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The Corpus Callosum (CC) is an important structure connecting the two brain hemispheres. As several neurode-
generative diseases are known to alter its shape, it is an interesting structure to assess as biomarker. Yet, current-
ly, the CC-segmentation is often performed manually and is consequently an error prone and time-demanding
procedure. In this paper, we present an accurate and automated method for corpus callosum segmentation
based on T1-weighted MRI images.
After the initial construction of a CC atlas based on healthy controls, a new image is subjected to a mid-sagittal
plane (MSP) detection algorithm and a 3D affine registration in order to initialise the CC within the extracted
MSP. Next, an active shape model is run to extract the CC. We calculated the reliability of most popular CC fea-
tures (area, circularity, corpus callosum index and thickness profile) in healthy controls, Alzheimer's Disease
patients and Multiple Sclerosis patients. Importantly, we also provide inter-scanner reliability estimates.
We obtained an intra-class correlation coefficient (ICC) of over 0.95 for most features and most datasets. The
inter-scanner reliability assessed on the MS patients was remarkably well and ranged from 0.77 to 0.97.
In summary, we have constructed an algorithm that reliably detects the CC in 3D T1 images in a fully automated
way in healthy controls and different neurodegenerative diseases. Although the CC area and the circularity are
themost reliable features (ICC N 0.97); the reliability of the thickness profile (ICC N 0.90; excluding the tip) is suf-
ficient to warrant its inclusion in future clinical studies.
© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The Corpus Callosum (CC) is the most important fibre bundle relay-
ing information between homologous cortical areas. The mid-sagittal
CC Area (CCA) is considered an indicator of the number of small-diam-
eter fibres involved in higher order cognitive functions [Aboitiz, 1992]
and a larger CCA has been hypothesized to reflect improved interhemi-
spheric communication [Luders et al., 2007]. Consequently, several
studies have found a positive correlation between CCA and intelligence
scores [Luders et al., 2007; Luders et al., 2009; Park et al., 2008]. These
findings were further corroborated by a post-mortem study of Albert
Einstein's brain [Men et al., 2014], in which a significant increase in
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width – especially in the splenium – was found when compared to
healthy controls. In contrast to these findings, some studies have also
shown a negative correlation between CCA and intelligence [Ganjavi
et al., 2011].

Alterations to the CC morphometry have been shown to be present
in different (neurodegenerative) pathologies. An increased CC Area
(CCA) was observed in children affected with Autism Spectrum Disor-
der [Wolff et al., 2015] and smaller CCAs were found in Schizophrenia
patients [Bachmann et al., 2003; Rotarska-Jagiela et al., 2008]. Regional
CC atrophy was observed in patients affected by Alzheimer's disease
[Frederiksen et al., 2011; Hallam et al., 2008; Di Paola et al., 2010], in pa-
tients with Huntington's dementia [Di Paola et al., 2012; Rosas et al.,
2010], in a sample of patients with mesial temporal lobe epilepsy
[Schneider et al., 2014] and in patients with bipolar disorder [Sarrazi
et al., 2015].

In Multiple Sclerosis, a neuro-inflammatory disease with a neurode-
generative component, correlations have been established between the
Corpus Callosum Area (CCA) and the Expanded Disability Status Scale
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(assessing physical handicap) and the Symbol Digit Modalities Test
(assessing information processing speed) [Granberg et al., 2015]. In ad-
dition - in the same study - the CCA outperformed whole-brain, lesion,
white and grey matter volume in discriminating between healthy con-
trols (HC) and MS patients. Finally, CC atrophy during the first year of
treatment was found to be the best predictor (comparing to T1 and T2
lesion volumes and, brain parenchymal fraction and atrophy) of disabil-
ity and its increase in a large and long-running (9 years) follow-up
study [Vaneckova et al., 2012].

Due to the increasing interest in analysing the regional influence of
different (neurodegenerative) pathologies on the CC, recent research
has included the corpus callosum thickness profile as an important fea-
ture [Walterfang et al., 2009]; e.g. a recent study found that the regional
thickness could predict the conversion frommild cognitive impairment
to Alzheimer's disease [Lee et al., 2016].

Although most thickness profile generation methods rely on the or-
thogonal projection outward from a midline [Adamson et al., 2011],
overlap between adjacent streamlines may lead to biased results inflat-
ing the thickness in more curved CC. As presented in [Adamson et al.,
2014], the use of a continuous thickness calculation based on an artifi-
cial Laplacian field bypasses this limitation. Furthermore, it provides a
biologically plausible model as the resulting thickness profiles are simi-
lar to the underlying organisation of the connections from the CC
[Adamson et al., 2011; Hofer and Frahm, 2006] and omits the need of
subdividing the CC using different partition schemes [Luders et al.,
2007] (e.g. the Witelson partition [Witelson, 1989]).

Several strategies have been developed to segment the mid-sagittal
plane (MSP) CC from T1-weighted magnetic resonance images. These
strategies can be roughly divided into three categories [Herron et al.,
2012]: a first set of methods is based on whole-brain registration to
one (or multiple) common space(s) [Adamson et al., 2014; Ardekani
et al., 2005; Chaim et al., 2007; Wang et al., 2009]. While the main ad-
vantage of these methods is that the CC does not need to be delineated
in individual images (but only on the template), these methods lack the
flexibility to capture the large inter individual differences in CC shape
and require manual intervention in up to 20% of the cases [Adamson
et al., 2011; Ardekani et al., 2014; Wang et al., 2009]. Furthermore, the
robustness of more advanced deformation-based techniques is not
clear [Herron et al., 2012], especially with respect to neurodegenerative
diseases.

A second strategy relies on pre-defined rules. However, these
methods seem to be vulnerable to segmentation errors (e.g. the fornix
and pericallosal arteries [Herron et al., 2012]) and may not be suitable
to segment the CC in various neurodegenerative diseases.

As we expected that neither deformation-based techniques,
neither rule-based techniques could be reliably applied to the seg-
mentation of the CC in patients affected by neurodegenerative dis-
eases, we developed a method that belongs to the boundary based
methods, that rely on a set of manually delineated CCs that are fed
into an active shape model. As such, the variations observed in the
training set limit the shape variations allowed in test-images.
While the main disadvantage of these boundary-based methods
seems to be the necessity to develop specific training sets for every
(neurodegenerative) population, we aim at assessing to what extent
this disadvantage is justified.

In this paper, we provide accuracy (comparison to manual segmen-
tations), repeatability (subject stayed within the scanner) and repro-
ducibility (patient was repositioned for a new scan) estimates for the
most commonly used CC features (area, circularity, corpus callosum
index [Figueira et al., 2007]) and the thickness profile calculated using
Laplace's equation, both in healthy controls and in two neurodegenera-
tive populations. Our aim is to provide an insight into the reliability of
the different CC features and to assess whether the thickness profile –
which can be easily calculated and provides more detailed information
than the commonly used CC features – can be as reliably extracted as
more robust features like the CC area.
2. Methods

2.1. Datasets

2.1.1. Dataset 1. Healthy controls and Alzheimer's patients from the OASIS
database

The OASIS database consists of 416 subjects aged between 18 and
96 years old. For each subject, 3 or 4 individual T1-weighted MRI
scans obtained in single-scan sessions were included. The scans were
acquired on a 1.5-T Vision scanner (Siemens). All subjects are right-
handed and female. Out of the 416 scanned subjects, 100 have been
clinically diagnosedwith verymild tomild Alzheimer's disease (AD) ac-
cording to the Clinical Dementia Rating [Marcus et al., 2007; Morris et
al., 2001]. Additionally, a reliability dataset of 20non-demented subjects
imaged on a subsequent visit within 90 days of their initial session was
provided (oasis-brains.org). For more information, cf. [Marcus et al.,
2007].

From the OASIS database we applied the algorithm to the 216
healthy controls that were not used for training and 100 patients affect-
ed by very mild to mild Alzheimer's Disease. For these patients, 3 to 4
scans are available. Rather than averaging the different scans to increase
the signal-to-noise ratio, we processed the different scans independent-
ly. This allowed us to assess the repeatability of our algorithm. The 216
healthy controls are referred to as “OASIS_HC”, the 100 AD patients as
“OASIS_AD”.

Furthermore, 20 non-demented subjects had been scanned twice
within 90 days. These patients are denoted as “OASIS_HC_TRT”.

2.1.2. Dataset 2. Multiple sclerosis patients
Ten MS patients participated in a study at University Hospital UZ

Brussel, Brussels, Belgium. The study was approved by the local ethics
committee and all patients signed informed consent forms. MR imaging
wasperformed for each patient twice on 3 3Twhole body scanners from
3 different manufacturers (GE Medical Systems Discovery MR750 MW,
SIEMENS Skyra, Philips Medical Systems Achieva). The patient was
re-positioned between the first and the second scan. The GE scanner
protocol contained, among others, a 3D T1-weighted FSPGR sequence
(TR 7.32 ms, TE: 3.144 ms, FA 12°, 220 × 220 mm2 FOV, 328 sagittal
slices, 0.4297 × 0.4297 × 0.5 mm3 voxel resolution). The SIEMENS
scanner protocol contained a 3D-T1-weighted MPRAGE sequence (TR:
2300 ms, TE: 2.29 ms, FA 8°, 240 × 240 mm2 FOV, 176 sagittal slices,
0.9375 × 0.935 × 0.94 mm3 voxel resolution) and the PHILIPS scanner
protocol contained a 3D T1-weighted FPSR sequence (TR 4.936 ms, FA
8°, 230 × 230 mm2 FOV, 310 sagittal slices, 0.5324 × 0.5324 × 0.5 mm3

voxel resolution).

2.2. Construction of a CC training atlas

The training set consisted of 100 images from the OASIS dataset for
which the corpora callosaweremanually delineated on their respective
Mid Sagittal Planes (MSPs). Next, a minimum description length algo-
rithm was applied in order to solve the point correspondence problem
(i.e. ensuring maximal correspondence between the n'th point on the
CC boundary among the different images) [Thodberg, 2003]. The sub-
jects used in this step are excluded from the analysis in which repeat-
ability of the different CC features is assessed.

As a CC shape consisted of N3000 edge points, that – in theory –
could all move independently, a principal component analysis on
these shapes was performed to retain 99% of the observed variance in
the constructed atlas (corresponding to 16 principal components). The
shape variations along the first 3 principal components are depicted in
Fig. S1. Once a new image is entered in the pipeline, these 16 principal
components will ensure a regularisation on the possible shapes and
will ensure that the fornix is not included in the segmentation.

This way, we have constructed a training atlas (cf. Fig. 1) containing
the average shape and the principal components of the shape variations

http://oasis-brains.org


Fig. 1. Overview of the segmentation pipeline.
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observed in this sample of healthy controls. Furthermore, it contains the
average pixel intensities (and their principal components) along the
normal over every point on the CC edge. This atlas will serve as the
input when a new image is segmented.

2.3. Mid sagittal plane detection and corpus callosum segmentation

When a test-image is provided, two algorithms should be run before
the actual 2D segmentation algorithm can start. First, the MSP is calcu-
lated through a 3D affine registration to the image mirrored to the cur-
rent MSP. Next, a 3D-registration to a 3D T1 MNI atlas is used to
estimate the initial position of the CC.1 Finally, given the MSP and the
initialisation of the CCwithin this plane, the 2D segmentation algorithm
is run. The pipeline is depicted in Fig. 1.

2.3.1. Mid sagittal plane extraction
The MSP was determined by calculating the transformation of three

non-colinear points during a mirroring operation around the current
MSP, followed by a 3D affine coregistration (NiftyReg, [Ourselin et al.,
2002]) to the original image. The midpoints between the original and
the transformed points determine the MSP. The voxel values of the
MSP were calculated through trilinear interpolation.

2.3.2. Corpus callosum initialisation
The corpus callosum segmentation algorithm was initialised by the

result of an affine coregistration between the subject and standard
MNI-space. The resulting transformation matrix allowed to calculate
the approximate location of the subject's CC. In this cross-sectional de-
sign, this affine transformation allows to transfer and rotate the average
CC (averaged over all subjects used for training) to an initial position (cf.
Fig. 2. A-C Green lines).

2.3.3. Corpus callosum extraction
Next, an active shapemodel [Cootes, 2000] was run according to the

following algorithm: for every point on the edge, intensity values were
sampled along the normal (using linear interpolation) and the optimal
1 In theory, a 2D affine registration between the extractedMSP and theMNIMSPwould
also be sufficient. However, we found the 3D registration procedure to be more robust.
translation for that edge point was calculated by minimizing the sum
of Mahalanobis distances with the eigenvectors obtained in the train-
ing-set at that same point (and saved in the CC atlas). Once this proce-
dure is applied for all points, a whimsical CC emerges (Fig. 2.B. red
points) that is subsequently projected on the 16 principal components
previously found during the training of the atlas. That projection is
used to rebuild the CC shape from a linear combination of the eigenvec-
tors (Fig. 2.C. blue shape). This way, the continuity of the boundary and
the exclusion of the fornix is guaranteed.

As can be seen in Fig. 2.C., the projected (blue) shape sometimes lies
further from the true edge than thewhimsical red dots in Fig. 2.B. There-
fore, the same procedure is repeated until convergence. In order to
speed up convergence, a two-step procedure was applied (in the first
step the imagewas down-sampled to 256 × 256 voxels). More informa-
tion on the method can be found in [Van Ginneken et al., 2002; Kroon,
2012].

2.3.4. Alternative optimisations
As there is a substantial interindividual variance in CC shape and as

the algorithm failed to detect highly curved CC automatically, we were
able to improve the performance by a second initialisation (when the
first initialisation had not reached convergence) in which the initial
shape was the mean CC as obtained from the training images, but elon-
gated along the superior-inferior axis.

2.4. Morphometric feature calculation

2.4.1. Corpus Callosum area (CCA)
The CCA was calculated by applying Green's theorem on the

resulting contour:

Area ¼ ∬ dA ¼ 1
2
l xdy−ydxð Þ

Thismethod has the advantage of fully exploiting the continuous na-
ture of the edges obtained by the active shape model and bypasses the
partial volume effects as it does not require every pixel to be classified
as either CC or not CC. This results into slightly smaller CC areas than
those found when deciding for each voxel individual whether or not it



Fig. 2.After an affine3D registration, an average CC is initialised on to theMSP (A–Green line). For every point on the boundary, the optimal translation is calculated along the local normal
by matching the intensity profile with intensity profiles observed in the training set at that point. This results in the whimsical shape (Fig. 2.B. Red dots). This shape is projected onto the
first N eigenvectors observed in the training data (C. Green line: initial shape, Blue line: result after one iteration), which is used as the starting point of the following cycle. The algorithm
continues until convergence (mean movement of red dots b 0.5 mm) or until the maximum number of iterations is reached. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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is contained in theCC. Obviously, the difference reduceswith decreasing
pixel size.
2.4.2. Circularity (CIRC)
In Alzheimer's disease, it has been suggested that the death of cells in

the greymatter leads toWallerian degeneration,which in turns leads to
a reduced CCA. In [Ardekani et al., 2014], Ardekani et al. argue that CCA
alone may not capture the effect of ventricular dilation and therefore
suggested circularity as an appropriate measure to follow AD patients.
Circularity is defined as 4π CCA

P2
, with P being the perimeter calculated

as the sum of the Cartesian distances between all subsequent points.
CIRC therefore reduces both when the CCA reduces or the perimeter in-
creases. As CIRC (in contrast to CCA) showed the ability to discriminate
between very mild andmild AD patients, Ardekani et al. concluded that
circularity should be included in future studies. In this paper, the perim-
eter is calculated as the sum of squared distances between subsequent
boundary points.
2.4.3. Corpus Callosum Index (CCI)
In order to calculate the CCI, one needs to determine the greatest an-

terior-posterior diameter (cf. Fig. S2, AB′). The 3 line segments under
consideration are those where the AB’ line (or the normal constructed
on themiddle point of AB′) crosses the corpus callosum. As thismeasure
is sometimes used as an easy-to-calculate measure (e.g. [Yaldizli et al.,
2014]), we report its reproducibility and repeatability.
Fig. 3. Evolution of the repeatability (ICC) over the CC thickness profile, calculated in 215
healthy control subjects. The colour indicates the repeatability (scale from 0.75 to 1.00).
The plotted CC is the average CC obtained in the training set (for illustration purposes
only).
2.4.4. Thickness profile generation
The Corpus Callosum Thickness profile generation was performed

using Laplace's equation, based on [Adamson et al., 2011]. First, a scalar
field is calculated between the inferior and superior part of the CC that

needs to be Laplacian (i.e. ∂
2φ
∂x2 þ

∂2φ
∂y2 ¼ 0). The inferior and superior part

can be easily separated by the use of the active shapemodel, that allows
to reliably select equivalent points in different CCs.

Next, the midline is found as the line where the Laplacian field as-
sumes the mean value of the two extremes imposed on the inferior
and posterior edge. Finally, 50 equidistant points are calculated on this
line and streamlines are calculated from thismidline to both the inferior
and posterior edge. Similar to [Adamson et al., 2014], we used the first-
order Euler approximation to the gradient of the Laplacian field in order
to construct the streamlines. The sum of the distances covered by these
streamlines is the thickness at that point. In Fig. 3 we depict 50 equidis-
tant (along the midline) streamlines.
2.5. Accuracy, repeatability and reproducibility

In order to assess the accuracy, repeatability and reproducibility, we
selected a subset of 50 subjects from the OASIS database. After calcula-
tion of the MSP, the CC were manually delineated by two experts. One
expert delineated the same image twice, another expert delineated
two images of the same subject. All images were given a coded name
in order to minimise potential biases. This way we are able to assess
the intra- and interrater variability and the (manual) repeatability.

The accuracy was assessed by calculating the Dice similarity index
between manually delineated and automated segmentations. The Dice
similarity index [Dice, 1945] is defined as the ratio between the number
of voxels where both segmentations agree to the mean number of
voxels labelled by either method.

With respect to the repeatability and reproducibility, we used the
definitions provided by Bartlett and Frost [Bartlett and Frost, 2008]:

- “Repeatability of measurements refers to the variation in repeat mea-
surements made on the same subject under identical conditions”.

- “Reproducibility refers to the variation inmeasurementsmade on a sub-
ject under changing conditions.”

Therefore we make a distinction between scans from the same sub-
ject without (repeatability) and with (reproducibility) repositioning.
The algorithm itself is deterministic. Therefore, different runs on the
same image return the exact same segmentation.



Table 1
Repeatability and reproducibility estimates.

Repeatability Reproducibility

OASIS_HC OASIS_AD OASIS_HC_TRT MS

Philips
3T

Siemens
3T

GE
3T

# failed segm./#
scans

0/432 2/200 0/40 0/17 0/18 0/17

% failed segm. 0.0 1.0 0.0 0.0 0.0 0.0
# Subjects 216 99 20 8 9 8

DICE 0.965 0.945 0.934 0.938 0.954 0.945

Area 0.981 0.980 0.986 0.996 0.996 0.971
Circularity 0.985 0.985 0.978 0.989 0.997 0.981
Corpus Callosum
Index

0.966 0.956 0.923 0.912 0.972 0.961

Thickness profile 0.953 0.949 0.944 0.945 0.964 0.867
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Throughout the paper, we have applied the agreement intra-class
correlation coefficient (ICC, [Koch, 1982]) as the measure to compare
multiple observations of the same quantity.

3. Results

3.1. Comparison to manual segmentations

The accuracy was assessed by calculating the dice coefficient with
manual segmentations for 50 randomly selected subjects from the
OASIS_HC dataset, resulting in a mean dice coefficient of 0.904. The
dice coefficient calculated for the MS dataset was 0.908, for the AD
dataset (calculated on 20 randomly selected patients) 0.913.

The intra- and interrater dice coefficients are 0.959 and 0.909 re-
spectively. The manual repeatability dice coefficient was 0.977.

3.2. Repeatability and reproducibility

The results for the repeatability (subject is not repositioned) and re-
producibility (subject is repositioned) for the different CC features are
summarized in Table 1.

Given the available datasets, repeatability could be assessed in 216
healthy controls (OASIS_HC) and 100 patients affected by very mild to
mild Alzheimer's Disease (OASIS_AD).

Reproducibilitywas assessed on20healthy controls (OASIS_HC_TRT)
for whom at least 2 scanning sessions (separated by a maximum of
Table 2
Normalised and absolute reliability.

Repeatability R

OASIS_HC OASIS_AD O

Normalised difference – median [IQR]
Area 1.40

[0.6–2.7]
1.39
[0.7–2.7]

0
[

Circularity 1.40
[0.6–2.5]

1.55
[0.6–2.7]

1
[

Corpus Callosum Index 1.27
[0.6–3.3]

1.44
[0.6–2.7]

1
[

Thickness profile 2.64
[1.2–4.8]

2.89
[1.4–5.2]

2
[

Absolute difference – median
Area (mm2) 8.06 6.78 5
Circularity (−) 0.003 0.002 0
Corpus Callosum Index (−) 0.004 0.004 0
Thickness profile (mm) 0.14 0.12 0

Median of the normalised (%) and absolute difference for the different features in the different
dian (normalised or absolute) was calculated. Next, those results were averaged over all stream
90 days) were available. Reproducibility with respect to repositioning
and manufacturer was assessed in 10 MS patients, who have been
scanned at least twice on 3 different scanner types.

For two MS patients, one (out of six) T1 images was missing. One
other MS patient was excluded as the size of the black holes effectively
partitioned the CC in separate parts, impeding the convergence of our
contour based segmentation algorithm.

Intra-class correlation coefficients for the different populations and
features. Segm = segmentations. Only subjects with 2 available scans
on which the algorithm converged correctly could be included.

As the ICC of the CC thickness profile did show an important varia-
tion, we provide amore detailed result in Fig. 3 for the 205 healthy con-
trols from the OASIS dataset. Repeatability is highest in the posterior
regions, while the thickness is more difficult to estimate in the CC tip.

For every feature, we assessed the absolute difference between the
two measurements and normalised this difference to the mean of the
two available measurements (cf. Table 2).

3.3. Inter-scanner reproducibility (Re3T – MS)

In Table 3, we list the reproducibility estimates obtained for the dif-
ferent features obtained on different scanners. The inter-scanner repro-
ducibility is highest for CIRC (all N 0.94).

4. Discussion

In this paperwe have shown that an active shapemodel is capable of
accurately segmenting the CC, both in a cohort of healthy controls and in
twopatient cohorts representing two important neurodegenerative dis-
eases (Alzheimer's disease andMultiple Sclerosis). For both diseases, 3D
T1-weighted images are already regularly collected and therefore the
presented procedure may warrant the inclusion of several CC features
in future large-scale studies and even regular clinical reporting. Further-
more, we have shown that the CC thickness profile may be reliably esti-
mated providing more detailed information on callosal atrophy.

The accuracy was assessed by calculating the dice coefficient with
manual segmentations. We obtained dice coefficients of 0.904, 0.908
and 0.913 for a subset of the healthy controls, the AD and MS patients
respectively. The obtained dice coefficients in both the repeatability
and reproducibility datasets outperform the (manual) interrater reli-
ability (0.909) and are very similar to the manual repeatability (0.977)
and the intra-rater reliability (0.959) obtained by manually segmenting
50 randomly selected controls. We obtained a high (mostly N0.97) re-
peatability and reproducibility for all calculated features (CCA, CIRC,
eproducibility

ASIS_HC_TRT MS

Philips 3T Siemens 3T GE 3T

.87
0.2–2.0]

1.11
[0.6–1.9]

0.65
[0.4–2.3]

3.61
[1.7–4.6]

.06
0.6–2.3]

1.31
[0.7–2.5]

0.89
[0.5–1.6]

3.04
[2.6–3.3]

.7
1.6–6.0]

3.06
[1.4–4.8]

1.02
[0.8–4.9]

1.95
[1.4–3.1]

.4
1.1–4.4]

3.32
[1.8–5.0]

2.82
[1.5–5.0 ]

5.68
[3.4–9.1]

.85 6.9 3.6 19.2

.002 0.002 0.001 0.004

.007 0.011 0.004 0.007

.14 0.14 0.12 0.24

datasets. IQR= Inter Quartile Range. For every streamline of the thickness profile, the me-
lines.



Table 3
Inter-scanner reproducibility.

CCA CIRC CCI

Philips 3T Siemens 3T GE 3T Philips 3T Siemens 3T GE 3T Philips 3T Siemens 3T GE 3T

Philips 3T 0.863 0.982 0.944 0.965 0.890 0.927
Siemens 3T 0.831 0.956 0.893

Inter-scanner reproducibility obtained on the dataset of 10 MS patients who have been scanned twice on 3 different scanners.
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CCI, CC thickness profile) as assessed by the ICC. Finally, we showed that
– in a dataset of 9 MS patients scanned at 3 different scanners on the
same day – a high inter-scanner reliability (ICC ≫ 0.8) could be
obtained.

The repeatability and reproducibility results for area and circularity
outperform the inter-rater reliability reported by manual segmenta-
tions in [Tepest et al., 2010] (intra-rater correlation coefficient = 0.99,
inter-rater correlation coefficient = 0.7) and are comparable to the re-
sults reported in [Ballmaier et al., 2008] (inter-rater ICC = 0.97). In
this regard it should be noted that inter-rater reliability in those studies
start from the same MSP and only assess the inter-rater variability due
to themanual segmentation,while the repeatability and reproducibility
reported in this study can only be negatively influenced by small chang-
es in MSP detection, i.e. our procedure is high reliable for both MSP de-
tection and CC segmentation.

An important advantage of our active shape algorithm is the avail-
ability of an easy convergence-parameter (the average step a point on
the edge would like to do during each iteration) allowing us to easily
monitor the algorithm's performance. For this algorithm, we observed
that a mean step of 0.5 mm during the CC iteration scheme
corresponded with an accurate and reliable segmentation. Images on
which the algorithm did not converge, were marked as “failed” and
occur only in very rare cases (cf. Table 1).

As our CC segmentation input parameters do not need to be tuned to
the images' acquisition parameters and as we obtain relatively high
inter-scanner reproducibility estimates, this pipeline enables the
pooling of data in large multicentre studies. The ability of pooling data
over multiple scanner types is an important asset in clinical studies. Al-
though the inter-scanner reproducibility is lower for all calculated fea-
tures as compared to the intra-scanner reproducibility, our results in 8
MS patients (ICC: 0.77–0.97) compare to the ICCs obtained on total
brain, cerebellum, lateral and third ventricle, grey matter and white
matter volume in 6 healthy controls (ICC: 0.21–0.96) [Schnack et al.,
2004] and to the between-site ICC (grey andwhitematter volume, thal-
amus, hippocampus, amygdala and caudate) reported in [Keshavan et
al., 2016]. The difference in dice coefficients (0.91 for Philips, 0.89 for
Siemens and 0.93) is small and may be due the different acquisition
parameters.

As in every study, some limitations should be noted. First, although
we feel that a dataset of 8–9 patients scanned on the same day on
three different scanners constitutes a unique dataset of a comparable
sample size as studies in healthy controls [Keshavan et al., 2016;
Schnack et al., 2004], the number of patients is low and results should
be interpreted with caution. Next, lesions are frequently observed in
CC of MS patients [Evangelou et al., 2000]. Although a possible solution
could be performing an automated lesion filling (cf. [Jain et al., 2015])
before starting the CC segmentation, we prefer to post-process the CC
as (small) hypo-intensities do not influence the algorithm's conver-
gence and can be easily detected in the final image. Importantly, fea-
tures that rely on the full CC like CIRC and CCI cannot be trusted in
those cases.

Furthermore, it has to be noted that our segmentation failed on one
MS patient due to a significant atrophy, partitioning that patient's CC in
different disconnected parts. While this limits the application of any
boundary-based method in a cross-sectional design, we would like to
note that this active shape model is ideally suited for longitudinal fol-
low-up as the outcome of the previous scan can be easily used as the
starting CC shape (instead of the average CC). Therefore, if a previous
scanwould be available, that contour could be used to initialise the con-
vergence of the next scan.
5. Conclusion

In summary, we have constructed an algorithm that reliably detects
the CC in 3D T1-weighted images in a fully automated way in healthy
controls and two important neurodegenerative diseases. Although the
CC area (diceN 0.934, ICC N 0.97) and the circularity are themost reliable
features (ICC N 0.98), the reliability of the thickness profile (ICC N 0.90;
excluding the tip) is sufficient to warrant its inclusion in future clinical
studies. Furthermore, our algorithm can be applied to imaging data
from different scanners enabling multi-centre study designs.
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