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BACKGROUND: Breast-conserving surgery followed by radiotherapy is part of standard treatment for early-stage breast cancer.
Hypoxia is common in cancer and may affect the benefit of radiotherapy. Cells adapt to hypoxic stress largely via the transcriptional
activity of hypoxia-inducible factor (HIF)-1α. Here, we aim to determine whether tumour HIF-1α-positivity and hypoxic gene-
expression signatures associated with the benefit of radiotherapy, and outcome.
METHODS: Tumour HIF-1α-status and expression of hypoxic gene signatures were retrospectively analysed in a clinical trial where
1178 women with primary T1-2N0M0 breast cancer were randomised to receive postoperative radiotherapy or not and followed
15 years for recurrence and 20 years for breast cancer death.
RESULTS: The benefit from radiotherapy was similar in patients with HIF-1α-positive and -negative primary tumours. Both ipsilateral
and any breast cancer recurrence were more frequent in women with HIF-1α-positive primary tumours (hazard ratio, HR0–5 yrs1.9
[1.3–2.9], p= 0.003 and HR0–5 yrs= 2.0 [1.5–2.8], p < 0.0001). Tumour HIF-1α-positivity is also associated with increased breast cancer
death (HR0–10 years 1.9 [1.2–2.9], p= 0.004). Ten of the 11 investigated hypoxic gene signatures correlated positively to HIF-1α-
positivity, and 5 to increased rate/risk of recurrence.
CONCLUSIONS: The benefit of postoperative radiotherapy persisted in patients with hypoxic primary tumours. Patients with
hypoxic primary breast tumours had an increased risk of recurrence and breast cancer death.
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BACKGROUND
Breast cancer is the most common malignancy affecting women.
Today, breast-conserving surgery followed by radiotherapy (RT) to
the affected breast is part of the standard treatment for early-
stage breast cancer. Systemic adjuvant therapy is selected based
on patient and tumour characteristics and aims to target
micrometastatic disease. About 80% of primary breast tumours
express oestrogen receptor (ER) and are eligible for endocrine
treatment [1].
RT after breast-conserving surgery considerably decreases the

risk for ipsilateral breast tumour recurrence (IBTR), and to a minor
extent also distant recurrence, and breast cancer death (BCD)
[2, 3]. However, RT also confers side-effects [4–6], underscoring the
importance of identifying potential patient-groups that do or do
not benefit from RT. A number of factors that influence the
therapeutic effect of RT have been identified in experimental
systems, as well as in clinical materials [7]. The availability or

shortage of oxygen was early identified as a major influencer of
the outcome of RT [8, 9].
Oxygen levels are lower than those required to maintain normal

metabolism and function in tissue, i.e., hypoxia, frequently occur in
tumours, including breast cancer. Hypoxic adaptation at the
cellular level is primarily controlled by the hypoxia-inducible
transcription factors, HIF-1α and HIF-2α. Both are mainly regulated
at the protein level and in response to hypoxia, the HIF alpha-
subunits accumulate and become activated [10–13]. Tumour
hypoxia contributes to tumour progression and therapy resis-
tance, including RT-resistance [14], in direct as well as indirect
ways [9]. Oxygen is required to make radiation-induced DNA-
damage permanent, i.e. the oxygen enhancement effect. The
hypoxic response, conveyed by HIF-induced gene expression,
leads to altered metabolism, increased expression of growth
factors, proliferation, and expression of cytokines [15]. In breast
cancer, HIF-1α protein is a marker of poor prognosis and disease
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progression [16–18]. Upon reoxygenation the half-life of HIF-1α is
in the minute range, creating a need for surrogate markers of
hypoxia, such as more robust proteins induced by hypoxia, e.g.
CAIX or hypoxic gene-expression signatures [19–21].
Here, we primarily aimed to test whether the hypoxia-marker

HIF-1α affects the patient benefit of RT in a large population-based
cohort with long follow-up of patients randomised to receive post-
surgery RT or not after breast-conserving surgery. A second aim
was to investigate whether tumour hypoxia and HIF-1α accumula-
tion are associated with IBTR. Finally, we aimed to study whether
hypoxic gene-expression signatures could complement or even
replace HIF-1α protein detection as a prognostic or predictive
marker.

METHODS
Patients and study design
Patients were from the Swedish breast cancer group trial, SweBCG91-RT,
and study details are found in the previous publications [4, 5, 22–24].
Briefly, breast cancer patients with lymph node-negative (N0), stage I and
IIA tumours were randomised to whole-breast RT (tangential opposed
fields of 4–6 MV photons, 48–54 Gy in 24–27 fractions to the remaining
breast parenchyma) or no RT after breast-conserving surgery from 1991 to
1997. Administration of systemic adjuvant treatment was according to
regional guidelines of the time; 6% of patients had endocrine treatment
only, 1% chemotherapy only, and 1% combined endocrine treatment and
chemotherapy. The median follow-up times for event-free patients were
15.2 years (IBTR), 15.2 years (any breast cancer recurrence), 20.1 years (BCD)
for the indicated endpoint. A flow diagram of the SweBCG91-RT trial is
shown in Fig. 1.

TMA construction
Tumour tissue was collected from formalin-fixed, paraffin-embedded
blocks of the primary tumours from 1004 of the original 1178
randomised patients. The material includes 140 surgically treated IBTRs
from patients with a primary tumour available in the TMA for matching.

TMA construction was in a semi-automated TMA arrayer (Pathology
Devices, Westminster, MD) by extraction of two 1.0-mm cylinders from
representative tissue from each tumour block.

Immunohistochemistry (IHC) and evaluation of markers
IHC staining, evaluation and assessment for ER, progesterone receptor
(PgR), human epidermal growth factor receptor 2 (HER2) and Ki-67 were
previously performed [24]. Tumours with 1% or more positive nuclei were
considered ER- and PgR-positive, respectively. For dividing tumours
between luminal A and B subtypes, a 20% cut-off for PgR was used.
HER2 was scored with IHC as 0, 1+, 2+ or 3+ and with silver in situ
hybridisation and considered positive if 3+ and/or amplified. Ki-67 scoring
was according to guidelines [25], the cut-off was 10% positive cells
resulting in 27% of tumours being Ki-67 high [24]. Histologic grade was
previously evaluated as described by Elston and Ellis [26]. HIF-1α IHC was
performed as previously described [17]. Briefly, IHC was performed on 4
μm sections of formalin-fixed paraffin-embedded sections (Autostainer
Plus, Dako) according to the manufacturer’s protocol. A monoclonal
antibody recognising HIF-1α (BD610959, Becton Dickinson) diluted 1:50
was employed. Two experienced evaluators blinded to patient treatment,
outcome, and tumour characteristics (Kristina Lövgren and Annika Jögi)
independently assessed IHC staining for HIF-1α. Each TMA-core was semi-
quantitatively scored for IHC-staining intensity, 0 (negative), 1 (weak), 2
(moderate) and 3 (intense) and quantitatively scored for proportion
positive cancer cells. Proportion score 0 represented less than 1% positive
cells, 1: 1–10%, 2: 11–50%, and 3: 51–100%. Based on IHC intensity and
proportion of positive cells each tumour sample was grouped as negative
(less than 1% positive cells or 1–9% cells with intensity ≤1, Supplemental
Fig. 1 A), low (1–9% of cells with intensity ≥2 or ≥10% of cells with intensity
1, Supplemental Fig. 1B) or high (≥10% of cells with intensity ≥2,
Supplemental Fig. 1C). In case of discrepant staining between the two
cores from the same tumour, the highest score was used. Cases (13%) with
differing results between the viewers were re-evaluated in consensus. Only
60 tumours (6%) fell into the low-category whereas 227 (23%) fell into the
high-category (Table 1). Due to this skew distribution, the samples of the
two positive categories were merged into one HIF-1α positive group, as
previously described [17]. Although not postulated in the evaluation
criteria, all positive cancer cells had nuclear HIF-1α IHC-signal and very few,

Primary tumours successfully
stained for HIF-1α

n = 509

Matched IBTR successfully stained for HIF-1α
n = 82

Primary tumours with gene expression data
n = 403

Received no radiotherapy
n = 519

Received radiotherapy
n = 485

Patients with available tumour tissue
n = 1004

Patients in SweBCG 91-RT
n = 1178 

Missing evaluable
tumour tissue

n = 174

Primary tumours successfully
stained for HIF-1α

n = 476

Matched IBTR successfully stained for HIF-1α
n= 37

Primary tumours with gene expression data
n = 363

Fig. 1 Study design. Diagram of inclusion and exclusion to the study according to Remark criteria.
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in addition, had cytoplasmic staining, as previously demonstrated [17]. We
recently published positive and negative controls for HIF-1α immunostain-
ing on cell lines and a similar breast cancer TMA-material of patients with
contralateral tumours [17].

Tumour subtyping
The tumours were, as previously reported [24], subtyped according to the
St Gallen International Breast Cancer Conference (2013) Expert Panel [27]
as luminal A-like (ER-positive, PgR-high, HER2-negative, and Ki-67 low),

Table 1. Patient and tumour characteristics in 985 T1-2N0M0 breast cancer patients randomised to postoperative RT or no RT after breast-conserving
surgery, stained for HIF-1α.

Total HIF-1α immunoreactivity p

Negative (%) Low (%) High (%)

985 698 (70.9) 60 (6.1) 227 (23.0)

Age (median= 60)

≤49 192 137 (71.4) 15 (7.8) 40 (20.8) 0.80a

50–59 300 210 (70.0) 18 (6.0) 72 (24.0)

60–69 375 267 (71.2) 22 (5.9) 86 (22.9)

≥70 118 84 (71.2) 5 (4.2) 29 (24.6)

Premenopausal 196 137 (69.9) 17 (8.7) 42 (21.4) 0.26b

Postmenopausal 765 541 (70.7) 43 (5.6) 181 (23.7)

Missing 24 20 0 4

Tumour size (median= 12mm)

Tumour >20mm 841 604 (71.8) 49 (5.8) 188 (22.4) 0.37b

Tumour ≤20mm 138 91 (65.9) 10 (7.3) 37 (26.8)

Missing 6 3 1 2

ER-negative 100 40 (40.0) 8 (8.0) 52 (52.0) <0.0001b

ER-positive 858 642 (74.8) 49 (5.7) 167 (19.5)

Missing 27 16 3 8

PgR-negative 253 154 (60.9) 16 (6.3) 83 (32.8) <0.0001b

PgR-positive 705 528 (74.9) 41 (5.8) 136 (19.3)

Missing 27 16 3 8

HER2-negative 889 645 (72.6) 52 (5.8) 192 (21.6) 0.001c

HER2-positive 64 33 (51.6) 5 (7.8) 26 (40.6)

Missing 32 20 3 9

Ki-67 low 714 550 (77.0) 46 (6.5) 118 (16.5) <0.00012

Ki-67 high 244 132 (54.1) 11 (4.5) 101 (41.4)

Missing 27 16 3 8

Histological grade 1 146 118 (80.8) 9 (6.2) 19 (13.0) <0.0001a

Histological grade 2 567 420 (74.1) 34 (6.0) 113 (19.9)

Histological grade 3 235 136 (57.9) 15 (6.4) 84 (35.7)

Missing 37 24 2 11

St Gallen subgroup <0.0001b

Luminal A 552 431 (78.1) 34 (6.1) 87 (15.8)

Luminal B (HER2−) 257 181 (70.4) 13 (5.1) 63 (24.5)

HER2+ 64 33 (51.6) 5 (7.8) 26 (40.6)

Triple negative 80 33 (41.3) 5 (6.3) 42 (52.5)

Missing 32 20 3 9

No RT 509 349 (68.6) 34 (6.7) 126 (24.7) 0.26b

RT 476 349 (73.3) 26 (5.5) 101 (21.2)

Other treatments 0.11b

Chemotherapy 9 7 (77.8) 0 (0) 2 (22.2)

Endocrine 63 43 (68.3) 6 (9.5) 14 (22.2)

Chemo + endocrine 8 2 (25.0) 1 (12.5) 5 (62.5)

No other treatment 905 646 (71.4) 53 (5.8) 206 (22.8)
aCalculated using linear regression.
bCalculated using chi-squared test.
cCalculated using Fisher’s exact test.
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luminal B-like (ER-positive, PgR-low and/or Ki-67 high, and HER2-negative),
HER2-positive (HER2-positive, any ER or PgR status, any Ki-67 expression),
and triple negative (ER-negative, PgR-negative, HER2-negative, any Ki-67).
The HER2-positive group thus included both luminal and non-luminal
tumours due to group size.

Gene-expression analysis
Gene-expression analysis of this trial material was previously described
[28]. In brief, RNA was extracted from the 922 available paraffin-fixed
patient tumour samples. Patient and tumour characteristics were similar in
the excluded and analysed tumours. RNA was extracted and hybridised
(GeneChip Human Exon 1.0 ST microarray, Thermo Fisher) in a Clinical
Laboratory Improvement Amendments certified laboratory (Decipher
Biosciences). Samples from 766 primary tumours passed the quality
control of RNA, cDNA, and microarray analysis (Gene-expression Omnibus

GSE119295). Single Channel Array Normalisation was used for gene-
expression data normalisation [29].

Scoring of hypoxia-related expression signatures from the
literature
Eleven previously published hypoxia-related gene-expression signatures,
here referred to as the name of the first author of the publication, were
identified from the literature. The signatures Buffa*, Buffa reduced* [30],
Denko [31], Elvidge [32], Hu [33], Mense [34], Sorensen [35], and Winter*
[36] were selected from a review by Harris et al [20]. Signatures marked by
* are related and derived from “Winter”, where in brief, genes co-expressed
with classical hypoxia-driven genes were chosen and tested in clinical
tumour samples, including breast cancer [36]. The signatures from Denko,
Elvidge, Mense, and Sorensen were extracted from in vitro hypoxia (1%
oxygen) treated human cells. The Hu signature comprises 13 genes
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referred to as a VEGF-profile, 8 of the genes having a hypoxia-responsive
element that can bind HIF in their promoters. The Farmer signature was
based on GSEA hypoxia genes in breast cancer cells with apocrine
phenotype, i.e. not based on actual hypoxic exposure [37]. The signature
referred to as “Yang” was the most recently published, and based on
in vitro hypoxic treatment of prostate cancer cell lines and validated in
several publicly available prostate and bladder cancer materials [38]. The
Hallmark of Cancer hypoxia gene signature was included since it has been
widely used in literature. It is based on several sources including the
Winter, Elvidge, Mense gene-expression signatures mentioned above, and
includes genes regulated by the von Hippel–Lindau factor and several
metabolic pathways such as the glycolysis.
Individual hypoxia scores for primary tumours in SweBCG91-RT were

calculated using the singscore package in R [39], or as described by the
authors. Scores were considered as continuous variables or combined into a
binary variable of high or low, with the 4th quartile being defined as high, and
quartiles 1–3 as low, thus giving a similar proportion of hypoxic tumours as
detected by HIF-1α IHC (29%). Interaction tests were performed with scores
as a continuous variable to avoid introduction of bias from cut-off. If any
gene ID was not matched in our expression set, synonym gene names were
retrieved using the R package HGNChelper [40]. If one signature gene ID
corresponded to multiple synonym IDs, a search was conducted on
GeneCards database of human genes [41] to select the matching synonym.
Genes were excluded if an ID match was not identified.

Statistical methods
All statistical analyses were performed with R (3.5.2). The primary endpoint
was IBTR in any quadrant of the ipsilateral breast, though 90% were
located in the same quadrant as the primary tumour, as first event within 5
years [22]. Other recurrences and death by any cause were competing
events. Secondary endpoints were any breast cancer recurrence within 5
years, (including IBTR, regional and distant recurrence, but not contral-
ateral breast cancer), with death by any cause without recurrence as
competing event, and BCD, with death by other cause as competing event.
For the descriptive, exploratory analysis of the relationship between HIF-1α
in IBTR and BCD, the start point was the date of surgery for the IBTR, and
the endpoint was BCD. Cumulative incidence with competing events was
displayed graphically using the R package cmprisk [42] and presented with
hazard ratio (HR) and 95% confidence interval calculated using cause-
specific Cox proportional hazards model. The interactions between the
benefit of RT and markers of hypoxia were evaluated using cause-specific
Cox proportional hazards model with an interaction term. The proportional
hazards assumption was checked graphically and tested with Schoenfeld
residuals [43]. As seen before in this cohort [24], HRs over the full follow-up
were generally non-proportional, thus we present estimations of HR in
intervals (0–5 years, 5–15 years, and >15 years for IBTR and any recurrence
as first event, or 0–10 years, 10–15 years, and >15 years for BCD as first
event) along with the HR for the full follow-up. All HR estimations should
be interpreted as an average over the studied time interval. Associations

between HIF-1α and other patient and tumour characteristics were
assessed using the chi-squared test or Fisher’s exact test or tested for
trend using linear regression. Statistical significance was defined as p <
0.05, but due to the multiple hypothesis testing performed in this study,
the interpretation of p as level of evidence for or against the null
hypothesis should be careful.

RESULTS
HIF-1α in primary breast tumours
Of the 1004 tumours available in the TMA, 985 were successfully
stained and evaluated for HIF-1α (Fig. 1), where 698 (71%) were
HIF-1α negative. Primary tumours with IHC-staining positive for
HIF-1α were similarly distributed in the RT and non-RT groups
(27% and 31%, respectively). Patient and tumour characteristics
are described in Table 1. Tumour HIF-1α status correlated to
histological grade, with a higher frequency of HIF-1α positivity
among high-grade tumours (p < 0.0001). Furthermore, HIF-1α
positivity was associated with cell proliferation in that it correlated
to high Ki-67 (p < 0.0001). A considerably higher proportion of ER-
negative tumours, compared to ER-positive tumours, were HIF-1α
positive (60% vs 25%, p < 0.0001). Luminal A-like tumours were
the largest subgroup with 552 tumours and 22% of these were
HIF-1α positive, while luminal B tumours had a 30% frequency of
HIF-1α positivity (76 of 257, Table 1).

Higher risk of recurrence and BCD in patients with HIF-1α
positive primary tumours
Patients with a HIF-1α positive primary tumour had an increased
incidence of IBTR as a first event within 5 years compared to
patients with a HIF-1α negative primary tumour both in the total
patient population (HR0–5 yrs= 1.9 [1.3–2.9], p= 0.003, Fig. 2a and
Table 2) and among patients that did not receive RT (HR0-5 yrs=
1.7 [1.1–2.8], p= 0.02, Fig. 2b and Table 2). The higher occurrence
of IBTR in patients that had HIF-1α positive primary tumours was
apparent in both ER-positive and -negative disease (Supplemental
Fig. 2). Patients that received RT suffered less IBTR, with no
difference between HIF-1α positive and negative groups (Fig. 2c).
In multivariable analysis adjusted for patient age, tumour size,
tumour subtype (St Gallen), and systemic adjuvant therapy,
the increased risk for IBTR in the HIF-1α positive group remained
an independent risk factor in the total patient population
(HRadjusted= 1.8 [1.1–2.8], p= 0.01, Table 2).
In analyses of any recurrences in the whole patient material

as well as in the non-irradiated group, HIF-1α primary tumour

Table 2. Uni- and multivariable analysis of the hazard of HIF-1α (positive vs negative) in relationship to IBTR during the first 5 years after the primary
tumour, any recurrences during the first 5 years after the primary tumour, and BCD during the first 10 years after the primary tumour in breast cancer
patients randomised to receive RT or no RT after breast-conserving surgery.

All patients Univariable analysis Multivariable analysis

HR (95% CI) p n (event) HR (95% CI) p n (event)

IBTR (0–5 years)

All patients 1.9 (1.3–2.9) 0.003 985 (92) 1.8 (1.1–2.8) 0.01 948 (85)

No RT 1.7 (1.1–2.8) 0.02 509 (75) 1.6 (0.97–2.7) 0.065 492 (68)

RT 2.1 (0.78–5.4) 0.14 476 (17) 2.1 (0.78–5.8) 0.14 456 (17)

Any recurrence (0–5 years)

All patients 2.0 (1.5–2.8) <0.0001 985 (144) 1.7 (1.2–2.4) 0.003 948 (137)

No RT 1.9 (1.3–2.8) 0.001 509 (104) 1.6 (1–2.5) 0.03 492 (97)

RT 2.2 (1.2–4.1) 0.02 476 (40) 1.7 (0.89–3.2) 0.11 456 (40)

BCD (0–10 years)

All patients 1.9 (1.2–2.9) 0.004 985 (83) 1.5 (0.93–2.3) 0.097 948 (82)

No RT 2.1 (1.2–3.7) 0.01 509 (47) 1.5 (0.82–2.9) 0.18 492 (46)

RT 1.6 (0.84–3.3) 0.15 476 (36) 1.3 (0.64–2.6) 0.48 456 (36)
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positivity was associated with an increase in early recurrences
(HR0–5 years 2, [1.5–2.8], p= 0.0001 and HR0–5 years 1.9, [1.3–2.8],
p= 0.001, Fig. 2d, e and Table 2), with a similar pattern in patients
with ER-positive and -negative tumours (Supplemental Fig. 2).
Postoperative RT led to an overall decrease in any recurrence,
however, there were still a higher number of recurrences in
patients with a HIF-1α positive primary tumour (Fig. 2f and
Table 2).
There was a higher occurrence of BCD within 10 years of

surgery in patients with HIF-1α positive primary tumour in the
entire study population and in patients that did not receive RT
(HR0–10 years 1.9 [1.2–2.9], p= 0.004, and HR0–10 years 2.1 [1.2–3.7],
p= 0.01 Fig. 2g, h and Table 2), while this difference diminished

after RT (Fig. 2I). In patients with ER-negative tumours, with a high
frequency of HIF-1α positive primary tumours (60%), BCD within
10 years was higher compared to ER-positive tumours irrespective
of primary tumour HIF-1α status (Supplemental Fig. 2e, f).

Preserved benefit of RT in patients with HIF-1α positive
primary tumours
Taking all primary tumours into account, patients receiving RT had a
distinct reduction of IBTR within 5 years (HR0–5years 0.23, [0.13–0.39],
p < 0.0001; Fig. 3a and Table 3), and the full follow-up (HRfull FU 0.42,
[0.3–0.58], p < 0.0001; Fig. 3a). Dividing the patients into those
with HIF-1α negative and positive primary tumours, there was a
similar reduction in IBTR with RT in the two groups (test for
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interaction0–5 years p= 0.90, test for interactionfull FU p= 0.66, Fig. 3b,
c and Table 3). The incidence for any recurrences within 5 years, and
full follow-up, was also reduced in patients that had received RT
(HR0–5years 0.39, [0.27–0.56], p < 0.0001, and HRfull FU 0.59, [0.46–0.75],
p < 0.0001; Fig. 3d and Table 3), and this effect of RT on recurrence
was independent of HIF-1α status (test for interaction0–5 years p=
0.70, test for interactionfull FU p= 0.79, Fig. 3e, f and Table 3). In the
present study, there was no statistically significant effect of RT on
the incidence of BCD (HR0–10 years 0.82 [0.53–1.3], p= 0.36, Table 3),
and this was unaffected by HIF-1α status (test for interaction0–10 years

p= 0.54, test for interactionfull FU p= 0.80, Fig. 3g–i, Table 3).

HIF-1α in IBTR and relation to outcome
For a fraction of the cohort, IHC staining of HIF-1α in matched
primary and IBTR tumour material was available (n= 119). HIF-1α
positive IBTR was more prevalent among patients that had a HIF-
1α positive, compared to negative, primary tumour (61% vs 27%,
p < 0.001: Fig. 4a). In line with this, when considering HIF-1α IHC
on three levels (negative, low and high), the IBTRs most often had
the same HIF-1α staining intensity as their corresponding primary
tumour (65%, n= 75), while 21% (n= 24) of the IBTRs had
increased intensity, and 14% (n= 16) had decreased HIF-1α
intensity. Addressing the prognostic relevance of HIF-1α expres-
sion in IBTR, we found that HIF-1α positivity in IBTR was associated
with an increased risk of BCD (HRfullFU2.6 [1.3–5.0], p= 0.007;
Fig. 4b).

Hypoxic gene-expression signatures and relation to outcome
and benefit of RT treatment
There was a concordance between HIF-1α IHC signal and HIF-1α
mRNA-expression levels (rho= 0.40, p < 0.0001, Fig. 4c). How-
ever, there was no association between high HIF-1α mRNA
expression (highest quartile) and breast cancer recurrence or
survival (data not shown). In general, the hypoxic signature
scores exhibited a high positive correlation with HIF-1α positive
IHC status, with the Mense hypoxia score being the only
exception (Fig. 5a). The strongest correlations to HIF-1α positive
IHC were observed for “Buffa” (rho= 0.26, p < 0.0001), “Farmer”
(rho= 0.27, p < 0.0001), and “Hu” (rho= 0.26, p < 0.0001, Fig. 5a).
The calculated hypoxia scores of most gene signatures
correlated strongly (Fig. 5b). The Mense hypoxia score did not
correlate with the majority of other hypoxia scores, whereas the
Yang signature had a clear negative correlation to several other

hypoxia scores. Although most hypoxia scores correlated
strongly, the gene overlaps were modest with a relatively low
number of shared genes (Fig. 5c). Nine genes were present in
≥5 signatures: ADM, NDRG1, SLC2A1, VEGFA, ALDOA, IGFBP3,
LDHA, P4HA1 and TPI1.
To address the hypothesis that benefit of RT is affected by a

hypoxic tumour microenvironment, we evaluated the benefit of
RT in relation to gene expression of the hypoxic gene-expression
signatures. The cohort was stratified based on the scores of each
hypoxia signature and tested for statistical interaction between
benefit of RT and hypoxia scores with respect to outcome (Fig. 5d).
Patients had benefit from RT in prevention of early IBTR, regardless
of hypoxia scores (Fig. 5d).
Several signature scores associated with an increased

incidence of IBTR as a primary event, with the Buffa signatures
(“Buffa” HR5yrs 1.5 [1.2–1.9], p < 0.001), and “Buffa reduced”
(HR5yrs 1.4 [1.1–1.8], p= 0.002) and Hu signature (HR5yrs 1.4
[1.1–1.7], p= 0.005) being most prognostic for IBTR (Fig. 6a, b
and Supplemental Fig. 3). Additionally, some signatures were
associated with any recurrence, with the “Buffa reduced”
(HR0–5yrs 1.5 [1.3–1.8], p < 0.001), “Hu” (HR0–5yrs 1.5 [1.2–1.7],
p < 0.001), and “Winter” (HR0–5yrs 1.4 [1.2–1.7], p < 0.001) being
most pronounced (Fig. 6b and Supplemental Fig. 4). Lastly, some
signature scores were associated to an increased incidence of
BCD (Fig. 6b and Supplemental Fig. 5), where the “Buffa
reduced” (HR0–10yrs 1.6 [1.3–2.1], p < 0.001), “Yang” (HR0–10yrs
1.4 [1.1–1.7], p= 0.004) and “Hu” (HR0–10yrs 1.5 [1.2–1.9], p <
0.001) were most prominent.

DISCUSSION
In this study, we address the role of tumour hypoxia, detected by
HIF-1α IHC or hypoxic gene-expression signatures, in relation to
outcome and benefit of RT in a large, randomised trial of
postoperative RT in early breast cancer.
In contrast to our initial hypothesis, we show that breast cancer

patients benefit from postoperative RT regarding IBTR, and any
recurrence, also when the primary tumour was HIF-1α IHC positive
or had high expression of hypoxic gene signatures. We found no
effect of postoperative RT on BCD, irrespective of primary tumour
HIF-1α status. However, a benefit of postoperative RT in the
prevention of BCD has been demonstrated in meta-analyses [3].
Thus, RT directed to the remaining breast tissue was similarly

Table 3. Uni- and multivariable analysis of the benefit of RT in relationship to IBTR during the first 5 years after the primary tumour, any recurrences
during the first 5 years after the primary tumour, and BCD during the first 10 years after the primary tumour in breast cancer patients randomised to
receive RT or no RT after breast-conserving surgery.

Univariable analysis Multivariable analysis

HR (95% CI) p n (event) HR (95% CI) p n (event)

IBTR (0–5 years)

All patients 0.23 (0.13–0.39) <0.0001 985 (92) 0.25 (0.14–0.42) <0.0001 948 (85)

HIF-1α+ 0.26 (0.12–0.59) 0.001 287 (38) 0.30 (0.12–0.69) 0.005 272 (35)

HIF-1α− 0.21 (0.11–0.43) <0.0001 698 (54) 0.22 (0.11–0.46) <0.0001 676 (50)

Any recurrence (0–5 years)

All patients 0.39 (0.27–0.56) <0.0001 985 (144) 0.42 (0.29–0.61) <0.0001 948 (137)

HIF-1α+ 0.44 (0.25–0.76) 0.003 287 (62) 0.48 (0.27–0.86) 0.01 272 (59)

HIF-1α− 0.37 (0.23–0.6) <0.0001 698 (82) 0.37 (0.23–0.62) <0.0001 676 (78)

BCD (0–10 years)

All patients 0.82 (0.53–1.3) 0.36 985 (83) 0.87 (0.56–1.4) 0.54 948 (82)

HIF-1α+ 0.74 (0.37–1.5) 0.38 287 (35) 0.84 (0.42–1.7) 0.62 272 (35)

HIF-1α− 0.92 (0.53–1.6) 0.79 698 (48) 0.97 (0.54–1.7) 0.91 676 (47)
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effective on disseminated cancer cells whether these were
schooled in a hypoxic or non-hypoxic primary tumour.
For breast cancer, RT is most often given after tumour

resection. In cancers that are primarily treated with radiation
(e.g. some head and neck cancers and bladder cancers) the

hypoxic microenvironment remains and may even be enhanced
due to radiation-induced tissue damage. The cells residing in the
hypoxic microenvironment may then continue communicating
with the microenvironment through the release of growth
factors and other signalling molecules in a hypoxia-adapted
state, potentially affecting the outcome. This could explain why
hypoxia has been associated with RT resistance [44–46], but not
in this postoperative study.
Tumour HIF-1α positivity correlated to unfavourable tumour

characteristics. Analyses of the non-irradiated patient group, as
well as the total study population, showed that patients with HIF-
1α positive primary tumours were more prone to develop IBTR
during the first five years after surgery. Multivariable analysis
showed that primary tumour HIF-1α positivity was an independent
risk factor for IBTR in the total patient population. In addition,
primary tumour HIF-1α positivity correlated to an increase in any
recurrence in the whole study population and remained an
independent risk factor after adjustment for patient age, tumour
subtype, size, and systemic treatment. Primary tumour HIF-1α
positivity was also associated with an increase in BCD, but not
when adjusted for patient age, tumour subtype, size and systemic
treatment. The association between primary tumour HIF-1α
positivity and IBTR is, to our knowledge, a novel finding, and in
line with previous reports that hypoxia and HIF-1α are associated
with distant metastasis and poor prognosis in breast cancer [16–
18]. Breast tumour hypoxia and HIF-1α-regulated gene expression
contribute to aggressive tumour behaviour and seeding of cancer
cells with a metastatic capacity [47, 48].
We found that most tumour samples from surgically removed

IBTRs had the same HIF-1α status as their corresponding primary
tumour, indicating that hypoxia and HIF-1α positivity is an
inherent tumour trait. Additionally, of 11 hypoxia-related gene-
expression signatures from the literature, 10 correlated with HIF-
1α protein level, and 5 with an increased risk of IBTR within 5 years
after resection of the primary tumour. The presence of a HIF-1α-
positive IBTR correlated to an increased risk for BCD compared to
having a HIF-1α negative IBTR, analysed in relation to time after
IBTR-surgery (Fig. 4b).
To specifically address whether ER affects the role of tumour

hypoxia, we investigated the hazard of the investigated hypoxia
markers in ER-positive and -negative groups separately. We found
that primary tumour HIF-1α positivity was a risk factor for IBTR and
any recurrence within 5 years after surgery in the ER-positive
subgroup as well as in the entire study population. The study
included too few patients with ER-negative primary tumour to
allow for meaningful multivariable analyses in this subgroup. In
this large breast cancer material, we establish that HIF-1α
positivity is associated with the tumour subtype. Luminal A
tumours have the lowest frequency of HIF-1α positivity, and the
frequency of HIF-1α-positivity is then increasing step by step in
luminal B, HER2-positive and triple-negative tumours. HIF-1α
positivity, thus, has a negative correlation to the distribution of
ER expression in the breast cancer subtypes. The ER-negative
breast tumours generally have a worse prognosis and a high
frequency of HIF-1α-positivity. However, as stated above, within
the ER-positive group HIF-1α-positivity remains associated with a
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worse prognosis. We have previously shown, on the molecular
level, that in hypoxic breast cancer cells ER-expression diminishes
as HIF-1α accumulate [17, 49]. It is plausible that, in the generally
less proliferative ER-positive tumours, the additive effect of growth
factors, cytokines and other effectors induced by HIF-regulated
transcription have a relatively greater impact than in ER-negative
tumours.
Regulation of HIF-1α is mainly post-translational as described

above, but we found that HIF-1α IHC signal correlated to HIF-1α
mRNA-expression levels. Albeit, with a great degree of variability,
and HIF-1α mRNA-expression did not correlate to tumour
characteristics or patient outcome (data not shown). Thus, the
need for a hypoxic gene-expression signature remains. To further
study the role of tumour hypoxia in relation to patient outcome,
we calculated a series of hypoxic scores according to hypoxia-
related gene-expression signatures from the literature for each
tumour in the cohort. Eleven literature-derived hypoxia gene-
expression signatures [30–38] were analysed in relation to patient
outcome. There was a high degree of correlation between several

of the signatures, which was anticipated as some were published
by associated research groups. The signatures were enriched in
genes known to be regulated by HIF. Furthermore, we found that
their expression correlated with HIF-1α IHC positivity, indicating
that IHC detected transcriptionally active HIF-1α. High expression
of most of the analysed hypoxia signatures correlated to a higher
incidence of IBTR, any recurrence, and BCD, similarly to the pattern
seen for HIF-1α IHC positivity. Notably, the Elvidge, Mense and
Yang signatures did not correlate to increased occurrence of IBTR
and were also among those with the least gene overlap and score
correlation with the other signatures (Fig. 5b, c). However, the
hallmarks of cancer signature, which had a large overlap with
other hypoxic signatures, also did not correlate to increased IBTRs
(Fig. 6). None of the hypoxic signatures, similar to HIF-1α IHC,
correlated to RT-resistance.
In conclusion, patients with HIF-1α positive primary tumours

had a worse outcome with increased recurrences, but these
patients still had equal benefit from postoperative RT as patients
with a non-hypoxic primary tumour.
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Fig. 5 Hypoxic gene-expression signatures. Hypoxia signature scores in relation to HIF-1α IHC status, negative (blue) and positive
(red), presented as boxes of the 25th–75th percentiles with whiskers at percentile 2.5–97.5 *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
(a). Correlations were tested using Spearman’s correlation. Correlation plot of hypoxia signature scores, ordered according to the first principal
component order (b). Positive correlations in increasing intensity of blue and negative in red. Crossed squares mark correlations where p <
0.0001. Venn diagram of gene overlaps in four of the hypoxia signatures between which the scores exhibited the highest correlation (c),
darker colour representing higher percentage of overlapping genes. Forest plot presenting the benefit of RT in prevention of IBTR the first 5
years after the primary tumour in relation to hypoxia signature scores (d). The tumours were stratified based on hypoxia scores, where the 4th
quartile was defined as high, and quartile 1–3 as low.

J. Tutzauer et al.

1153

British Journal of Cancer (2022) 126:1145 – 1156



Hazard of hypoxia signatures in relation to IBTR (5 yrs)
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Fig. 6 Hypoxic gene-expression signatures in relation to recurrence and BCD. Forest plot presenting HR of hypoxic signature scores as
continuous variables in relation to IBTR during the first 5 years after the primary tumour (a). For all rows, n and events were 766 and 75,
respectively. Competing risk curves presenting the relationship between risk of IBTR, any recurrence, or BCD as first event. For each endpoint,
the three hypoxia signatures with the strongest association to outcome are shown (b). The scores were plotted as a dichotomous variable of
high vs. low, where low included quartile 1–3 (Q1–3, blue line), and high included quartile 4 (Q4, red line). Survival data presented as text in
the plot area were obtained from Cox proportional hazards model with the score as a continuous variable.
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