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Extensive β-amyloid (Aβ) deposits in brain parenchyma in the form of senile plaques and in blood vessels in the form of amyloid
angiopathy are pathological hallmarks of Alzheimer’s disease (AD). The mechanisms underlying Aβ deposition remain unclear.
Major efforts have focused on Aβ production, but there is little to suggest that increased production of Aβ plays a role in Aβ
deposition, except for rare familial forms of AD. Thus, other mechanisms must be involved in the accumulation of Aβ in AD.
Recent data shows that impaired clearance may play an important role in Aβ accumulation in the pathogenesis of AD. This review
focuses on our current knowledge of Aβ-degrading enzymes, including neprilysin (NEP), endothelin-converting enzyme (ECE),
insulin-degrading enzyme (IDE), angiotensin-converting enzyme (ACE), and the plasmin/uPA/tPA system as they relate to amy-
loid deposition in AD.

Copyright © 2006 Deng-Shun Wang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

INTRODUCTION

Alzheimer’s disease (AD) is the commonest cause of senile
dementia and increases in frequency with age. Clinically, AD
is characterized by early and progressive memory loss due to
neuronal and synaptic loss in the cortex and limbic struc-
tures, including the hippocampus and amygdala. In later
stages of the disease process, the extensive involvement of
cortical and subcortical regions results in loss of higher cog-
nitive abilities, including speech and praxis, and in impaired
motor abilities. Grossly, AD brains show global atrophy and
reduced weight and volume. Histologically, AD is character-
ized by amyloid plaques, neurofibrillary tangles, dystrophic
neurites, extensive neuronal loss, and gliosis.

Although beta-amyloid (Aβ) accumulation and senile/
neuritic plaque formation are striking morphological hall-
marks of AD and widely used in the neuropathologic diagno-
sis of AD, it is clearly recognized that amyloid deposition in
the brain parenchyma and in vessels also is common for non-
demented individuals in advanced age. Many possible expla-
nations for excessive Aβ deposition have been put forward,
including increased production, decreased degradation, and
abnormal transport between brain parenchyma and plasma
or CSF [1–3]. Although overproduction of Aβ is critical to
the pathogenesis of some forms of familial AD, there is still
little evidence to suggest that increased Aβ production is

important in amyloid deposition in aging and sporadic AD.
Recently, the role of degradation has been increasingly rec-
ognized in Aβ homeostasis. Several enzymes have been de-
scribed with a range of abilities to degrade Aβ. This review
will focus on enzymes capable of degrading Aβ and their po-
tential significance to the pathogenesis of AD.

THE AMYLOID CASCADE HYPOTHESIS

The mechanisms underlying the pathogenesis of AD remain
unclear and are hotly debated. One proposal focuses on Aβ
production and deposition, the so-called amyloid cascade
hypothesis (Figure 1) [4–6]. This hypothesis posits that in-
creased Aβ production and deposition plays the key role in
triggering neuronal dysfunction and death in AD. Evidence,
including Aβ deposition in AD brain, the toxic properties of
Aβ to neurons in vitro, and the identification of mutations
in amyloid precursor protein (APP) in familial early onset
AD have supported the amyloid cascade hypothesis. Based
on this theory, tremendous efforts had been made during the
last decade to uncover the mechanisms underlying the pro-
duction of Aβ. From these studies it has been shown that se-
quential cleavage of APP by β-secretase and γ-secretase gen-
erates Aβ peptides (Figure 2) [7, 8]. Indeed, pharmacologic
intervention targeted at Aβ generation through inhibitors
of β-site cleaving enzyme (BACE) and γ-secretase is being
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Figure 1: Amyloid cascade hypothesis. Aβ is a normal metabo-
lite which, under physiological conditions, is constantly produced
and quickly degraded. Due to genetic defects such as mutations
in APP, PS1, or PS2, Aβ production is increased, resulting in fa-
milial AD. A similar phenotype can occur with reduction in the
Aβ catabolic pathways. Accumulating Aβ will initially oligomer-
ize, gradually form fibrils, and culminate in microscopically visible
amyloid plaques. Soluble and fibrillar Aβ and associated plaque pro-
teins are toxic to neurons, resulting in synaptic loss, the formation
of neurofibrillary tangles, and eventual neuronal death and AD [5].

widely pursued [9, 10]. Attempts to block or regulate those
two enzymes together with immunotherapy aimed at reduc-
ing brain Aβ have been or will soon be tried in AD patients
[9, 11–13].

CANDIDATE ENZYMES FOR Aβ DEGRADATION

Altering catabolism is another way to reduce Aβ levels
in the brains of AD. Many proteases or peptidases have
been reported with the capability of cleaving Aβ either
in vitro or in vivo. These include neprilysin (NEP) [14–
16], endothelin-converting enzyme (ECE)-1 [17], insulin-
degrading enzyme (IDE) [18–20], angiotensin-converting
enzyme (ACE) [21], uPA/tPA-plasmin system [22, 23],
cathepsin D [24, 25], gelatinase A [26], gelatinase B [27],
matrix metalloendopeptidase-9 [28], coagulation factor XIa
[29], antibody light chain c23.5 and hk14 [30], and α2-
macroglobulin complexes [31]. Many of them have more
than one cleavage site in the Aβ peptide (Figure 3). The ba-
sic biological features of these enzymes are summarized in
Table 1. There are probably other proteases with potential to
cleave Aβ if all peptide bonds are taken into consideration,
but only those physiologically or pathologically relevant are

Nonpathogenic
pathway Aβ Mutated

APP

Mutated
PS1&2

β-secretase (BACE1,2)

γ-secretase (presenilin,

Nicastrin, Aph-1, Pen-2)

APP

α-secretase

Figure 2: Aβ biogenesis. Normally, Aβ is derived from the trans-
membrane region of amyloid precursor protein (APP) through the
sequential cleavage by BACE and γ-secretase. Under physiological
conditions, Aβ maintains a steady-state level and is necessary for
multiple physiological functions [168]. In AD, Aβ production is in-
creased due to mutations in APP and/or in presenilin (PS1 and PS2)
genes. There is an α-secretase cleavage site located between β- and γ-
secretase cleavage sites that generates soluble, nonpathogenic pep-
tides [8].

discussed. Among them, NEP, IDE, ECE, ACE and plasmin,
tissue plasminogen activator (tPA), and urokinase-type plas-
minogen activator (uPA) system are the most promising Aβ-
degrading candidates.

NEPRILYSIN (NEP)

NEP is also known as neutral endopeptidase-24.11, EC
3.4.24.11, enkephalinase, neutrophil cluster-differentiation
antigen 10 (CD10), or common acute lymphoblastic leuke-
mia antigen (CALLA) [32–38]. In humans, the NEP gene
is located on chromosome 3q21–q27 and contains 24 exons
[39, 40]. NEP is composed of 750 amino acids with a cal-
culated molecular weight of approximately 86 kDa [41]. Be-
cause of abundant posttranslational modifications, especially
glycosylation [42], NEP from human brain tissues migrates
between 97–110 kDa on denaturing gel electrophoresis. As a
plasma membrane-bound glycoprotein, NEP is composed of
a short N-terminal cytoplasmic tail, a membrane-spanning
domain, and a large C-terminal extracellular catalytic do-
main. The latter contains a HExxH zinc-binding motif [43,
44], which facilitates the hydrolysis of extracellular oligopep-
tides (< 5 kDa) on the amino side of hydrophobic residues,
such as the small, hydrophobic Aβ40 and Aβ42 peptides.

NEP is widely expressed in many normal tissues includ-
ing the brush-border of intestinal and kidney epithelial cells,
neutrophils, thymocytes, lung, prostate, testes, and brain
[45–49]. In the brain, it is expressed on neuronal plasma
membranes, both pre- and postsynaptically [50, 51], and is
most abundant in the nigrostriatal pathway, as well as in
brain areas vulnerable to amyloid plaque deposition, such as
the hippocampus [43, 52].
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Figure 3: Cleavage sites of Aβ by various enzymes including NEP (N) [14, 169, 170], ECE (E) [17, 169], IDE (I) [170, 171], plasmin (P)
[172], and ACE (A) [21]. β: γ-secretase; γ: γ-secretase; 40: Aβ40; 42: Aβ42. Modified from [173].

Table 1: Features of selected Aβ-degrading enzymes.

Protease a.k.a. Class Subcellular location Substrates in addition to Aβ

Neprilysin
CD10, CALLA,

EC 3.4.24.15
M

Cellular & intracellular

membrane including

presynaptic membrane

Enkephalin, cholecystokinin, neuropeptide Y,

substance P, opiod peptides, atrial natriuretic

peptides, bombesin-like peptides, chemotatic

peptides, adrenocorticotropin homone (ACTH)

Insulin-degrading enzyme
EC 3.4.24.56

Insulysin, IDE
M

Cytosol, cellular, and Insulin, glucagon, atrial natriuretic factor,

intracellular membrane β-endophin amylin, APP intracellular domain

extracellular space TGFα

Endothelin-converting enzyme
EC 3.4.24.71

M
Trans-Golgi network Big endothelin, substance P, bradykinin,

ECE cell surface oxidized insulin B chain

Angiotensin-converting enzyme

EC 3.4.15.1;

M
plasma membranes

perinuclear region
Angitensin-I, enkaphalins, bradykininACE; dipeptidyl

carboxypeptidase

Plasmin/uPA/tPA

EC 3.4.21.31

S Extracellular space fibrin, plasminogon, & other matrix proteins

tissue plasminogen

activator for tPA;

urokinase-type

plasminogen activator

for uPA

Note: a.k.a. is also known as M: metalloproteases and S: serine.

The first clue that NEP was involved in Aβ degradation
was provided by Howell et al [14]. Using high-performance
liquid chromatography (HPLC) combined with mass spec-
troscopic analysis, they found that NEP cleaved Aβ between
residues Glu3-Phe4, Gly9-Trp10, Phe19-Phe20, Ala30-Ile31,
and Gly33-Leu34. The true breakthrough demonstrating the
importance of NEP was demonstration that NEP was the
rate-limiting enzyme for Aβ degradation in vivo made by
Iwata et al in 2000 [15]. After injecting radio-labeled Aβ pep-
tides into rat hippocampus in the presence or absence of var-
ious protease inhibitors, the resultant Aβ fragments were an-
alyzed by HPLC equipped with flow scintillation. Iwata and
coworkers found that Aβ42 was degraded in the hippocam-
pus, with a half-life of 17.5 minutes and with Aβ10–37 as
the major catabolic intermediate. Infusion of thiorphan, a
specific NEP inhibitor [53], directly into rat hippocampus

for 3 days elevated endogenous Aβ levels, and infusion for
30 days resulted in further endogenous Aβ accumulation
and accumulation of extracellular Aβ deposits resembling
amyloid plaques [15, 54]. They also found that almost all
radio-labeled Aβ42 could be recovered from the hippocam-
pus 1 hour after the injection, which suggested that Aβ clear-
ance depends predominantly on local proteolysis, rather than
transport across the blood brain barrier into the blood or
into the cerebrospinal fluid [15]. Interestingly, in another
independent study, it was found that radio-labeled Aβ40
injected into mouse brain was more readily transferred to
blood, compared with Aβ42, suggesting that the relative con-
tributions of degradation and transport to brain Aβ clear-
ance might be different for these two peptides [55]. Fur-
thermore, it had been found that NEP was able to degrade
not only monomeric, but also oligomeric forms of both
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Aβ40 and Aβ42 [56], both intracellularly and extracellularly
[57].

The role of NEP in Aβ degradation was solidified by
studies in transgenic mice. In partially NEP deficient ani-
mals, the degradation of both endogenous and exogenous
Aβ peptides was tightly correlated with gene dose, suggesting
that even partial down-regulation of NEP activity could con-
tribute to Aβ accumulation. These studies also established
that NEP is a physiologically relevant Aβ degrading enzyme
[16]. On the other hand, overexpression of NEP by gene
transfer in amyloid-depositing transgenic mice slowed, and
in some cases reversed Aβ deposition [54, 58–60].

Studies in human subjects have also supported the no-
tion that NEP plays a key role in brain Aβ metabolism and
AD pathogenesis. As mentioned above, aging is one of the
most important risk factors for AD [61] and is associated
with the accumulation of Aβ even in cognitively normal el-
derly [62, 63]. Although systematic study of the relation-
ship between NEP and aging in humans remains to be done,
aging mice show region selective decreases in NEP mRNA
expression [52, 64, 65]. These changes occurred despite
maintenance of synaptic and neuronal numbers suggesting
gene specificity. Immunohistochemical studies on AD brains
have revealed NEP immunoreactivity in senile plaques [49].
Quantitative analysis showed that both NEP mRNA and pro-
tein were significantly lower in AD than in age-matched nor-
mal control brains [65–68]. Reductions occurred selectively
in the regions most vulnerable to AD pathology, but not in
other brain areas such as cerebellum or in peripheral organs
[65, 66]. NEP was also decreased in the cerebrospinal fluid
(CSF) of prodromal Alzheimer’s disease patients [69], con-
sistent with cause and effect. Interestingly, an inverse rela-
tionship between NEP and Aβ levels in AD brain vascula-
ture has been reported. These data suggested that NEP may
play a role in cerebral amyloid angiopathy (CAA), another
very common pathological change found in AD brains [70].
Consistent with these findings, Aβ mutations identified in fa-
milial AD found in Dutch, Flemish, Italian, and Arctic fami-
lies do not increase Aβ production, but rather cause presenile
parenchymal amyloidosis and CAA [71].

Recent data from our study showed that NEP decreased
in AD brains, but not in pathological aging (PA), a term to
describe neurologically normal individuals with high brain
amyloid burden (sufficient to diagnose AD with the Khacha-
turian criteria), but minimal or no neurofibrillary degener-
ation (Braak neurofibrillary tangle stages of three or less)
[63, 72]. Interestingly, NEP levels were inversely correlated
with a range of amyloid measures including senile plaque
counts and levels of Aβ40 and Aβ42 in cortical homogenates.
The NEP levels were also correlated with clinical cognitive
scores, with highest levels of NEP in those with best per-
formance on clinical measures, regardless of whether or not
there were cortical amyloid deposits [72]. These results sug-
gest that the deposition of Aβ in AD and PA brains differs in
some way, either quantitatively or qualitatively. The results
were not merely due to synaptic loss in AD, but also not in
PA as measured by synaptic markers since NEP was not de-
creased in frontal dementia with decreased synaptic markers.

These data support the hypothesis that decreased NEP con-
tributes to Aβ deposition in AD, but perhaps in means that
are not entirely linked to visible amyloid deposition [72],
perhaps implicating failed degradation of toxic soluble inter-
mediates in AD.

Taken together, these data indicate that NEP is an im-
portant enzyme that contributes to the normal metabolism,
accumulation, and perhaps toxicity Aβ in AD.

ENDOTHELIN-CONVERTING ENZYME (ECE)

Endothelin (ET) is a potent vasoconstrictive peptide pro-
duced in vascular endothelial cells [73]. In addition, ET also
plays an important role in early development of the neural
crest and, thus, organogenesis [74]. Endothelin-converting
enzyme (ECE) is a transmembrane metalloprotease that cat-
alyzes the conversion of pro-ET (also referred to big-ET)
into vasoactive endothelin. So far, two different isoforms of
ECE—ECE-1 and ECE-2—have been cloned in humans [75–
77]. It has been estimated that expression of ECE-2 is only 1–
2% as much as the more abundant ECE-1 based on compar-
ative mRNA transcript levels in endothelial cells [78]. Studies
have suggested that ECE-1, but not ECE-2, is a possible brain
Aβ-degrading enzyme [17].

ECE-1 consists of 758 amino acids [79] and is the
major enzyme responsible for specific cleavage of biologi-
cally inactive pro-ET-1 to active ET-1 in vascular endothe-
lial cells. It is a membrane-bound type II metalloprotease
and shares significant sequence identity (about 38% homo-
logue at the amino acid level) with NEP. ECE-1 is abun-
dantly expressed in the vascular endothelial cells of all or-
gans and is also widely expressed in nonvascular cells of
many tissues, including lung, pancreas, testis, ovary, adrenal
gland, and kidney [75, 80–83]. Recent systematic immuno-
histochemical analyses have shown ECE-1 widely expressed
in human brain, including neurons in the diencephalon,
brainstem, basal nuclei, cerebral cortex, cerebellar hemi-
sphere, amygdala, and hippocampus [84, 85]. Four isoforms
of ECE-1 have been identified to date [75, 86–90]. All of
them are encoded by a single gene located on chromosome
1 (1p36), and they differ in their cytoplasmic tail domains
through alternative promoter usage. The four isoforms cleave
pro-ET with similar efficiency, but they differ in their tis-
sue distribution and subcellular localization [87, 90]. Hu-
man ECE-1a is localized predominantly in plasma mem-
brane. Human ECE-1c and ECE-1d have also been reported
to be localized in plasma membrane, but also in intracellu-
lar compartments. In contrast, human ECE-1b is expressed
exclusively intracellularly, particularly in Golgi-like struc-
tures and the cytoplasmic face of the plasma membrane [90–
92].

Although both ECE-1 and NEP are metalloendopepti-
dases and thus subject to competitive inhibition by the met-
alloprotease inhibitors nanomolar concentrations of thior-
phan and phosphoramidon can inhibit NEP, whereas ECE-
1 is inhibited only at micromolar concentrations of phos-
phoramidon, and it is insensitive to thiorphan [53]. Another
difference is that ECE-1 is active only at neutral pH, while
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NEP is active over a slightly wider pH range (pH 6.5–7.5)
[72, 93].

By using HPLC, mass spectrometry, and N-terminal se-
quence analysis, Eckman and her colleagues provided the
first evidence that ECE-1 may be involved in the metabolism
of Aβ. They found that ECE-1 expressed in cultured Chinese
hamster ovary cells that lack endogenous ECE activity, re-
duced the concentration of extracellular Aβ by up to 90%. In
vitro, recombinant ECE-1 cleaves synthetic Aβ40 in at least
three sites, resulting in formation of Aβ fragments Aβ1–16,
Aβ1–17, Aβ1–19, and Aβ20–40 [17]. In mice deficient for
ECE-1 and the closely related ECE-2, both Aβ40 and Aβ42
levels were significantly higher when compared with age-
matched wild-type littermate controls. Taken together, the
results suggest that ECE activity might be an important fac-
tor involved in Aβ clearance in vivo [94]. How important is
ECE-2 in this process is yet to be determined, and direct ev-
idence that ECE contributes to Aβ deposition in human AD
brains remains to be determined.

INSULIN-DEGRADING ENZYME (IDE)

IDE is also known as EC 3.4.24.56, insulin protease, in-
sulysin, or insulinase [95, 96]. Cloned human IDE consists
of 1019 amino acids [97]. The IDE gene was mapped to
chromosome 10q23–q25, which made it a candidate gene
for the Alzheimer disease-6 locus (known as AD6) [98, 99].
It is a zinc metalloendopeptidase that hydrolyzes multiple
peptides, including insulin, glucagon, atrial natriuretic fac-
tor, transforming growth factor-α, β-endorphin, amylin, and
the APP intracellular domain (AICD) in addition to Aβ
[100, 101]. Purified IDE from several mammalian tissues,
including blood cells, skeletal muscle, liver, and brain, mi-
grates as a 110 kDa band on denaturing gel electrophore-
sis, but it migrates as a 300 kDa band under nondenatur-
ing conditions. These results suggest that native IDE exists
as a mixture of dimers and tetramers [100, 102]. IDE is
active at neutral pH and dimers have greater activity than
monomers [96, 103, 104]. Subcellularly, IDE is primarily lo-
cated in the cytosol, although it also had been found in per-
oxisomes [105], plasma membrane [106, 107], and in a se-
creted form [20].

Kurochkin and Goto reported the first evidence that IDE
might involved in Aβ degradation [18]. They found that
125I-labeled synthetic Aβ specifically cross-linked to a single
110 kDa protein, which was shown to be IDE, in cytosol frac-
tions from rat brain and liver. Purified rat IDE effectively de-
graded synthetic Aβ in vitro. Subsequently, it was shown that
an IDE-like activity from soluble and synaptic membrane
fractions from postmortem human and fresh rat brain also
degraded Aβ peptides [19, 108]. Studies in the cultured cells
also proved that IDE could degrade both endogenous and
synthetic Aβ in vitro [20, 109]. The overexpression of IDE
in Chinese hamster ovary cells resulted in a marked reduc-
tion in levels of intracellular detergent-soluble Aβ, as well as
reduced levels of extracellular Aβ40 and A42 [110].

Transgenic mice overexpressing IDE showed significant
reductions of total amyloid burden and improved survival

rates [58], while IDE knockout mice demonstrated a clear el-
evation of brain Aβ and the APP intracellular domain. Addi-
tionally, heterozygous mice exhibited Aβ levels that were in-
termediate between wild-type controls and knock-out mice,
indicating that IDE affected Aβ level in a gene-dose depen-
dent manner [111, 112].

Immunohistochemical studies showed that IDE was pri-
marily expressed in neurons, but was also located in senile
plaques, in AD brain [113]. The finding that IDE mRNA and
protein were reduced in the hippocampus of AD patients, es-
pecially in APOE e4 carriers, suggested that APOE e4 might
be sensitive to IDE expression levels with downstream ef-
fects on Aβ metabolism [114]. Like NEP, IDE also showed
progressively decreased expression that was age- and region-
dependent [65]. Thus, strong evidence exists that IDE is an-
other important Aβ-degrading enzyme that may play a role
in the amyloid pathology of AD.

ANGIOTENSIN-CONVERTING ENZYME (ACE)

Angiotensin-converting enzyme, also known as EC 3.4.15.1,
dipeptidyl carboxypeptidase, or ACE, is a membrane-bound
zinc metalloprotease. At least two ACE isotypes (ACE1 and
ACE2) had been cloned in humans, thus far [115]. ACE is
composed of 732 amino acids [116] and contains two pro-
teolytically active domains that are located at N- and C-
termini, respectively [117]. The major function of ACE is
to catalyze the conversion of angiotensin I (AngI) to an-
giotensin II (AngII), which plays an important role in main-
taining blood pressure, body fluid, and sodium homeostasis
[118].

ACE is also widely expressed both outside and within the
CNS. In the brain, ACE was found at highest levels in cir-
cumventricular organs such as the subfornical organ, area
postrema, and the median eminence [119]. It was detected in
other areas as well, including the caudate nucleus, putamen,
substantia nigra pars reticularis, nucleus of the solitary tract
(NTS), dorsal motor nucleus, median preoptic nucleus, and
choroid plexus in rat, human, rabbit, sheep, monkey [120].

Most of the evidence for the potential relationship be-
tween ACE and AD has come from human genetic studies
[121–127]. Patients at higher AD risk had an insertion (I)
polymorphism within intron 16 of the ACE gene, which was
associated with AD [121]. Interestingly, patients with a dele-
tion polymorphism had a lower risk of AD [123, 124]. Ge-
netic analysis of postmortem AD brains showed homozygous
I/I was associated with higher brain Aβ levels compared to
D/D allele carriers [128]. Results from earlier preclinical and
clinical studies suggested that ACE might have a role in the
modulation of cognitive memory processes in the rat and in
humans [129].

Hu and coworkers provided the first evidence that ACE
could significantly inhibit the aggregation, deposition, and
cytotoxicity of Aβ in vitro by cleavage of Aβ at Asp7-Ser8.
This was a surprising finding given the known specificity
of ACE [130] and the failure of ACE inhibitors to alter Aβ
degradation in vivo [15, 16]. Whether this discrepancy was
due to different experimental systems (eg, in vitro versus in
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vivo) is not clear. Further work in other experimental sys-
tems such as ACE-deficient or knockout animals is needed to
clarify the role ACE might have in amyloid pathology in AD.

A very recent report by Hemming and Selkoe, showed
that ACE expression promoted the degradation of endoge-
nous Aβ40 and Aβ42 [131]. Using site-directed mutagenesis,
they also showed that both N- and C-terminal proteolytically
active domains contributed to Aβ degradation. Captopril, a
widely prescribed ACE inhibitor blocked Aβ cleavage in cul-
ture medium. This is potentially very important observation
because it suggests widely used ACE inhibitors could increase
cerebral Aβ levels in patients with hypertension.

Unlike other candidate Aβ-degrading enzymes discussed
above, the levels of both ACE protein and activity were ele-
vated in postmortem brains [132–134]. Given that other Aβ-
degrading enzymes such as NEP and IDE are decreased in
AD brains compared to age-matched healthy controls [65–
68, 72], ACE may show compensatory up-regulation in re-
sponse to accumulating Aβ. Along with concurrent evalua-
tion of NEP, ECE, IDE, ACE, and possibly others in the same
panel of postmortem human brains with the spectrum of
pathology from normal aging, early and advanced AD will
be helpful in clarifying respective functions of these pro-
teases.

PLASMIN, TISSUE PLASMINOGEN ACTIVATOR (tPA),
AND UROKINASE-TYPE PLASMINOGEN
ACTIVATOR (uPA)

Plasmin is a serine protease important in the degradation
of many extracellular matrix components [135]. The princi-
pal components of this system include plasminogen/plasmin,
tissue plasminogen activator (tPA), urokinase-type plasmin-
ogen activator (uPA) [136]. tPA and uPA cleave plasmino-
gen to yield the active serine protease, plasmin. In the ner-
vous system, plasminogen and uPA are expressed in neu-
rons, while tPA is synthesized by neurons and microglial cells
[137]. The plasmin system is involved in many normal neu-
ral functions, such as neuronal plasticity [138], learning, and
memory [139].

Several studies showed that Aβ aggregates could substi-
tute for fibrin aggregates in activating tPA, and suggested
that tPA may be activated by Aβ in AD [140, 141]. Later,
it was reported that brain plasmin enhanced Aβ degrada-
tion [142, 143], while plasmin and its activity were decreased
in AD brains [142, 144]. In cultured cells purified plasmin
significantly decreased the level of neuronal injury induced
by aggregated Aβ, presumably by degrading Aβ [143, 145].
However, the in vivo effect of plasmin could be very dif-
ferent given that serum amyloid P, that is associated with
amyloid pathology in AD brain, is able to prevent proteol-
ysis of purified cerebral Aβ [146]. Indeed, plasminogen defi-
cient mice did not show increased Aβ in the brain or in the
plasma and suggested that plasmin does not regulate steady-
state Aβ levels in nonpathologic conditions [147], although
it might be involved in the degradation of pathological Aβ
aggregates.

OXIDATIVE DAMAGE TO Aβ-DEGRADING
ENZYMES

Some studies have indicated that genetic polymorphisms of
Aβ-degrading enzymes including NEP, IDE, ACE might be
associated with AD [122, 125, 127, 148–155], although these
results remain controversial [128, 156–161]. Further clinical
and pathologic studies of large numbers of individuals carry-
ing various mutations in possible Aβ-degrading enzymes are
needed to clarify this issue.

In addition to genetics, many environmental factors such
as oxidative stress can potentially impair the activity of Aβ-
degrading enzymes [162–164]. Recent data showed that NEP
and IDE might be substrates for oxidative damage during ag-
ing and in AD [65, 68]. Both NEP and IDE from AD brain
tissues could be modified by 4-hydroxy-nonenal (HNE), a
by-product of lipid peroxidation [165]. The ratio of oxidized
NEP from frontal cortex [68] and IDE from hippocampus
[65] was greater in AD brains than in age-matched controls.
Studies reported by Russo et al failed to confirm these find-
ings [166]. In their study, they found that NEP mRNA from
AD brains was significantly lower than in controls, but not
NEP protein [166], which was contradictory to several pre-
vious reports [65–68]. One possible reason for such a dis-
crepancy might be purely technical, reflecting different im-
munoprecipitation protocols and incomplete antigenic re-
covery [166]. Although very recent data confirmed that both
recombinant IDE and the extracellular domain of NEP were
modified by HNE in vitro [167], additional, in vivo studies
of neuronal proteases are needed to clarify this potentially
very important mechanism for Aβ deposition in AD devel-
opment.

SUMMARY

Since the majority of AD cases are sporadic without clear ge-
netic causes, and that even a large percentage of familial cases
cannot be explained by the overproduction of Aβ, multiple
factors are likely involved in the pathogenic metabolism of
Aβ in AD (Figure 4). Exploration for possible mechanisms
underlying Aβ accumulation in AD is crucial to resolve these
issues. There are growing and compelling data now avail-
able to implicate Aβ degradation in AD pathogenesis. Aβ
is a substrate of a wide range of proteases, which are likely
contribute to the accumulation of Aβ in AD. Both enzymatic
loss through genetic mutations and nongenetic factors, such
as direct oxidative damage or enhanced production of in-
hibitors, may contribute to aberrant Aβ catabolism. Current
results from in vitro and animal models support NEP, IDE,
ECE, and ACE as probable enzymes for Aβ degradation, but
data from humans remain largely missing. Due to clear limi-
tations of animal models, validation in human subjects with
AD will be critical to establish the physiologic significance
of these proteases. Measurement of brain Aβ levels, amyloid
pathology and clinical cognitive performance with enzyme
activity, location and expression will help to clarify which of
these many enzymes that are capable of cleaving Aβ are actu-
ally key players in human disease.
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Figure 4: Possible brain Aβ clearance mechanisms. Aβ peptides may be removed by enzymatic degradation within brain parenchyma
[38, 173] or they can be transported through the blood-brain-barrier into the blood or CSF by receptor for advanced glycation endproducts
(RAGE), ApoE, β-2-macroglobulin, and the low-density lipoprotein receptor (LRP) [3, 174–176]. The steady-state level of brain Aβ depends
upon a balance between production and catabolism. Increased production (like in familial AD) and/or decreased clearance (for most spo-
radic AD) will result in elevated brain Aβ levels and potentially trigger or accelerate the pathogenesis of AD. RAGE: receptor for advanced
glycation end products; LRP: low-density lipoprotein receptor-related protein.
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