higher densities than cheating

demes, enabling cooperation to persist across a spatially

structured population [51–53].

In order to interpret our results in a metapopulation

context, we explore how the dynamics within a patch

is altered after a single migration event in a host-

evolution-only scenario (as in §3a). Each combination

of arriving and resident genotype is tested, for different

values of the migrant-to-resident ratio and of the time

of arrival. See the electronic supplementary material, S5

for details and figures. In contrast to the classical invasion

hierarchy between cooperators and defectors, we find that

rare cooperators can successfully invade locally abundant

defectors if they carry the favourable resistance allele.

Of course, the converse also holds, defectors can readily

invade cooperators if they carry an additional resistance

advantage (see the electronic supplementary material,

figure S5). If, however, both are susceptible, resident

cooperators have a high chance of resisting an invasion

(within our observation time window) unless the migrant

defectors are very numerous. Regarding relative timings,

the later the resistant migrants arrive, the higher the

chance that the residents have already evolved a resistant

mutation themselves—which neutralizes the competitive

advantage of the migrants.

A complete study involving repeated migration and

coevolution in a full metapopulation setting is outside

the scope of this article. We have, however, examined

the two key issues, invasion hierarchies and the longevity

of cooperator patches. In figure 4, we demonstrate how

the combination of interaction genetics and coevolution

can define the longevity of cooperator patches, in the

face of defector challenge. Specifically, we find that in

the MA limit, defector invasion is much impaired and

so cooperator patches are able to persist for longer,

increasing the global prevalence of cooperation across a

metapopulation. Expanding our theoretical framework

to incorporate more complex mechanisms of interaction

(e.g. inverse GFG, multi-locus interactions, [14,21]) and

non-random host–parasite interactions will present impor-

tant challenges for future work. Alongside theoretical

development, further experimental tests are vital, and also

offer important applied considerations.
(e) Applied context

Our theoretical analysis has largely been grounded in

the biology of bacteria-phage interactions [29]. This
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interaction has enormous public health interest [54], due

to the clinical importance of bacterial pathogens and the

increasing interest in the use of ‘phage therapy’ as a

novel mechanism of pathogen control [55,56]. Electronic

supplementary material, figure S4 highlights a concern

for phage therapy—the administration of a lethal phage

virus does not always result in the eradication of the

target bacterial population, even in the absence of spatial

structure. For much of the parameter range, the bacterial

population evolves resistance to the phage and continues

to persist, despite the ability of the phage to co-evolve and

chase the bacteria through genotype space.

We go on to show that the nature of this coevolutionary

persistence has great significance for the fate of bacterial

cooperation, defining the ability of cooperators to resist

local replacement by cheats. Bacterial cooperation typi-

cally involves the secretion of shared extracellular

enzymes, toxins and polymers—important virulence fac-

tors when released within a human host [45,57].

Therefore, the coevolutionary interaction with phages

may have an important impact on the virulence of bac-

terial pathogens. In the MA limit, diversifying selection

on bacterial resistance alleles will pose a formidable

barrier to the invasion of cheats from rare, increasing

the resistance of resident wild-type bacteria to recently

proposed mechanisms of pathogen control via the intro-

duction of ‘Trojan Horse’ cheater lineages [58,59].

A recent study has demonstrated that coevolutionary

arms races between bacteria and phage decelerate over

time [43], giving way to fluctuating selection. Moreover,

bacteria-phage coevolution within natural soil commu-

nities follows an FSD [60]. These results suggests that

MA-type dynamics, characteristic of fluctuating selection,

are likely to be important in determining the phenotypic

properties of parasite and host populations. Given the

positive effect on cooperation at the MA extreme, this

highlights the potential of our model to help explain the

maintenance of cooperation in natural populations in a

broader context.
We thank EPSRC grant EP/H032436/1, BBSRC, and the
Wellcome Trust, grant ref WT082273 for funding. A.B. is
supported by the ERC. We also thank two anonymous
reviewers for their helpful and insightful comments.
REFERENCES
1 Frank, S. A. 1998 Foundations of social evolution. Prince-

ton, NJ: Princeton University Press.
2 Rousset, F. 2004 Genetic structure and selection in subdi-

vided populations. Princeton, NJ: Princeton University
Press.

3 Taylor, P., Wild, G. & Gardner, A. 2007 Direct fitness or
inclusive fitness: how shall we model kin selection?
J. Evol. Biol. 20, 301–309. (doi:10.1111/j.1420-9101.
2006.01196.x)

4 Traulsen, A. & Hauert, C. 2010 Stochastic evolutionary
game dynamics. In Reviews of nonlinear dynamics and
complexity (ed. H. G. Schuster), vol. 2, pp. 25–61.
Weinheim, Germany: Wiley-VCH. (doi:10.1002/978352
7628001.ch2)

5 Szabo, G. & Fath, G. 2007 Evolutionary games on
graphs. Phys. Rep. 446, 97–216. (doi:10.1016/j.physrep.
2007.04.004)

6 Nowak, M. A. 2006 Evolutionary dynamics. Cambridge,
MA: Harvard University Press.
Proc. R. Soc. B (2012)
7 Anderson, R. & May, R. 1979 Population biology of
infectious diseases. I. Nature 280, 361–367. (doi:10.
1038/280361a0)

8 Prado, F., Sheih, A., West, J. D. & Kerr, B. 2008 Coevo-
lutionary cycling of host sociality and pathogen virulence
in contact networks. J. Theoret. Biol. 261, 561–569.
(doi:10.1016/j.jtbi.2009.08.022)

9 Lion, S. & Boots, M. 2010 Are parasites ‘prudent’ in

space? Ecol. Lett. 13, 1245–1255. (doi:10.1111/j.1461-
0248.2010.01516.x)

10 Janzen, D. H. 1980 When is it coevolution? Evolution 34,
611–612. (doi:10.2307/2408229)

11 Frank, S. 1993 Specificity versus detectable polymorph-
ism in host–parasite genetics. Proc. R. Soc. Lond. B
254, 191–197. (doi:10.1098/rspb.1993.0145)

12 Gandon, S., Capowiez, Y., Dubois, Y., Michalakis, Y. &
Olivieri, I. 1996 Local adaptation and gene-for-gene coe-

volution in a metapopulation model. Proc. R. Soc. Lond.
B 263, 1003–1009. (doi:10.1098/rspb.1996.0148)

13 Agrawal, A. & Lively, C. 2002 Infection genetics: gene-
for-gene versus matching-alleles models and all points
in between. Evol. Ecol. Res. 4, 79–90.

14 Fenton, A., Antonovics, J. & Brockhurst, M. A. 2009
Inverse gene for gene infection genetics and coevolution-
ary dynamics. Am. Nat. 174, E230–E242. (doi:10.1086/
645087)

15 Hamilton, W. 1980 Sex versus non-sex versus parasite.

Oikos 35, 282–290. (doi:10.2307/3544435)
16 Grosberg, R. & Hart, M. 2000 Mate selection and the

evolution of highly polymorphic self/nonself recognition
genes. Science 289, 2111–2114. (doi:10.1126/science.

289.5487.2111)
17 Salathe, M., Kouyos, R. & Bonhoeffer, S. 2008 The state

of affairs in the kingdom of the red queen. Trends Ecol.
Evol. 23, 439–445. (doi:10.1016/j.tree.2008.04.010)

18 Parker, M. 1994 Pathogens and sex in plants. Evol. Ecol.
8, 560–584. (doi:10.1007/BF01238258)

19 Flor, H. 1956 The complementary genic systems in flax
and flax rust. Adv. Genet. 8, 29–54. (doi:10.1016/
S0065-2660(08)60498-8)

20 Thompson, J. & Burdon, J. 1992 Gene-for-gene coevolu-

tion between plants and parasites. Nature 360, 121–125.
(doi:10.1038/360121a0)

21 Sasaki, A. 2000 Host–parasite coevolution in a multilo-
cus gene-for-gene system. Proc. R. Soc. Lond. B 267,
2183–2188. (doi:10.1098/rspb.2000.1267)

22 Buckling, A. & Rainey, P. B. 2002 Antagonistic coevolution
between a bacterium and a bacteriophage. Proc. R. Soc.
Lond. B 269, 931–936. (doi:10.1098/rspb.2001.1945)

23 Kirchner, J. 2002 Evolutionary implications of host–

pathogen specificity: fitness consequences of pathogen
virulence traits. Evol. Ecol. Res. 4, 27–48.

24 Dybdahl, M. 2003 Parasite local adaptation: red queen
versus suicide king. Trends Ecol. Evol. 18, 523–530.
(doi:10.1016/S0169-5347(03)00223-4)

25 Gandon, S. 2002 Local adaptation and the geometry
of host–parasite coevolution. Ecol. Lett. 5, 246–256.
(doi:10.1046/j.1461-0248.2002.00305.x)

26 Morgan, A. D., Gandon, S. & Buckling, A. 2005 The
effect of migration on local adaptation in a coevolving

host–parasite system. Nature 437, 253–256. (doi:10.
1038/nature03913)

27 Nuismer, S. 2006 Parasite local adaptation in a geo-
graphic mosaic. Evolution 60, 24–30.

28 Otto, S. 2004 Species interactions and the evolution of sex.

Science 304, 1018–1020. (doi:10.1126/science.1094072)
29 Morgan, A. D., Quigley, B. J. Z., Brown, S. P. &

Buckling, A. 2012 Selection on non-social traits limits
the invasion of social cheats. (doi:10.1111/j.1461-0248.
2012.01805.x)

http://dx.doi.org/10.1111/j.1420-9101.2006.01196.x
http://dx.doi.org/10.1111/j.1420-9101.2006.01196.x
http://dx.doi.org/10.1002/9783527628001.ch2
http://dx.doi.org/10.1002/9783527628001.ch2
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1038/280361a0
http://dx.doi.org/10.1038/280361a0
http://dx.doi.org/10.1016/j.jtbi.2009.08.022
http://dx.doi.org/10.1111/j.1461-0248.2010.01516.x
http://dx.doi.org/10.1111/j.1461-0248.2010.01516.x
http://dx.doi.org/10.2307/2408229
http://dx.doi.org/10.1098/rspb.1993.0145
http://dx.doi.org/10.1098/rspb.1996.0148
http://dx.doi.org/10.1086/645087
http://dx.doi.org/10.1086/645087
http://dx.doi.org/10.2307/3544435
http://dx.doi.org/10.1126/science.289.5487.2111
http://dx.doi.org/10.1126/science.289.5487.2111
http://dx.doi.org/10.1016/j.tree.2008.04.010
http://dx.doi.org/10.1007/BF01238258
http://dx.doi.org/10.1016/S0065-2660(08)60498-8
http://dx.doi.org/10.1016/S0065-2660(08)60498-8
http://dx.doi.org/10.1038/360121a0
http://dx.doi.org/10.1098/rspb.2000.1267
http://dx.doi.org/10.1098/rspb.2001.1945
http://dx.doi.org/10.1016/S0169-5347(03)00223-4
http://dx.doi.org/10.1046/j.1461-0248.2002.00305.x
http://dx.doi.org/10.1038/nature03913
http://dx.doi.org/10.1038/nature03913
http://dx.doi.org/10.1126/science.1094072
http://dx.doi.org/10.1111/j.1461-0248.2012.01805.x
http://dx.doi.org/10.1111/j.1461-0248.2012.01805.x


3748 B. J. Z. Quigley et al. Coevolution and cooperation
30 McKane, A. J. & Newman, T. J. 2004 Stochastic models
in population biology and their deterministic analogs.
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 041902.

(doi:10.1103/PhysRevE.70.041902)
31 Gillespie, D. T. 1977 Exact stochastic simulation

of coupled chemical reactions. J. Phys. Chem. 81,
2340–2361. (doi:10.1021/j100540a008)

32 De Paepe, M. & Taddei, F. 2006 Viruses’ life history:

towards a mechanistic basis of a trade-off between survi-
val and reproduction among phages. PLoS Biol. 4, e193.
(doi:10.1371/journal.pbio.0040193)

33 McKane, A. J. & Newman, T. J. 2005 Predator–prey

cycles from resonant amplification of demographic sto-
chasticity. Phys. Rev. Lett. 94, 218102. (doi:10.1103/
PhysRevLett.94.218102)

34 Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. &
Weitz, J. S. 2011 Statistical structure of host–phage inter-

actions. Proc. Natl Acad. Sci. USA 108, E288–E297.
(doi:10.1073/pnas.1101595108)

35 Capitán, J. A. & Cuesta, J. A. 2011 Species assembly in
model ecosystems, I: analysis of the population model
and the invasion dynamics. J. Theor. Biol. 269,

330–343. (doi:10.1016/j.jtbi.2010.09.032)
36 Schrag, S. & Mittler, J. 1996 Host–parasite coexistence:

the role of spatial refuges in stabilizing bacteria-
phage interactions. Am. Nat. 148, 348–377. (doi:10.
1086/285929)

37 Poullain, V., Gandon, S., Brockhurst, M., Buckling, A.,
Hochberg, M. & Bergelson, J. 2008 The evolution
of specificity in evolving and coevolving antagonistic
interactions between a bacteria and its phage. Evolution
62, 1–11.
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