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Abstract
Amyotrophic lateral sclerosis (ALS) is a dreadful, devastating and incurable
motor neuron disease. Aetiologically, it is a multigenic, multifactorial and
multiorgan disease. Despite intense research, ALS pathology remains
unexplained. Following extensive literature review, this paper posits a new
integrative explanation. This framework proposes that ammonia neurotoxicity is
a main player in ALS pathogenesis. According to this explanation, a
combination of impaired ammonia removal— mainly because of impaired
hepatic urea cycle dysfunction—and increased ammoniagenesis— mainly
because of impaired glycolytic metabolism in fast twitch skeletal
muscle—causes chronic hyperammonia in ALS. In the absence of
neuroprotective calcium binding proteins (calbindin, calreticulin and
parvalbumin), elevated ammonia—a neurotoxin—damages motor neurons.
Ammonia-induced motor neuron damage occurs through multiple mechanisms
such as macroautophagy-endolysosomal impairment, endoplasmic reticulum
(ER) stress, CDK5 activation, oxidative/nitrosative stress, neuronal
hyperexcitability and neuroinflammation. Furthermore, the regional pattern of
calcium binding proteins’ loss, owing to either ER stress and/or impaired
oxidative metabolism, determines clinical variability of ALS. Most importantly,
this new framework can be generalised to explain other neurodegenerative
disorders such as Huntington’s disease and Parkinsonism.
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Introduction
Amyotrophic lateral sclerosis (ALS) is the most feared, frequent, 
flummoxing and fatal motor neuron disease1–3. It is a biphasic dis-
ease which starts insidiously, later followed by relentless progres-
sion once symptomatic4. Although rare, it is a grim and demeaning 
illness: it slowly cripples and confines its victims in their own body, 
ultimately killing them by breathing failure within 3–5 years after 
onset2,5. No cure exists1. Ever since Charcot’s description of ALS 
(1869), a classical view defines ALS as an adult-onset neurodegen-
erative disease of upper and lower motor neurons6,7. However, ALS 
is clinically characterised by variability about the type and degree 
of motor neuron and non-motor neuron involvement8.

ALS pathology involves an interaction of multiple genes and 
environmental factors. Indeed, ALS is mainly a polygenic disease 
(70%–90); and the heritable form (familial ALS) contributes to 
merely 30% of total ALS cases3,9. Remarkably, mutant C9ORF72, 
TARDBP, FUS, and SOD1 genes account for 70% of all familial 
ALS cases10. Evidence shows that environmental factors such as 
intense physical activity, cigarette smoking, viral infections, and 
the ingestion of non-protein amino acids (i.e. β-N-methylamino-
L-alanine) play a role in ALS5,11,12.

ALS aetiology: an enduring enigma
Despite nearly 150 years of research, ALS remains an enigma13, 
although, at the cellular, molecular and metabolic levels, a stag-
gering and ever expanding list of pathogenic mechanisms have 
been linked to ALS13,14. These include protein aggregation, mito-
chondrial dysfunction, oxidative/nitrosative stress, endoplasmic 
reticulum (ER) stress, axonal transport defects, glutamate exci-
totoxicity, impaired macroautophagy, impaired glycolysis, neu-
roinflammation, and glucose and fat metabolism impairments13–19. 
However, hitherto no hypothesis exist that effectively links all these 
mechanisms to a singular central cause3. Hence, despite steadily 
accumulating knowledge about ALS, a key question still lingers: 
what cause ALS?

ALS: a multi organ disease
Since ALS is manifestly a neurological disorder, researchers have 
long embraced an intuitive neurocentric view of ALS, assuming 
that intrinsic neuronal pathology causes ALS7,20. Against this view, 
however, growing evidence suggests that ALS pathology extends 
well beyond neuronal cells and involves multiple organs7,14,21. 
Unsurprisingly, ALS is now deemed as a systems disease20,22. Not 
only that, evidence increasingly shows that primary pathological 
events, inherited or acquired, within these organs may act as distal 
cause of ALS14,21,22. Such evidence is reviewed below.

Role of skeletal muscle
ALS starts and spreads from skeletal muscle14,23. Indeed, some 
early symptoms of ALS involve the neuromuscular system: mus-
cle atrophy, cachexia (wasting), weakness, and fasciculation 
(twitches)7,11,14,19,23. In fact, cachexia reduces survival of ALS 
patients19. Reinforcing such observations, data from animal models 
of ALS showed neuromuscular dysfunction precede motor neurons 
loss14. For instance, Frey et al. showed selective loss of fast-fatigable 
neuromuscular synapses of SOD1G93A mice by 6 weeks of age, 2 
month before symptomatic phase24. Cogently, a study showed that 

the expression of mutant gene (SOD1G93A) exclusively in skeletal 
muscle of transgenic mice caused cachexia, neuromuscular dener-
vation, paresis, and motor neuron degeneration25.

Skeletal muscle possesses mainly two types of muscle fibres: fast 
twitch and slow twitch26. Lately, evidence suggests that in ALS fast 
twitch muscle motor units are selectively damaged before overt 
symptoms, whereas slow twitch motor units show damage after 
overt symptoms27,28. For example, a set of studies showed a rapid 
motor unit loss during the presymptomatic phase (5 weeks of age) 
in fast but not slow-twitch muscles of the SOD1G93A mouse27. 
Accordingly, fast twitch muscle appears to be more susceptible to 
damage in ALS patients28. Therefore, fast twitch muscle pathology 
appears to be the distal cause of ALS.

Together, those findings have led to the “dying-back” hypothesis14. 
This holds that ALS is a distal axonopathy in which pathologi-
cal changes first arise distally at the neuromuscular junction and 
progress backward toward the spinal cord cell body14. That said, 
however, recent and prior research mandates refinement of this 
hypothesis. Recently, experiments in the SOD1G93A mice showed 
independent and parallel degeneration of both upper and lower 
motor neurons at early stage, hinting at a common pathological 
mechanism29. Consistent with this, recent neuroimaging studies 
showed early stage involvement of upper motor neuron (UMN) 
in ALS patients30. In fact, Gower (1886), Charcot’s contemporary, 
suggested simultaneous and independent degeneration of upper 
and lower motor neurons in ALS31. Thus, a common but hitherto 
unidentified pathological factor emanating from skeletal muscle 
appears to damages both upper and lower motor neurons.

Liver: an emerging locus of ALS
Aside from skeletal muscle, mounting evidence suggests that 
liver dysfunction commonly occurs in ALS. Indeed, litera-
ture on the liver pathology in ALS has existed for over a half 
century32,33. Earlier, researchers showed a range of liver abnormal-
ities in ALS patients including the disturbance of unconjugated 
bilirubin metabolism, mitochondrial defects, and copper accumula-
tion in hepatic lysosomes32. More recently, clinical studies suggest 
that hepatic steatosis (fatty liver degeneration) is a common and 
unique phenomenon in motor neuron diseases including ALS22,34,35. 
Nodera et al. found that hepatic steatosis was present in 76% of 
ALS patients22. In line with this, studies showed reduced growth 
hormone/insulin-like growth factor-1 (GH/IGF-I) levels, which 
induce hepatic steatosis, in ALS21,36. In keeping with this, hyperho-
mocysteinemia, which is associated with hepatic fat accumulation, 
commonly occurs in ALS patients37,38. Moreover, research showed 
that ALS-associated environmental factors such as virus infection 
(i.e. retrovirus virus and HIV) and cigarette smoking cause hepatic 
steatosis5,12,39,40. Furthermore, viral hepatitis, which causes hepatic 
insufficiency and frequent fatty liver degeneration, has been linked 
to motor neuron disease41–44. Finally, Reye-like syndrome, associ-
ated with fatty liver degeneration, has been associated with spinal 
muscular atrophy (SMA), a lower motor neuron disease35.

A number of genetic findings also support this notion. Iron dys-
regulation disorders such as HFE gene-related hemochromatosis 
and hyperferritinemia, which induces hepatic steatosis, frequently 
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(30%) occurs in ALS45,46. Additionally, mutant cholesterol and 
lipid pathways genes such as TDP-43 ATXN2, paraoxonase and 
CYP7A1, implicated in hepatic steatosis, have been linked to 
ALS47–55. Moreover, an interaction between disturbances in hepatic 
mitochondrial function and ER homeostasis causes hepatic stea-
tosis; and investigators discovered morphological changes in ER 
structure and mitochondria in the liver of ALS patients32,56. These 
findings support the evidence that mutant ER-stress regulating 
genes such as XBP1, SigR1, VCP, TDP-43, FUS, SOD1, and VAPB 
are linked to ALS57,58. Furthermore, SMN gene, implicated in ALS 
and SMA, have been shown to regulate the development and func-
tion of liver35.

Finally, hepatic steatosisis is linked to the metabolic syndrome, 
characterised by hyperglycaemia, hyperglucagonemia, insulin 
resistance and altered serum triglycerides; and such findings have 
been reported in ALS59–65. In this regard, it is interesting to note 
that damage to fast twitch skeletal muscle, the main site of glucose 
disposal and the largest reservoir of glycogen in humans, leads to 
hepatic steatosis66.

Notably, Li et al. showed exendin-4, which counteracts hepatic 
steatosis, ameliorated motor neuron degeneration partly by correct-
ing this systemic metabolic alteration67,68. This clearly suggests that, 
much like skeletal muscle, liver pathology is not merely an innocent 
bystander, but rather a premorbid condition, which plays an active 
role in ALS pathogenesis.

Aims
Thus, (i) identifying skeletal–muscle produced unknown pathologi-
cal factor, (ii) unravelling its nexus and synergism with hepatic stea-
tosis, (iii) understanding the mechanisms by which this pathology 
factor causes motor neuron damage, and (iv) revealing the cause(s) 
of clinical heterogeneities would fully untie the Gordian knot of 
ALS pathology, allowing the development of predictive and prog-
nostic biomarkers as well as potent drugs3,13. Hence, by taking a 
systems view, this paper aims to fill these knowledge gaps. Moreo-
ver, by fusing these separate pieces together, this paper presents a 
full picture of ALS pathology.

Impaired glycolysis in fast twitch muscle: one of the 
pathological triggers of ALS
Evidence suggests that defective energy deficit in skeletal muscle 
triggers ALS. Investigators found impaired skeletal muscle metabo-
lism, characterised by low ATP levels and hypermetabolism, causes 
neuromuscular dysfunction in ALS mouse model69,70. Conversely, 
metabolic interventions such as high-calorie diets and reducing 
hypermetabolism improved survival and alleviated symptoms in 
ALS19,70. However, the functional link between skeletal muscle 
metabolic impairment and ALS remains nebulous. Instructively, 
since ALS begins from fast twitch muscle, which relies on anaero-
bic glycolysis for energy (i.e., ATP), this immediately suggests that 
impaired anaerobic glycolysis produces the unknown pathological 
trigger.

Impaired glycolysis in ALS
Compelling evidence suggests that muscle glycolysis is impaired in 
ALS. Valosin-containing protein (VCP), a gene linked to ALS, causes 

defective muscle glycolysis and reduced ATP levels. Dupis et al. 
linked upregulation of mitochondrial uncoupling proteins UCP1 and 
UCP3—which suppresses glycolysis and causes hypermetabolism—
to muscle denervation in ALS71. Bernardini et al. showed low expres-
sion of glycolysis genes such as FBP2 and enolase 3 in the skeletal  
muscles of ALS patients72. Brockington et al. uncovered down regu-
lation of glycolytic enzyme lactate dehydrogenase 1 in the VEGFδ/δ 
mouse model of ALS73. Moreover, experiments showed that the  
gain-of-interaction of the SOD1G93A mutant with cytosolic malate 
dehydrogenase induces glycolytic impairments74. Dunckley et al. 
linked variants of FLJ10986, a protein linked to glycolysis, with the 
susceptibility of sporadic ALS75. Collectively, these findings clearly 
show impaired glycolysis in skeletal muscle of ALS patients and 
mouse model.

Impaired muscle glycogen and glucose homeostasis 
in ALS
Notably, fast twitch skeletal muscle glycolysis depends on muscle 
glycogen storage and glucose transporter 4 (GLUT4)-mediated 
muscle glucose uptake26,76. Accumulating evidence suggests defec-
tive muscular glycogen metabolism and impaired GLUT4-mediated 
muscular glucose uptake in ALS. Derave et al. discovered dimin-
ished muscle ATP and glycogen accumulations in SOD1 G93A 
mice27. Smittkamp et al. revealed impaired insulin-stimulated glu-
cose uptake exclusively in fast twitch skeletal muscle in middle-
stage SOD1 G93A mice77. Accordingly, fast twitch skeletal muscle 
fibres of TDP-43 transgenic mice show defective insulin-induced 
GLUT4 translocation and glucose uptake77. Moreover, in the mutant 
TDP-43-linked ALS mice, Perera et al. reported decreased AMPK, 
which mediates muscle contraction-induced glucose entry and  
glycogen synthesis76,78,79. Conversely, AMPK activator drugs (i.e. 
latrepirdin) delayed ALS in SOD1G93A mice80. Furthermore, muscle 
contraction facilitated glucose uptake involving Ca2+/calmodulin-
dependent GLUT4 translocation appears to be defective in ALS. 
For example, investigators linked mutant neuregulin-ERBB4 gene, 
involved in calcium-induced glucose uptake during muscle contrac-
tion, to ALS79,81. Thus, it is obvious that ALS involves impaired 
carbohydrate metabolism that supports muscle glycolysis.

ALS resistance of extraocular muscles (EOMs): role 
of glycolysis
Finally, the metabolic characteristics of—ALS-resistant—extraocular 
muscles (EOMs) further consolidate this notion82. Two fundamental 
differences exist between EOMs and skeletal muscle metabolism83. 
First, compared to skeletal muscles, EOMs have high glycolysis 
capacity, evident by the overexpression of glycolytic enzymes (e.g. 
lactate dehydrogenase, enolase)83. Second, owing to their high vas-
cularity, EOMs rely more on instantaneous glucose uptake—less on 
glycogen storage and GLUT4-mediated muscle glucose uptake83. 
All in all, these three sets of findings point that defective glycolysis 
causes ATP deficits in fast twitch skeletal muscle of ALS patients. 
Hence, the unknown pathological factor emanating from skeletal 
muscle appears to have direct connection with defective muscle 
glycolysis. How?

Ammonia: the elusive pathological factor
Notably, defective glycolysis, which reduces ATP levels, in fast twitch 
skeletal muscle activates catabolic reactions of adenine nucleotides 
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(i.e. purine nucleotide cycle) and amino acids (Figure 1)84,85. Intrigu-
ingly, such catabolic reactions produce ammonia—a neurotoxin 
1000 times more toxic than ethanol at equimolar concentrations85,86. 
Since ammonia is toxic, it is obligatorily removed mainly through 
hepatic urea cycle which transforms ammonia into urea87. Notably, 
when the urea cycle is impaired, as it occurs in fatty liver disease, 
increased ammonia production from skeletal muscle or from dietary 
sources can cause chronic hyperammonia (>35–50 µM) and con-
sequent neurodegeneration and motor impairments (Figure 1 and 
Figure 2)33,88–92. Indeed, in many liver diseases, including fatty liver 
disease which commonly occurs in ALS, because of impaired urea 
cycle-mediated ammonia removal, hyperammonia frequently leads 
to corticospinal hyperexcitability, myelopathy and spasticity— 
features strikingly reminiscent of neurophysiological phenotypes of 
ALS symptoms93–97.

Ammonia neurotoxicity: hypothesis and evidence
Together, these findings provide a compelling rationale for a new 
hypothesis. ALS pathology might involve not only skeletal mus-
cle-induced increased ammonia production, because of impaired 
glycolysis, but also impair ammonia removal, secondary to hepatic 
steatosis-induced faulty urea cycle, leading to chronic hyperam-
monia and consequent progressive motor neuron degeneration 
(Figure 1 and Figure 2). Astonishingly ammonia’s role has seldom 
been directly investigated. Nonetheless, diverse data obtained from 
clinical and animal studies support this hypothesis showing that 
hyperammonia increases ammoniagenesis and decreases ammonia 
removal in ALS.

A clinical study showed elevated ammonia level in motor neu-
ron disease patients—with ammonia levels inversely correlated to 

Figure 1. Line diagram: mechanisms of motor neuron damage in ALS. Mechanism of motor neuron degeneration in ALS involves two main 
factors: (i) ammonia neurotoxicity and (ii) down regulation of neuronal calcium binding proteins (CaBPs). Owing to imbalanced interorgan 
ammonia metabolism, ammonia, a well-known neurotoxin, accumulates in neurons. Among the five organs (brain, skeletal muscle, gut, liver 
and kidney) involved in ammonia metabolism, ALS appears to mainly involve the role of liver and skeletal muscle in that confluence of impaired 
ammonia removal—owing to impaired hepatic urea cycle—and increased muscular ammoniagenesis—owing to impaired glycolysis in fast  
twitch skeletal muscle—lead to chronic hyperammonia in ALS. In the brain, ammonia activates several neurodegenerative pathways such as 
(1) autophagy-endolysosomal dysfunction (2) neuroinflammation (3) oxidative stress (4) Golgi fragmentation and (5) neuronal hyperexcitability. 
In the absence of neuronal calcium binding proteins (CaBPs) such as parvalbumin, calbindin, calreticulin, activation of these degenerative 
pathways lead to motor neuron damage. Notably, decrease in calreticulin, because of increased ER stress, leads to lower motor neuron 
damage, whereas the down-regulation of parvalbumin and calbindin, because of defective mitochondrial respiration, leads to upper motor 
neuron damage.
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disease duration98. These investigators also found a causal relation-
ship between ammonia and ALS by noting that infusion of amino 
acids, which causes ammoniagenesis, aggravates ALS98. Moreover, 
dietary supplements of branched chain amino acids was one of the 
factors associated with the early onset of ALS (45 years) in Italian 
soccer players99. Accordingly, other investigators reported acceler-
ated skeletal muscle protein catabolism ALS100. This chimes with 
the fact that hepatic steatosis-induced glucagon secretion, which 
occurs in ALS, increases ammoniagenesis through protein deg-
radation101,102. Consistent with this, as noted above, intense or 

prolonged physical exertion, an ammoniogenic activity, is an ALS 
risk factor11,103.

Beside a link between hepatic steatosis and a faulty urea cycle, 
other lines of clinical evidence further implicate the impaired urea 
cycle in ALS48,91,104. For example, Iłzecka et al. showed decreased 
arginine levels, an amino acid required for liver urea cycle function, 
in ALS patients105. Additionally, research showed that metabolic 
acidosis, which impairs urea cycle, occurs in ALS60,106. Impaired 
hepatic urea cycle activates glutamine synthetase, an alternative  

Figure 2. A molecular model of ammonia-induced motor neuron degeneration in ALS. (Modified with permission from 232). Ammonia 
intoxication directly damages motor neurons through five mutifactorial pathological mechanisms: 1) alkalisation-induced impairment of 
macroautophagy-endolysosomal system, 2) Golgi impairment, 3) increased oxidative/nitrosative stress and MAPK up-regulation 4) neuronal 
hyperexcitability and 5) neuroinflammation. These mechanisms explain frequently found cellular, molecular and neurophysiological phenotypes 
of motor neuron damage in ALS. A. Owing to ammonia-induced alkalisation, impairment of macroautophagy-endolysosomal system induces 
several key molecular histopathological features of ALS including : (i) ubiquitinated (Lewy and skein body-like inclusions) and non-ubiquitinated 
inclusion bodies (i.e. bunia bodies) formation, (ii) amyloid precursor protein (APP), (iii) gangliosides accumulation (i.e. GM2), (iv) autophagy 
vacuoles, (v) neurofilament aggregation and axonal swelling. B. Ammonia activates CDK5 which in turn leads to frequently observed Golgi 
fragmentation. C. Ammonia-induced oxidative/nitrosative stress and MAPK-up-regulation lead to multiple cellular and molecular pathological 
features such as: (i) blood brain barrier (BBB) breakdown, and (ii) MMP-9-induced ER stress. D. Ammonia causes neuronal hyperexcitability 
by (i) down-regulating astrocyte glutamate transporters (GLAT-1 and GLAST) and (ii) lowering potassium-chloride co-transporter KCC2 level 
which suppresses GABA and Glycine-mediated inhibitory neurotransmission. E. Ammonia leads to neuroinflammation secondary to reactive 
microglial and astrogliosis. This occurs because of (i) quinolic acid release from microglia (ii) up-regulation of pro-inflammatory cytokines (TNF, 
IL-1β, NF-κB, and PGE2) in astrocytes (iii) TLR-4 activation and (iv) neutrophil burst derived NADPH oxidase (NOX)-induced oxidative stress.
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ammonia detoxification pathway, and researcher also found 
increase in glutamine synthetase expression in blood platelets of 
ALS patients107,108.

Animal models of ALS further cement this ammonia hypothesis. 
Investigators showed hyperammonia and impaired urea cycle in  
50 day old SOD1G93A mice compared to wild type mice of the same 
age109. Moreover, these investigators showed increased glutamine, a 
precursor of ammonia, in SOD1G93A mice109. Additionally, in the 
mutant SOD 1 G86R mice, de Aguilar et al. showed early (3 months 
of age) muscle denervation along with increased AMP deaminase-3 
(AMPD3), an enzyme of purine nucleotide cycle involved in 
ammoniagenesis110. Furthermore, a set of studies showed increased 
arginine vasopressin release in the SOD1 mice, and independent 
research showed that arginine vasopressin causes muscle protein 
degradation and consequent ammoniagenesis111,112. Conversely, 
research showed that ammonia-counteracting compounds such 
as phenylbutyrate, ariginine, resveratrol and l-carnitine alleviated 
symptoms and enhanced survival in the ALS mouse model97,113–118.

Further supporting this hypothesis, experiments have shown that 
environmental neurotoxins implicated in ALS causes ammonia tox-
icity. Dietary intake of β-N-methylamino-L-alanine, a non-protein 
amino acid linked to Guam’s ALS-PDS complex epidemic, causes 
liver damage and ammonia toxicity119,120. Similarly, the ingestion of 
Lathyrus sativus seeds, implicated in neurolathyrism (an upper motor 
neuron disease), causes liver dysfunction, urea cycle impairment, 
and chronic ammonia toxicity121,122. Finally, animal studies showed 
that the pesticide pyrethroid, which causes an ALS-mimicking 
syndrome, leads to protein catabolism ammonia toxicity123,124.

Yet another line of evidence bolsters the ammonia neurotoxic-
ity hypothesis. Interestingly, reports showed that motor neuron 
disease could be one of Huntington’s disease (HD)’s presenting 
features125,126. In fact, aside from genetic overlap with ALS, HD 
shares many pathophysiological characteristics with ALS: skeletal 
muscle atrophy, hepatic steatosis, hyperglycaemia and adipose tis-
sue dysfunction127,128. Tellingly, although often regarded as curious 
findings rather than telltale observation, impaired urea cycle as 
well as hyperammonia occur in HD127. Strikingly, data from mouse 
models of HD showed that protein-restricted diets not only reduced 
hyperammonia but also prevented the motor deterioration90. This 
suggests that ammonia could be a common culprit in range of neu-
rodegenerative conditions, especially affecting motor system.

In addition to muscles and the liver, ammonia metabolism 
involves other organs, including the gut, the kidneys and the brain 
(Figure 1)87,89. Hence, this hypothesis does not preclude a role of 
these organs. Although no evidence has yet emerged to implicate 
the gut and kidneys in ALS, some data at least suggest a role 
of cerebral ammoniagenesis in ALS. Studies showed increased 
deamination of catecholamine, which causes cerebral ammonia-
genesis, in ALS, evident by the overactivity of catecholamine oxi-
dising enzymes such as MAO-B and aldehyde oxidase89,129–131. Put 
together, these findings implicate ammonia neurotoxicty in ALS.

Mechanisms of ammonia’s neurotoxicity
When hyperammonia occurs, ammonia enters into the brain, leading 
to neurotoxicity. Ammonia exerts pleiotropic neurotoxic effects by 
activating an array of cellular mechanisms, which are the proximal 
causes of ALS (Figure 1 and Figure 2). These mechanisms include: 1) 
alkalisation-induced impairment of macroautophagy-endolysosomal 
system, 2) Golgi impairment, 3) increased oxidative/nitrosative 
stress and mitogen-activated protein kinase (MAPK) up-regulation  
4) neuronal hyperexcitability and 5) neuroinflammation89,132–136.

As described below, taken together, these five mechanisms not only 
explain several frequent cellular and molecular histopathological 
hallmarks of ALS but also neurophysiological features of ALS  
(Figure 1 and Figure 2). The cellular histological features, explained 
by ammonia’s toxicity, include axon swelling, blood brain barrier 
breakdown and astrogliosis and microgliosis137–139. The molecular 
pathological features, explained by ammonia’s toxicity, include 
formation of inclusion bodies such as bunia bodies and Lewy bod-
ies, gangliosides accumulation, glycogen aggregation, neurofila-
ment derangement, Golgi fragmentation, and reduced glutamate 
transporters60,140–145. Moreover, ammonia toxicity explains a key 
neurophysiological feature of ALS: neuronal hyperexcitability17. 
Finally and most importantly, ammonia toxicity explains why ALS 
is mainly a motor neuron disease.

Alkalisation-induced impaired macroautophagy-
endolysosomal system
Ammonia-induced alkalisation impairs the macroautophagy-
endolysosomal system, one of the main cellular garbage disposal 
systems. This occurs at least in two ways. First, ammonia, a weak 
base, preferentially accumulates in lysosomes because of their low 
acidity (PH~4.5)134. Consequently, intra-lysosomal alkalisation 
and lysosomal enzyme leakages occur, impairing the lysosomal 
hydrolysis of proteins, lipids and carbohydrates (Figure 2)134. 
Second, ammonia alkalises acidic membranous compartments of 
axon terminals, jamming membrane microtubules and thereby 
blocking the anterograde-to-retrograde transport of endosomes146. 
Consequently, impaired fusion of endocytic compartments with 
lysosomes occurs, causing defective autophagy of endocytosed 
material (Figure 2)89,146,147. As a result, toxic accumulation of pro-
tein aggregates, glycolipids, and carbohydrates occurs89. In turn, 
these toxic by-products activate the apoptosis programme, causing 
cell death148.

Ammonia’s alkalisation-induced toxicity is especially relevant to 
ALS because macroautophagy-endolysosomal dysfunction causes 
motor neuron degeneration149. Indeed, mutant genes of this pathway 
such as SOD1, FIG4, CHMP2B, SQSTM1, DCTN1, DYNC1H1, 
and RAB7A have been linked to ALS149. Consistent with this inter-
pretation, research showed impaired dynein-dependent retrograde 
axonal transport, required for autophagosome-lysosome fusion, 
causes motor neuron degeneration150,151. Furthermore, consistent 
with lysosomal enzyme leakage, investigators reported increased 
lysosomal enzyme levels (i.e. acid phosphatase, Cystatin C) in the 
cerebrospinal fluid (CSF) and plasma of ALS patients152,153.
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Impaired lysosomal proteolysis
Ammonia-induced impaired lysosomal proteolysis explains key his-
topathological hallmarks of ALS including formation of inclusion 
bodies (Figure 2). Ammonia-induced alkalinisation in lysosomes 
impairs the activities of protease enzymes including cathepsin B and 
cathepsin D134,154. Strikingly, investigators showed downregulation 
of cathepsin B and cathepsin D in ALS155,156. Notably, defective lyso-
somal proteolysis causes swollen axonal dystrophy (spheroids), with 
histological features such as ubiquitinated and non-ubiquitinated 
inclusion bodies, amyloid precursor protein, and neurofilament 
aggregation157. In keeping with this, research revealed such findings 
in ALS144,145,156,158–161.

In regard to non-ubiquitinated inclusion bodies, Kikuchi et al. 
showed that decreased cathepsin B generates Bunina bodies (small 
eosinophilic intraneuronal lysosomal inclusion bodies) in motor 
neurons, a hallmark of ALS (Figure 2)140,156. Since cathepsin D 
mediates lipofuscin and α-synuclein clearance, and since down-
regulation of cathepsin D occurs in ALS, this explains frequently 
observed deposits of lipofuscin granules and α-synuclein aggrega-
tion in ALS patients148,162–164. Moreover, reduced cathepsin B activ-
ity induces amyloid precursor protein (APP) accumulation, and  
Bryson et al. showed increased APP level in the SOD1 G93A mouse, 
which contributed to motor neuron damage158,165. As for impaired 
proteolysis-induced ubiquitinated inclusion bodies, ubiquitin inclu-
sion aggregates such as Lewy body-like inclusions’ and ‘skein-like 
inclusions’ have been found in ALS (Figure 2)145,166. This finding 
accords with the observations that inhibition of macroautophagy 
impairs the ubiquitin proteasome system (UPS)167. Finally, neuro-
filament aggregation and spheroid formations have been found in 
the ALS mouse model and in patients (Figure 2)161.

Impaired lysosomal ganglioside clearance
Gangliosides are complex sialylated glycosphingolipids, particu-
larly found in the CNS168. Notably, GM2 ganglioside is a main gan-
glioside in motor neurons169. Accumulation of GM2 ganglioside, 
owing to impaired lysosomal Hexosaminidase (Hex) enzymes, fre-
quently causes motor neuron disease170–172. For example, Banerjee 
et al. reported slow accumulation of GM2 ganglioside, primarily in 
motor neurons, in patients with progressive motor neuron disease 
associated with partial Hex A and no Hex B activity172. By implica-
tion, this suggests that accumulation of gangliosides including that 
of GM2 occurs in ALS and that ammonia increases GM2 ganglio-
side levels. Indeed, although scantly investigated, some investiga-
tors reported increased ganglioside levels in ALS including GM2 
ganglioside142,173,174. In line with ammonia’s role in ganglioside 
metabolism, Perez et al. showed that ammonia causes leakage of 
Hexosaminidase A (Hex A), indicating GM2 accumulation175,176. 
Thus, ammonia-induced GM2 accumulation could partly explains 
the heightened vulnerability of motor neurons in ALS (Figure 2).

Impaired lysosomal carbohydrate clearance
Animal and clinical studies reported neuronal and glial glycogen 
accumulation and polyglucosan bodies (branched chained glyco-
gen aggregates) in ALS (Figure 2)60,177,178. Notably, Dodge et al.  
showed that decreased level of α-glucosidase—a glycogen degrad-
ing lysosomal enzyme—partly causes glial and neuronal glycogen 
accumulation in ALS, and experiments showed that ammonia leaks 

α-glucosidase from lysosomes60,179. Thus, ammonia-mediated lyso-
somal dysfunction explains yet another histological feature of ALS. 
Of note, this fits with the observations that upper and lower motor 
neuron lesions frequently arise in polyglucosan body diseases180.

Impaired Golgi function
Ammonia toxicity could explain Golgi apparatus fragmentation in 
ALS, an early and frequently observed event141. Sun et al. showed 
that CDK5 activation fragments Golgi apparatus181. Interestingly, 
Cagnon and Braissant showed that ammonia activates CDK5. 
They also showed that CDK5 activation led to neuronal cell death 
and impairment of axonal outgrowth135. Apparently, p25-induced 
mislocalization and deregulation of CDK5 activity occurs in ALS 
(Figure 2)143,182. In fact, Nguyen et al. reported that an attempted 
re-entry of motor neurons into the G1-S phase of the cell cycle 
subsequent to CDK5 deregulation is a critical step of neurodegen-
eration in ALS182.

Increased oxidative/nitrosative stress and MAPK 
expression
Additionally, data suggested that ammonia induces oxidative/ 
nitrosative stress and MAPK expression, frequently found patho-
logical features of ALS (Figure 2)132. Research showed that oxi-
dative/nitrosative  stress and MAPK increases extracellular matrix 
degrading enzymes such as urokinase-type plasminogen activators 
and MMP-9183. Unsurprisingly, experiments found that increased 
levels of these extracellular matrix degrading enzymes occur in 
ALS184. Strikingly, Kaplan et al. observed overexpression of MMP-9 
increased the vulnerability of fast fatigable limb-innervating motor 
neuron185. MMP-9 appears to exert neurotoxicity mainly through 
up-regulation of ER stress (Figure 2)185. Moreover, Skowrońska 
et al. showed that increase in MMP-9, which degrades the extra-
cellular matrix, destroys the blood brain barrier (BBB)186. Predict-
ably, Nicaise et al. showed impaired blood-brain and blood-spinal 
cord barriers in mutant SOD1-linked ALS rodents138. Additionally, 
since MAPK regulates cytoskeletal homeostasis, ammonia-induced 
MAPK activation explains why cytoskeleton abnormalities such as 
intermediate filaments accumulation occur in ALS160,187.

Neuronal hyperexcitability
Furthermore ammonia intoxication explains neuronal hyperexcit-
ability in ALS—a cardinal characteristic of ALS16. By decreasing 
potassium-chloride cotransporter KCC2, located in the brain and spi-
nal cord, ammonia increases chloride levels in neurons (Figure 2)188. 
Increased neuronal chloride levels in turn suppress GABA and 
Glycine-mediated inhibitory neurotransmission, causing neuronal 
hyperexcitability (Figure 2)189. In keeping with this, Fuchs et al. dis-
covered decreased KCC2 expression in ALS-vulnerable motoneu-
rons in spinal cord and hypoglossal nuclei of SOD1-G93A mice but 
not in EOMs190. Concordantly, researchers reported spinal motor 
neuron hyperexcitability and degeneration in ALS patients191. In 
fact, Hübner et al. showed that KCC2 knockout mice died after 
birth owing to motor deficits that caused respiratory failure, a 
feature similar to ALS189.

Furthermore, ammonia causes glutamatergic excitotoxicty. By MAPK  
activation and increasing oxidative stress, ammonia decreases the gluta-
mate transporter EAAT2 (GLT-1) and glutamate-aspartate transporter 
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(GLAST) (EAAT-1) in astrocytes (Figure 2)133,192. Consequently, 
decreased transporters impair astrocyte-mediated high affinity 
glutamate uptake and clearance, leading to defective glutamater-
gic neurotransmission and excitotoxicity133,192,193. In line with this, 
decreased GLT-1 and GLAST have been found in the spinal cord of 
SOD1 G93A mice and ALS patients194–196. Interestingly, increased 
CSF glutamate was associated with a spinal onset of the disease and 
with severity of the symptoms in 41% of ALS patients196.

Neuroinflammation
Ammonia extensively affects the function of astrocytes and microglia 
(Figure 2). Through several mechanisms including (1) quinolinic acid 
(QUIN) production, (2) NADPH oxidase (NOX) activity-induced  
reactive oxygen species (ROS) generation, (3) Toll-like receptor  
4 (TLR-4) activation, and (4) extracellular-signal-regulated kinase 
(ERK) pathway stimulation, ammonia induces a transition from 
a resting state into reactive astroglia and microglia phenotype  
(Figure 2)113,197–199. Consequently, reactive astroglia and microglia 
increase oxidative stress and stimulate the release of a range of proin-
flammatory cytokines including NF-κB, IL-1β, and PGE2, leading 
to neuroinflammation and degeneration (Figure 2)200.

Emerging data indicate a role of QUIN in ALS201. Chen et al. 
detected overproduction of serum tryptophan, kynurenine and 
QUIN in the CSF of ALS patients compared to controls, concomi-
tant with microglial activation and neuroinflammation (Figure 2)139. 
Similarly, experiments showed increased microglial and neutrophil-
derived NOX activity correlated with fast ALS progression202. In 
keeping with increased ammonia-induced inflammation, inves-
tigators showed TLR-4 activation, and elevated levels of various 
pro-inflammatory cytokines in ALS203,204.

Clinical heterogeneities in ALS: the role of calcium-
binding proteins (CaBPs)
The postulated ammonia neurotoxicity as the sole cause of ALS 
raises an awkward question. If ammonia damages both upper and 
lower motor neurons equally, then why does ALS often deviate 
from its classical pattern, manifesting as either the upper or lower 
motor neuron dominant subtype8? Moreover, why it is a relatively 
rare disorder? These questions clearly indicate that a protective 
factor exists that counteracts ammonia toxicity, and that anatomic-
region specific loss of this factor causes the clinical heterogeneities 
in its presentation.

One such neuroprotective factor identified in ALS is the ER family 
of calcium binding proteins (CaBPs) (Figure 1 and Figure 2)205. By 
regulating voltage-gated calcium ion channels, CaBPs reduce cal-
cium overload and cytotoxicity, thus protecting neurons from cell 
death205. The CaBPs involved in motor neuron protection include 
calreticulin, parvalbumin, and calbindin which are distributed 
in anatomic region specific manner within motor neurons206,207. 
Calreticulin expression mainly occurs in limb-innervating lower 
motor neuron regions such as the lumbar spinal cord area and 
fast-fatigable motoneuron, whereas calbindin and parvalbumin are 
expressed in both lower and upper motor neurons206,207.

Differential anatomic region-specific distribution of CaBPs in the CNS 
partly explains different patterns of motor neurodegeneration206,208. 

In the SOD1 G93A ALS mouse model, during the presymptomatic 
stage, fast-fatigable motoneuron denervation mainly accompanies 
calreticulin loss208,209. By contrast, investigators showed that loss of 
calbindin and parvalbumin correlated with both upper and lower 
motor neuron damage206.

Region specific regulation of CaBPs: ER stress and 
bioenergetics
How do neurons lose different CaBPs in different anatomic regions 
of the CNS? Research showed that ER stress downregulates calreti-
culin in limb-innervating lower motor neurons motor. In fact, calre-
ticulin co-localises with the ER207. This accords with the finding that 
neuronal MMP-9—which enhances ER stress—selective damages  
fast fatigable lower motor neurons185. Additionally, since androgens 
modulate ER stress, this explains why sexual dimorphism occurs 
in lower motor neuron damage210. Interestingly, research revealed 
increased ER stress and reduced calreticulin in Alzheimer’s disease 
(AD)209. This explains why AD occasionally co-exists with motor 
neuron disease211.

As for the causes of reduced parvalbumin and calbindin expres-
sion in ALS, research implicates impaired oxidative metabolism 
secondary to defective mitochondrial electron transport (the respi-
ratory chain) system212,213. Indeed, of the five protein complexes of 
the mitochondrial respiratory chain, research has frequently showed 
reduced respiratory chain complex I and IV activity in sporadic ALS 
patients205,212. Within these two complexes, complex IV appears to 
be particularly involved in ALS. This chimes well with the fact that 
90% of all parvalbumin and calbindin-immunoreactive cells showed 
dense staining for respiratory complex IV (cytochrome c oxidase)214. 
Furthermore, hyperhomocysteinaemia, found to be highly prevalent 
in ALS, damages mitochondria and suppresses respiratory com-
plex IV activity37,215. Revealingly, compared to skeletal muscle, 
the EOMs have slow metabolism characterised by low complexes 
I and IV activities (~50%) yet elevated mitochondria density with 
increased complex I and IV levels (30% to 2 times)—explaining 
why parvalbumin and calbindin levels remain relatively unaffected 
in EOMs205,216,217.

The role of respiratory chain complex subunits
Interestingly, alterations in mitochondrial respiratory chain com-
plex subunits also partly determine the spectrum of motor neuron 
damage. Investigators reported that altered Cytochrome c oxidase 
subunit Vb caused spinobulbar muscular atrophy, whereas Cyto-
chrome c oxidase subunit I microdeletion induced upper motor 
dominant motor neuron damage218,219. Furthermore, deficiency of 
complex I involved lower motor neuron damage involving spinal 
and bulbar areas220. This fits with the findings that anatomic region-
specific differences in mitochondrial respiration contribute to the 
localized neurodegeneration221.

In summary, these findings suggest that the regional loss of 
CaBPs expression, dependent on ER stress and defective mito-
chondrial respiration in the brain determines the anatomically 
variable manifestation of ALS. Collectively, it is also clear that 
motor neuron degeneration depends not only on postulated ammo-
nia neurotoxicity but also on deficits of CaBPs within motor 
neuron.
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Biomarkers and therapeutics
From this insight about ALS pathogenesis, diagnostic, disease 
monitoring and therapeutic measures emerge—fostering real hopes 
that ALS can be halted or even cured. Because ammonia is a vola-
tile organic compound, excreted from breath and skin, an ammonia 
breath test would present a simple, reliable, robust, inexpensive 
and non-invasive tool for diagnosis and monitoring of ALS222. This 
ammonia breath test would prove invaluable in expediting drug dis-
covery process. Aside from ammonia, gangliosides (e.g. Sialosyl-
globotetraosylceramide) and serum lysosomal enzymes could also 
serve as reliable adjuvant biomarkers of ALS142.

As for therapeutics, since ammonia toxicity appears to be a major 
player in ALS, ammonia-removal strategies seem to be the most 
effective strategy for ALS treatment223. Many existing ammonia-
lowering agents including those that act on the hepatic urea cycle can 
be employed224,225. These could include salbutamol, conclevan, neo-
mycin, sodium benzoate, ornithinephenyl acetate and L-ornithine 
aspartate223,226,227. Moreover, since impaired fast-twitch skeletal 
muscle glycolysis plays a role in ALS, improving muscle glyco-
lysis through various existing drugs such as serotonin agonists and 
AMPK agonists (e.g. D-xylose) is another promising pharmacolog-
ical strategy228,229. Additional therapeutic strategies could involve 
correcting system metabolic defects such as hyperglucagonemia 
and acidosis60,68. Moreover, other potent therapeutic targets could 
involve MAPK inhibitors, K-Cl co-transporters, and hexosami-
nidase agonists (e.g. Pyrimethamine)192,230,231. Finally, interventions 
that restore the levels of CaBPs should also be simultaneously 
applied for effective treatment.

Summary
ALS is a ghastly and incurable disease. Despite increasing wealth 
of data, ALS remains poorly understood. By analysing existing lit-
erature, this paper has not only identified important knowledge gaps 
in ALS aetiopathology but also filled them and tied them together. 
In doing so, this paper postulates a new integrative explanation of 
ALS and suggests potent therapeutic measures to treat ALS. Central 
to this explanation is the notion that ALS is a neurological disease 
of metabolic origin—resembling hepatocerebral degeneration223. 
This explanation posits that ALS pathology involves the inter-
play of two critical factors: 1) chronic hyperammonia caused by  

imbalanced interogan ammonia metabolism, mainly due to muscle 
and liver pathology (Figure 1 and Figure 2) altered CaBPs homeos-
tasis, mainly due to increased ER stress and impaired mitochondrial 
respiration (Figure 1).

Considering all these together in sequence, impaired fast twitch skel-
etal muscle carbohydrate metabolism activates purinergic and amino 
acid catabolism, leading to a release of ammonia, a neurotoxin. 
Alternatively, ammonia toxicity can also be induced or exacerbated 
by other endogenous (e.g. cerebral deamination, intestinal ammo-
niagenesis) and exogenous sources (i.e. neurotoxins). Owing to 
concurrent liver pathology (e.g. hepatic steatosis) in ALS, impaired 
hepatic ammonia detoxification occurs. Consequently, ammonia 
levels progressively builds up, leading to chronic hyperammonia. 
Since ALS pathology also involves loss of neuroprotective CaBPs 
(i.e. calbindin, calreticulin and parvalbumin), ammonia neurotoxic-
ity in the absence of CaBPs leads to ALS. Ammonia damages motor 
neurons through a range of pathways. These pathways include 
impaired macroautophagy-endolysosomal impairment, Golgi frag-
mentation, oxidative/nitrosative stress and reactive microglial and 
astrogliosis. These mechanisms explain a range of histopathologi-
cal and neurophysiological hallmarks of ALS such as bunia bod-
ies and neuronal hyperexcitability. Finally, since ALS appears to 
be associated with HD, dementia and Parkinsonism this framework 
can be generalised to explain these disorders33,89,90.
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ALS is a devastating disease of uncertain etiology and no effective therapies are available. As a result,
there is a temptation to speculate about underlying causes in the hopes of hitting on the right answer. In
this case, the author without any record of studying either ALS pathology or ammonia metabolism has
proposed a novel integrative explanation in which impaired glycolytic metabolism in fast twitch skeletal
muscle and liver pathology leads to chronically elevated ammonia levels that leads to altered Ca
binding protein homeostasis due to ER stress and impaired mitochondrial respiration. Based on this idea,
the author proposes that ammonia removal therapies would be effective treatments for ALS.

The first requirement of any disease model is that it be consistent with known facts about the disease.
Unfortunately, this model fails immediately on two counts. First, there is no evidence that interorgan
ammonia levels are chronically elevated in ALS. People have been looking for plasma biomarkers for
early diagnosis and none have reported elevated ammonia as a candidate in either ALS patients or
animal models. The author does not cite any relevant patient studies and the one animal model cited
(Bame, et al. 2014) does not find a significant correlation between ammonia levels and SOD1 G93A
pathology. Similarly, liver pathology is not a hallmark of the disease. While skeletal muscle wasting is
seen, this is associated with lack of activity, rather than a primary defect in glycolysis. 
               
Second, ammonia toxicity is a well-documented condition in the brain and other tissues. While there are
neurotoxic effects that include cortical atrophy, demyelination and edema (see for example Braissant, et
al. 2013), none of these changes are specific to motor neurons (upper or lower) nor is there any evidence
of ALS-like pathology in either patients with hyperammonemia or animal models with chronically elevated
ammonia. Thus, patients with ALS show no evidence of elevated ammonia levels and patients with
hyperammonemia do not have ALS-like symptoms. Curiously, both the Bame and the Braissant
references are listed in the bibliography, but the conclusions are misrepresented as being consistent with
the thesis. 

Although the manuscript uses many buzzwords currently popular in the neurodegeneration field
(autophagy, ER-stress, Ca  homeostasis, neuroinflammation, etc.), the logic that relates changes in
these parameters to ammonia metabolism is never made clear. The diagrams are convoluted and have
little explanatory power. In particular, Figure 2 manages to be so densely packed with symbols and labels
that it is uninterpretable. In contrast, the source figure from Kiernan, et al. 2011 that was adapted is
sparse and focused.

In sum, while the author has gathered a substantial bibliography, the main hypothesis is falsified by the
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In sum, while the author has gathered a substantial bibliography, the main hypothesis is falsified by the
literature and the utility of this opinion piece is therefore minimal. I would not consider this suitable for
indexing in a rigorous journal.

I have read this submission. I believe that I have an appropriate level of expertise to state that I
do not consider it to be of an acceptable scientific standard, for reasons outlined above.

 No competing interests were disclosed.Competing Interests:
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 Smita Saxena
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This opinion article by Bhavin Parekh puts forward an interesting hypothesis about how ammonia
neurotoxicity might influence and propagate ALS pathology. The article provides a concise introduction to
the etiology of ALS with primary focus on the involvement of the skeletal muscle and liver in ALS
pathogenesis. The author postulates a novel premise centering on the involvement of the liver and the
distinctive occurrence of hepatic steatosis in motor neuron diseases including ALS. In depth literature is
discussed for the existence of hepatic steatosis and hyperhomocysteinemia in ALS patients and other
motor neuron diseases.
 
The opinion article then focuses on ammonia and imbalances in interorgan ammonia metabolism and
further discusses how this specific ammonia imbalance induces functional deficits in organelles (Golgi,
ER, lysosomes), thereby impairing critical ALS associated pathways such as macroautophagy,
oxidative/nitrosative stress, neuroinflammation, and hyperexcitability of motor neurons. Lastly, the authors
search for a conceptual framework to account for clinical heterogeneity observed with respect to upper
and lower motor neurons in ALS and they suggest that calcium binding proteins (CaBPs) are key
molecules involved in neutralizing ammonia toxicity. The author further discusses the role of calcium
binding proteins such as Calreticulin in ER stress and ALS pathogenesis and proposes that ammonia
neurotoxicity and the parallel loss of expression of CaBPs leads to ALS.
 
Overall the review is informative, well written and postulates an interesting hypothesis which might be of
general interest to the neurodegeneration field. One of the limitations of this opinion article is that the
discussion about CaBPs is restricted to Calreticulin in motor neurons, while recent studies have
implicated various other ER chaperones in the ALS pathogenesis. The lack of these recent citations in the
discussion concerning the involvement of ER chaperones in ALS does weaken the hypothesis.
Nevertheless, this article provides an interesting area of reading and brings forward new experimental
ideas for the further understanding of ALS and other neurodegenerative disorders.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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This Opinion Article introduces an interesting hypothesis connecting ammonia with ALS. The article
initially begins with a discussion about the variety of etiologies of ALS and how their disparate onset and
pathology is an unexplained area in the field. His main argument is the liver may be a locus for the variety
of etiologies and specifically, hepatic steatosis is a unique link to motor neuron diseases, including ALS.
 
This Opinion Article is replete with references supporting each of the statements from skeletal muscle to
the various metabolic pathways (e.g. glycolysis and glycogen metabolism), to the deficits in vital
organelles (e.g. lysosomes and Golgi). The latter part of the review introduces the role of calcium binding
proteins and how ammonia dyshomeostasis contributes to neurodegeneration.
 
The only shortcoming is the discussion on the mechanism of ammonia which mainly focuses on the in

 application and exposure to ammonia; no chemical mechanisms following ammonia’s path ofvitro
chemical reaction using labeled material is cited. While it is not the role of the Opinion Article to present
these types of experiments. The lack of these cited references does weaken the hypothesis of ammonia’s
connection to ALS. However, this article provides an interesting area of reading that may open new
avenues of experimentation for researchers that are focused on understanding the connection between
ammonia and not only ALS, but other diseases such as HD and PD.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.
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