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ABSTRACT: In this paper, we report an array of fiber-optic
sensors based on the Fabry—Perot interference principle and
machine learning-based analyses for identifying volatile organic
liquids (VOLs). Three optical fiber tip sensors with different
surfaces were included in the array of sensors to improve the
accuracy for identifying liquids: an intrinsic (unmodified) flat
cleaved endface, a hydrophobic-coated endface, and a hydrophilic-
coated endface. The time-transient responses of evaporating
droplets from the optical fiber tip sensors were monitored and
collected following the controlled immersion tests of 11 different
organic liquids. A continuous wavelet transform was used to convert the time-transient response signal into images. These images
were then utilized to train convolution neural networks for classification (identification of VOLs). We show that diversity in the
information collected using the array of three sensors helps machine learning-based methods perform significantly better. We explore
different pipelines for combining the information from the array of sensors within a machine learning framework and their effect on
the robustness of models. The results showed that the machine learning-based methods achieved high accuracy in their classification
of different liquids based on their droplet evaporation time-transient events.

1. INTRODUCTION

A liquid droplet in contact with a planar surface can be
classified as either pendant or sessile based on the orientation
of the surface normal with respect to the direction of gravity.
Pendant droplets are nonmoving droplets formed on flat
surfaces that have their normal oriented along a gravitational
force field. These droplets appear suspended on a supporting
surface and may be elongated due to the action of gravity. On
the other hand, a sessile droplet is formed when the droplet
rests on a supporting surface with its normal oriented opposite
to a gravitational force fleld and may be axisymmetrically
depressed due to the action of gravity. Thus, such droplets
appear to look flattened on the surface, due to the action of
gravity. Numerous properties of liquid droplets, such as
formation, geometry, and evaporation, have been investigated.1
These properties of liquid droplets are affected by various
factors, including chemical composition, surface tension, and
liquid viscosity.” When there is enough thermal activation
energy, molecules of a substance transition from a liquid phase
to a gas phase, causing evaporation.” Many applications and
modern instruments are used to monitor and observe a droplet
evaporation phenomenon and to understand particles in case
of solutions such as printing with an inkjet system® and
confocal microscopes.” Real-time monitoring of droplet
evaporation events is important in medical applications,
where it has been used to successfully detect patients with
gland dysfunctions.®
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Fiber-optic sensors (FOSs) have been employed effectively
in various sensing applications, including structural health
monitoring,7 down-hole monitoring,8 chemical and biological
sensing,” and seismic detection.'” FOSs have exploded in
popularity in engineering societies because they outperform
traditional electronic sensors by offering unique benefits such
as small size, immunity to electromagnetic interference, high
sensitivity and resolution, robustness in harsh environments,
remote operation, and multiplexing/distributed sensing capa-
bilities."' FOSs have been used for measuring various
parameters such as displacement, strain, temperature, and
pressure.'””"> Currently, FOSs are fabricated following
different designs, such as the fiber-optic gyroscopes,'® the
fiber grating sensors,17 the interferometer sensors,18
forth. Fiber-optic interferometers are widely utilized in the
analysis of liquid droplets,”~*' especially, the extrinsic Fabry—
Perot interferometer (EFPI)-based sensor, which has demon-
strated tremendous potential because it is simple and highly
sensitive."”**> Using the EFPI approach to monitor liquid
droplet evaporation events has been previously reported in the

and so
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literature.”>~>° However, the previous studies focused on
evaporation dynamics, but they did not use the experiment
data to identify liquids. Moreover, the model employed in the
present study provides a substantial improvement over the
classification models used in the previous studies.

Over the last few decades, many studies have been published
on the development and application of sensor arrays for the
identification and quantification of organic compounds.”® The
concept of the array of sensors is inspired by the mammalian
olfactory system where large numbers of receptors in the
senses of taste and smell generate distinct responses to the
same taste/smell. The information collected by all the
receptors is used to identify and discriminate different tastes
and smells. These receptor arrays are known for providing
extraordinary sensitivity and selectivity. Similarly, in some
cases, the response from a single sensor is not adequate for the
identification and discrimination of various liquids. However, if
several sensors are employed that generate varied responses to
the same liquid, different liquids can be identified and
discriminated by combining information provided by all the
sensors in an array. Researchers have investigated the use of
such arrays of sensors for various applications, such as
identifying and quantifying vapors by exploiting different
modalities like surface acoustic”” and the electrical resistance
of conducting polymers.”® Fusing signals from electronic-nose,
electronic-tongue, and electronic-eye for tea quality detection
using machine learning al§orithms have also been done and
achieved high accuracy.”” Chemometrics and curve-fitting
methods have also been used for the identification of analytes
and to compare the results with spectrophotometric
methods.*

Convolution neural networks (CNNs) are a set of machine
learning models that are primarily used for image processing
and computer vision tasks. CNN models are inspired by the
function of the human eye’' and involve a set of learnable
filters. Deep convolutional neural networks are used to great
effect in many difficult computer vision tasks like image
classification, segmentation, object detection, and so forth.
Extensions and modifications of machine learning models can
also be adapted for use with other kinds of data, which include
time-series data, graphical data, as well as tabular data.
Heartbeat categorization from electrocardiogram waveforms
is an example of such an application.”> Machine learning
approaches have been used in a variety of fields, including,
seismology, medicine, and remote sensing.33_3’5

In this study, the novelty is the array of FOSs with different
functional (chemical) coatings used to produce interconnected
data that results in higher accuracy of classification of the test
liquids. This approach mimics the established concept used in
electronic noses, electronic tongues, and electronic eyes.29 The
data from an array of optical sensors considered here are the
results of three different time-transient droplet evaporation
signals, where one is from an innate cleaved surface, another
from a surface treated to be hydrophobic, and the third from a
surface treated to be hydrophilic. The interactions of the
liquids with the different surfaces lead to differences in their
time-transient droplet evaporation signals due to the
interaction of the fiber-optic surface and the chemical nature
of each liquid. Instead of estimating the evaporation rates of
the liquid droplets based on the recorded time-transient signal,
the time-transient droplet evaporation signals from the array of
sensors are transformed to image data for liquid identification.
The combined interrelated information from the three fiber-
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optic surfaces should give more robust predictive outcomes
than using time-transient droplet evaporation signals from a
single type of fiber-optic surface. This paper presents the
development and characterization of an array of FOSs for
recording time-transient droplet evaporation signals. In
comparison to our previous paper,”* the capacity of the array
of FOSs to provide adequate information for discriminating

liquids was evaluated using a larger set of analytes.

2. EXPERIMENTAL SECTION

The basic configuration of the EFPI-based system composed of
an array of FOSs for recording liquid droplet evaporation time-
transient signals is illustrated in Figure 1. Figure la shows a
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Figure 1. Schematic of the experiment setup for liquid evaporation
studies and illustration of pendant droplets (EFPI cavities) forming an
EFPI-based sensor device. (a) Schematic diagram of the experiment
setup used to perform controlled immersions for recording the
evaporation of a liquid droplet. (b) Schematic illustration of pendant
droplets hanging from the three different surfaces of three tip sensors
included in the array of sensors: an innate surface (unmodified), a
hydrophobic surface, and a hydrophilic surface. PD: Photodetector;
FOC: Fiber optical circulator; SMF: Single-mode fiber; PC: Personal
computer; VOL: Volatile organic liquid; I, and I,: Intensities from
first and second EFPI reflectors, respectively.

schematic illustration of the experiment setup. A single
wavelength (3 dBm at 1550 nm) butterfly-packed semi-
conductor laser was employed as the light source. The laser
light was then routed to the fiber-optic tip sensor through a
fiber-optic circulator. The reflected light from the optical fiber
tip containing the droplet information was then sent to a high-
speed photodetector (Nirvana Detector, Model 2017). The
optical signal will be converted into an electrical signal, and the
time-domain electrical signal will be captured by a portable
oscilloscope (PicoScope 4642, Pico Technology). The time-
domain signal contains information related to the liquid
droplet modulated by evaporation, and the data were then
stored and analyzed on a computer. A linear stage stepper
motor (FCLS0, Newport) was employed for sensor handling
when dipping the FOS into and pulling the sensor out of the
target liquid. Figure 1b depicts the reflections produced by the
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liquid droplet at the fiber endface, one at the liquid-fiber
interface and the other at the liquid-air interface. Both
reflectors combine to create a low-finesse Fabry—Perot
interferometer cavity system. In the experiment, the fiber tip
is dipped into the test volatile organic liquid (VOL) and pulled
out from the VOL using the computer-controlled motorized
linear stage. As a result, a liquid droplet is formed at the surface
of the cleaved optical fiber endface. The liquid droplet at the
endface of the optical fiber can be treated as a transitory EFPI
cavity.

The evaporation of the pendant droplet causes the length of
the droplet to continuously decrease, resulting in quasi-
periodic variations in the reflected light intensity, according to
the physical variables described in ref 36. The oscilloscope
converts the intensity of the two interfering light beams into an
electrical signal, which was monitored as a function of time.
The time-transient signal for each droplet evaporation event
was recorded and processed for use in creating and improving
CNN models for liquid identification.

The array of sensors consists of three optical fiber tip sensors
with different endface surfaces, an innate (untreated cleaved tip
sensor), a hydrophobic surface tip sensor created by treating
the endface of an optical fiber with polydimethylsiloxane
(PDMS), and a hydrophilic surface tip sensor created by
treating the endface with diethylene glycol (DEG). A
hydrophobic surface repels water and causes water droplets
with high contact angles to form on the surface. In contrast,
hydrophilic surfaces are those that have a special affinity for
water. Water is attracted to hydrophilic surfaces, tending to
spread across them, resulting in low contact angles between the
water and the surface.

In this study, PDMS was used to create a hydrophobic
surface. PDMS is a commercially available and widely used
organic polymer. PDMS is a water-repellant material and can
be employed to create hydrophobic surfaces.”” DEG is another
commercially available organic compound with hydrophilic
properties.”® DEG is widely used as a humectant for products
like printing ink and glue. The hygroscopic properties of DEG
were exploited in this study to create a hydrophilic surface at
the endface of an optical fiber. Many methods exist for the
creation of robust hydrophilic and hydrophobic surfaces on
glass.””~*" The primary drawback in most of the methods is
the time taken for the formation of such a surface and/or the
cost of the method. Since our method involves the
construction and use of many fiber-optic tip sensors (with
different surfaces), we need a quick, inexpensive, and easily
repeatable process that reduces the turnaround time required
for the completion of the experiment. To create the different
surfaces involved (hydrophobic and hydrophilic) in our
experiment, we employ a simple and rapid immersion method.
The tip of a flat cleaved optical fiber was immersed in a PDMS
solution vertically using a motorized linear stage and then
pulled out. The immersion of the optical fiber lasted for S
seconds. After removal of the immersed tip, the optical fiber
sample was allowed to dry for 30 min. A hydrophilic fiber-optic
tip surface was made in a similar manner by repeating the
abovementioned process with DEG. In this study, 11 different
liquids were used for the controlled immersion dip/droplet
evaporation experiments, namely, decane, dimethylformamide
(DMF), isooctane, 2-propanol, ethanol, trichloroethylene,
acetonitrile, ethyl acetate, methanol, acetone, and dichloro-
methane (DCM). A list of physical properties of these liquids
is included in Table 1, ordered by increasing vapor pressure. A
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Table 1. Physical and Chemical Properties of 11 Liquids Identified Using a Fiber-Optic Droplet Evaporation Method, Ordered by Increasing Vapor Pressure®

viscosity at 25 °C (mPa's)  relative polarity

refractive index

vapor pressure at 25 °C (mmHg) density (kg/m®)

molar mass (g/mol) boiling point (F)

formula
CioHa,

name

0.838 0.300 (hydrophobic)

1.412

730
944
690
786
789

1.43
3.87
14.25

43.65

345.4
307.4
210.2
180.5
173.1
189

142.29

decane

0.386 (hydrophilic)
0.537 (hydrophobic)
0.546 (hydrophilic)
0.654 (hydrophilic)

0.802
0.50
2.04

1.430S

73.09
114.23

C,H,NO
C8H18

dimethyl-formamide (DMF)

isooctane

1.39145
1.377
1.361
1.4777
1.344
1.3724

60.1

C,H,0

2-propanol

1.040
0.532

58.75
69.0

46.07
131.4

C,H,0H
C,HC;

ethanol

0.259 (hydrophobic)
0.460 (hydrophilic)

1.46
786
902

trichloro-ethylene

0.343
0.428

91.19

179.6
170.8

41.05
88.11

C,H,N

acetonitrile

0.228 (hydrophobic)

93.20

C,H;0,

ethyl acetate
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series of immersion experiments were conducted, where a set
of three different optical fibers were used to perform SS
identical immersion/droplet evaporation tests each. First, a flat
cleaved innate surface was immersed into and subsequently
pulled out from the test liquid after 1 s. The time-transient
signal for the droplet evaporation event was collected. Next, a
second cleaved optical fiber coated with PDMS was used to
perform an immersion/droplet evaporation test on the same
test liquid and the resulting time-transient signal for the
droplet evaporation event was collected. The procedure was
repeated with a third cleaved optical fiber coated with DEG.
So, three different optical fiber tip sensors were used to
perform tests using the same liquid (without cleaning the
individual tips with each of the different surfaces) but were
never reused to perform tests in a different liquid. For the
PDMS-coated fiber tip, the process of surface treatment was
accomplished by immersing the tip of a flat cleaved optical
fiber into and subsequently pulling the fiber out from the
PDMS (to make the surface hydrophobic) in a vertical
direction using a motorized linear stage. The optical fiber
remained in the PDMS for S s. After removal from the PDMS,
the optical fiber sample was allowed to dry for 30 min under
ambient conditions (room temperature, 298 + 3 K; relative
humidity, 40 + 10%). 11 such cleaved optical fibers treated
with PDMS were constructed. Similarly, 11 flat cleaved optical
fibers treated with DEG (to make the surface hydrophilic, the
optical fiber remained in the DEG for five seconds.). Then, a
set of three sensor heads (intrinsic surface, with a hydrophobic
surface and, with a hydrophobic surface each) were used to
perform S5S identical immersion/droplet evaporation tests in
one of the 11 test liquids. The overall data collection was done
over a period of 12 days, and we switch between three different
containers to hold the liquids. The data collection for a single
surface spans 4 days until all 11 liquids have been tested. On
each day we use three liquids (except the last day for a surface
when we use only two liquids) in three different containers and
perform the dip experiments. We use the same three containers
throughout all the experiments spanning 12 days. After one
surface has been used on all 11 liquids, we switch to a different
surface and perform the experiments again till we have used all
the surfaces on all the liquids. There is no distinction between
signals collected for the same liquid with the same surface that
can be observed visually even across different days and
different containers.

The sensors were never reused in a different test liquid.
Time-transient signals for droplet evaporations of all 11 liquids
were recorded in this manner. To summarize the method, 11
flat cleaved optical fiber tip sensors, 11 hydrophobic-coated tip
sensors, and 11 hydrophilic-coated tip sensors were used to
perform 11 X 3 X 55 = 1815 immersion/droplet evaporation
tests. Figure 2 shows examples of the response signals
measured with respect to time for acetonitrile from the three
different optical fiber endface surfaces collected by the EFPI
sensor system over a 1 s time window. The differences between
the time-domain transients from the three different fiber-optic
endface surfaces can be easily observed for the 11 different
liquids used in the experiment. While visually inspecting the
recorded time-domain signals to clearly correlate them to the
11 liquids is difficult, a deep learning model may be utilized as
a robust predictive model that can be trained to identify each
liquid. Because of the EFPI sensor systems’ great sensitivity,
the recorded time-transient signal for a droplet evaporation
event provides extensive information, such as the initial droplet
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Figure 2. Example of time-domain evaporation transient response
signals for evaporating droplets of acetonitrile using an array of three
fiber-optic sensors. Each signal corresponds to an evaporation event of
a single acetonitrile droplet from a single surface from one optical
fiber from the array of sensors. For comparison, the X-axis is set to a
range of 0 to 1.0 s for all evaporation transients, so that response
signals of varying durations can be compared. The remainder of the
plots can be found in the Supporting Information.

size and the evaporation rate, implicitly. Alternatively, these
informative time-domain signals can also be used with
conventional machine learning models like random forests,**
support vector machines,*’ fully connected NNs,** and so
forth. For most such approaches to be viable, feature
engineering and extraction must be performed first. We can
circumvent this step by relying on a deep learning model to
extract relevant features automatically as it is trained. As the
raw signal is a time-domain signal, the task can be considered
as time-series classification, and hence, the existing time-series
classification methods can be applied to the data set as well. In-
depth surveys of such methods reported in refs 45—47 can be
used to explore other possible approaches. It is also possible to
use ideas from sensor fusion and data fusion®®"’ to explore
more ways of combining the information in the response
signals from the three different surfaces.

3. DATA COLLECTION AND CURATION

The main proposal of this paper relates to combining an array
of three endface-modified FOSs and then use the evaporation
events generated to categorize the liquids. A CNN is used to
categorize liquids from the metered pendant droplet
evaporation events. First, we provide an overview of the data
collection and pre-processing step; then, we discuss data set
curation and machine learning model construction; and finally,
we analyze our results and justify our conclusions.

In the data collection and curation step, we selected 11
different types of pure liquids as analytes for our experiment.
The liquids, ordered in Table 1 according to increasing vapor
pressure, are decane, DMF, isooctane, 2-propanol, ethanol,
trichloroethylene, acetonitrile, ethyl acetate, methanol, acetone,
and DCM. Some relevant physical properties of these liquids
are also included in Table 1. We began the experiment by
employing the EFPI sensor system to record droplet
evaporation events from three different sensor heads. Figure
2 shows an example of the measured time-domain transient
response signals for the evaporation events generated by a
pendent droplet of acetonitrile on the three different endfaces
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Figure 3. Comparison of the scalograms for the droplet evaporation events for acetonitrile from the “three-dip” test. Response signals from
acetonitrile droplet evaporation on (a) intrinsic surface, (b) hydrophobic surface, and (c) hydrophilic surface for the “three-dip” test are shown.

of the three FOSs. Time-domain transient response signals
recorded for droplet evaporation events of the other 10 pure
liquids and three graphs demonstrating the reproducibility of
the droplet evaporation events for acetonitrile from three
different optical fiber endface surfaces are included in the
Supporting Information.

We shall refer to these time-domain transient response
signals as just response signals for the sake of brevity in the
remainder of the article. As can be seen in Figure 2, differences
between the response signals from the three different sensor
heads are apparent. These differences can be attributed to the
different surfaces of the three sensor heads having different
chemical coatings and hence resulting in varying droplet
shapes and sizes. Instead of further expenditure of time and
labor spent on calculating the evaporation rates of droplets
from the different surface heads based on the response signals,
droplet size, droplet shape, physicochemical properties, and
other experiment parameters and then attempting liquid
identification, we use machine learning to categorize the
recorded response signals by framing it as a classification
problem in the context of machine learning. The challenging
task of finding the correlations between the time-domain
response signals, the three different surfaces, and the 11
different pure liquids is difficult through visual inspection.
Deep learning models, being powerful nonlinear function
approximators, may therefore be employed to identify each
liquid. Due to the high sensitivity of the EFPI sensor system,
the measured time-transient signals from the evaporation
events are rich with information such as droplet sizes and the
evaporation rates, although the information may not be
directly accessible without further processing. Therefore, a
data-driven machine learning approach is used to overcome
this limitation.

For the purpose of training our deep learning model, we
assumed that the training is performed on liquid test samples
that are experimentally distinguishable. Maintaining the room
temperature within a desired range and assuring that the
sample area under test is invariant, other variations like
container size or order of dipping did not cause changes in the
measurements taken from each liquid test sample. In real-
world applications, the three different surfaces could be
employed consecutively or simultaneously to collect three
distinct measurements/response signals from a single liquid
test sample. We used this assumption to combine response
signals from the three different fiber-optic endfaces to show
different use cases and thus to create varied data sets and tasks,
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which can then be applied to machine learning models. Here,
the creation of a single data sample for a test liquid was taken
to consist of first performing three simultaneous or consecutive
dips with the three different sensor heads and recording the
response signals (giving three measurements/response signals
from each surface); we call this a “three-dip” test. This data
sample is further processed in accordance with the data set
creation process described below to become a single or
multiple data points or entries in a data set. To clarify further, a
“three-dip” test is the method of dipping all three of the three
sensor heads in the test liquid, recording the response signals
using the same liquid sample. This gives us three response
signals per liquid test sample within a single data sample. A
total of 55 data samples were collected for each of the 11
liquids, yielding a total of 605 data samples. We then construct
two different kinds of data sets with the names data set
pseudocolor and data set surface channels. For both data sets,
we begin by converting the response signals to an equivalent
time-frequency representation using the continuous wavelet
transform. The response signal representation is referred to as
a scalogram. We convert all individual response signals into
their scalogram representations. Figure 3 shows the scalograms
(in pseudocolor) of the three signals for acetonitrile shown in
Figure 2. Depending on the data set, the assumptions about
the response signals in a data sample and the processing of the
scalograms are different. Below we describe the process for
constructing the two different data sets mentioned above and
the underlying assumptions.

3.1. Data Set Pseudocolor. In this data set, we treat each
individual dip of the “three-dip” tests as independent and split
apart. This means that after processing 5SS response signals per
three different sensor surfaces and 11 pure liquids, we have
1815 individual data points in total. The scalograms generated
after processing the individual responses are matrices of size
169 X 128,700. We then scale the entries of the matrices to the
range O to 1. The matrices are then scaled and quantized again
to the range 0—255 and finally converted to three-channel
pseudocolor (contour) images; these three channels can be
considered as the red, green, and blue channels of an RGB
image for displaying purposes, as seen in Figure 3. The pre-
trained deep learning models used expect three-channel images
with entries in the range 0—255 as inputs, as they were
originally trained on RGB images for visual object recognition.
This gives us 1815 scalogram images (data points) in this data
set. The pseudocolor images are then resized to the desired
sizes of either 224 X 224 X 3 or 227 X 227 X 3, depending on

https://doi.org/10.1021/acsomega.2c05451
ACS Omega 2023, 8, 4597—-4607


https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c05451/suppl_file/ao2c05451_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05451?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05451?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05451?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05451?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c05451?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

the requirements of the model used and the input to the
model.

3.2. Data Set Surface Channels. In the pursuit of
eventually building a model which combines the information
coming from the three sensors, we create a three-channel
image data set. In this data set, each of the individual
scalograms from the same “three-dip” data sample are
processed to become one of the channels in the three-channel
image. The three-channel images are composed of three
scalogram images, one for each type of sensor head, with the
channels ordered based on which sensor head the scalogram
image is from. This order is consistent for all three-channel
images (data points) in the data set. Each channel in the three-
channel image is a scalogram image processed in the same
manner as for data set pseudocolor except the step of
converting them to pseudocolor images. This means that each
three-channel image has each of its individual channels scaled
and quantized to be between 0 and 255. This allows us to again
display and treat these images as RGB images. After
processing, the data set has a total of 605 three-channel
scalogram images (data points) corresponding to each of the
605 “three-dip” data samples/tests. They are then resized to
the desired image sizes, either 224 X 224 X 3 or 227 X 227 X
3, depending on the model used. An example of such a three-
channel RGB scalogram image for acetonitrile is shown in
Figure 4.

Frequency (Hz)

0.2

0.3 0.4
Time (s)

0.5 0.6 0.7

Figure 4. Example of a three-channel image from data set surface
channels displayed as an RGB image, where scalogram images of
response signals from a single complete data collection step or “three-
dip” test for acetonitrile are used. Each channel corresponds to the
response collected from a droplet evaporation event of acetonitrile
from one of the three differently treated cleaved optical fiber sensor
head surfaces, namely, intrinsic (red channel), hydrophobic (green
channel), and hydrophilic (blue channel).

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this work, there are three pipelines for training machine
learning models using the data sets mentioned above. The
three pipelines vary depending on which data set is used for
training and where, if at all, the information from the three
different sensors is fused or combined. Using the data fusion
terminology as presented in ref 50, we present two distinct
types of fusion, pixel-level fusion (Pipeline 1), where the pixels
in an image are fused to a combined representation of different
images for a task (data set surface channels), and decision-level
fusion (Pipeline 2). We first describe each of the pipelines and

4602

why they are used and then later expand upon the machine
learning model architectures and training regimes. The
pipelines used are described below.

4.1. Pipeline 1. In this pipeline, we use the images from
data set surface channels for training our models. Here, the
model learns to identify the liquid from a single “three-dip” test
processed as mentioned in the creation process for data set
surface channels. In this case, the information from the three
different kinds of sensors is essentially combined at the input
end of the model. We do this to see how the models perform
when they can use three different sources of information
coming from a single “three-dip” test for a particular liquid.
The information fusion happens within the model, and we rely
on the model to learn the best way to leverage the data for
liquid identification.

For model training in this pipeline, we start with splitting the
605 images in data set surface channels into three groups, 50%
of the data set being reserved as the training data set, 30% as
the validation set, and the last 20% as a hold-out test set (hold-
out set) for final evaluation of the model. This results in 303
images in the training set, 181 in the validation set, and 121 in
the hold-out set. In view of comparing the different pipelines,
we use the same response signals that constitute the training,
validation, and hold-out set for the other pipelines, albeit
processed according to the data set used for that pipeline.

The model then outputs a score vector of size 11 X 1 with
values in the range O to 1. Here, each entry in the score vector
corresponds to the probability that the image is from a
particular class (liquid). During the decision-making step, we
identify the liquid using the index of the highest score in the
vector.

4.2. Pipeline 2. For this pipeline, we use the images from
data set pseudocolor, where each individual response signal/
data sample is treated as an independent data point once it is
converted to a pseudocolor scalogram image. In this pipeline,
we essentially disassociate the three signals of a “three-dip” test
from each other, while training the model and instead try to
use this association only at the decision-making step to
combine the decisions for the signals from the same “three-
dip” test during validation and evaluation on the hold-out set.
We do this by first obtaining the 11 X 1 vector of output scores
for each image from the same “three-dip” test. This gives us
three score vectors, each one corresponding to the signal from
one of the three sensor heads for a particular liquid. We then
average the scores such that the result is a 11 X 1 averaged
score vector. The highest score in this averaged vector is then
used to identify and assign the class for all the three response
signals from the “three-dip” test.

During training, validation, and evaluation, we use the same
response signals as in Pipeline 1 but with all the individual
signals processed into pseudocolor scalogram images. This
ensures that results from the pipelines on the hold-out set are
comparable. Hence, we have 909 pseudocolor images in the
training set, 543 images in the validation set, and 363 images in
the hold-out set.

4.3. Pipeline 3. Pipeline 3 is a minor modification on
Pipeline 2 where no fusion of information takes place, neither
in the model nor at the decision-making step. We use the same
models trained for Pipeline 2, but during model evaluation, we
do not combine the scores for images from the same “three-
dip” test. Here, each response signal from a “three-dip” test is
assumed to be independent of one another. We do this to
observe model performance without any fusion of information
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and to construct a simple baseline for comparing the
improvement gained by combining information from the
three different sensors as done in Pipelines 1 and 2.

For Pipelines 1 and 2, we train five different deep learning
architectures each. The training regime is the same as reported
in ref 34. The ADAM optimizer is used with a constant
learning rate of 1 X 107 batch size of 32, and the maximum
number of epochs set to 7. The models are trained using cross-
entropy loss similar to what was done in ref 36. We use early
stopping of three epochs based on the loss for the validation
set to prevent overfitting. If no improvement in the validation
set loss is seen for three epochs, then training is stopped, and
the model is saved.

The results of testing the models are shown in Table 2. The
different models used were AlexNet,”' DenseNet-201,%

Table 2. Accuracies (%) on the Hold-Out Set for the
Classification of Liquids Using Different Pre-Trained CNN
Models

models Pipeline 1 Pipeline 2 Pipeline 3
AlexNet 96.69 94.21 87.33
DenseNet-201 100 100 99.17
GoogLeNet 98.35 97.52 90.36
RestNet-18 100 100 99.72
RestNet-50 100 100 97.25

GoogLeNet,53 ResNet-18, and ResNet-50.°* All the models
used were pre-trained on the ImageNet,”” data set. The lowest
accuracy on the hold-out set across all pipelines is for Pipeline
3, for all the models, as shown in Table 2. The ResNet-18
model shows the highest classification accuracy among the five
model architectures across all pipelines. Furthermore, the
highest accuracy is achieved when using Pipeline 1 with the
ResNet-18 model. DenseNet-201, ResNet-18, and ResNet-50
all show the highest achievable classification accuracies among
the five models in both Pipelines 1 and 2.

We see that for the baseline (Pipeline 3) performance taken
directly, we have the poorest scores across all models. Pipeline
3 is not directly comparable to Pipelines 1 and 2; Pipeline 2 is
in fact a variation of Pipeline 3 to see the effect of fusing (via
score averaging) the output scores for scalograms from a single
three-dip test, giving us a final “fused” score for the three-dip
test. We can then compare this fused output score with the
scores from Pipeline 1 directly. In pipeline 2 where we use the
same models as pipeline 3 but score averaging is performed, we
can see that model accuracies show improvement. Our poorest
performing models AlexNet and GoogLeNet show an
improvement of almost 7% over the baseline and our
performant models attain 100% accuracy. Pipeline 1 performs
the best; we believe that this is because the models internally
find the best features from the three-channel images and learn
how to combine the information optimally.

We use AlexNet, our worst performing model—which still
gives an accuracy of around 87% on the hold-out set—to
analyze the kind of misclassifications that happen and later
compare it to the improvements seen for the same model in
Pipelines 2 and 3. In Figure 5, we show the confusion matrix
for classification results in Pipeline 3 from the AlexNet model.
The confusion matrix indicates the number of correct and
incorrect classifications of data points to liquid class using our
model. The columns correspond to the true classes for data,
and the rows report the predicted classes. Diagonal elements of
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Figure 5. Confusion matrix from the results employing the AlexNet
model for Pipeline 3. The confusion matrix shows the number of
correct and incorrect predictions for each class (test liquid). The True
Class and Predicted Class labels are ordered according to increasing
vapor pressure from top to bottom and left to right, respectively.

the matrix, therefore, correspond to the number of correctly
classified data points and off-diagonal entries correspond to the
number of incorrectly classified data points. We see that a
significant number of isooctane and acetonitrile data points are
misclassified; we attribute the misclassifications to similarities
in the pseudocolor images of response signals from at least one
of the surfaces being similar to another because of similar
evaporation times.

With the de-association between responses from different
surfaces, the signals which evaporate faster/slower on a surface
evaporate more quickly/slowly giving us a shorter/longer
response signal, which may then be misclassified as a liquid
which has a similar evaporation duration on one of the
surfaces. An example can be seen in Figure 6. Once we move to

(@

Figure 6. Comparison of pseudocolor images for two different liquids
generating similar responses when using a sensor head with a different
surface. (a) Pseudocolor scalogram image for ethyl acetate using a
response signal from an innate cleaved surface and (b) for isooctane
from a hydrophobic surface.

(b)

Pipeline 2, we see that averaging the scores from the same
“three-dip” test improves the overall accuracy and corrects
some misclassifications. A single data point in Pipeline 2
corresponds to three individual data samples and hence three
individual data points in Pipeline 3, which means that a single
misclassification in Pipeline 2 amounts to misclassifying 3 data
points in Pipeline 2. Comparing the confusion matrices from
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Figure S and Figure 7, and the results for all the other models,
we see that this averaging has a net ameliorative effect.
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Figure 7. Confusion matrix from the results employing the AlexNet
model across the 11 test liquids with the hold-out test data set for
Pipeline 2. The confusion matrix shows the number of correct and
incorrect classifications for each class (test liquid). For example, the
AlexNet model classified isooctane correctly for six data points and
misclassified isooctane as ethyl acetate for five data points, and
acetonitrile was identified correctly for nine data points and
misidentified as ethyl acetate for two data points.

For the AlexNet model, our accuracy on Pipeline 3 is
87.33% and improves to 94.21%. The AlexNet model corrects
the misclassifications of the decane data points as DMF and
dichloromethane; the isooctane data points as ethyl acetate
and dichloromethane; the trichloroethylene data points as
ethyl acetate and dichloromethane; the acetonitrile data points
as ethanol and ethyl acetate; the methanol data points as ethyl
acetate and acetone; the dichloromethane data points as ethyl
acetate. Misclassification of the isooctane data points and the
acetonitrile data points to ethyl acetate persists. These
misclassifications vary from model to model. We present the

confusion matrices for the GoogLeNet model in Figure 8 with
the majority of the misclassifications happening when classes
are predicted as ethyl acetate.

Our results using Pipeline 1 improve upon the accuracies
from both Pipelines 2 and 3, as shown in Figure 9. The
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Figure 9. Confusion matrix from the results employing the AlexNet
model across the 11 liquids with the test data set for Pipeline 1. The
confusion matrix shows the number of correct and incorrect
predictions for each class (test liquid). For example, the AlexNet
model identified acetone correctly for seven tests and misidentified
acetone as ethyl acetate for three tests and dichloromethane for one
test.

confusion matrix showed that for acetone, 7 of 11 data points
were correctly classified, 3 of them were wrongly classified into
the class of ethyl acetate, and 1 of them was wrongly classified
into the class of dichloromethane.

We believe that the misclassifications are because of the
diversity of information in a single input in Pipeline 1. The
model learns how to combine information/features of the
responses coming from the three different surfaces to better
distinguish the input data points provided to it. When using
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Figure 8. Comparison of confusion matrices using the GoogLeNet model for predicting liquid class (liquid identification/classification) on the
hold-out set. (a) Confusion matrix for Pipeline 3 and (b) confusion matrix for Pipeline 2.
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Figure 10. Schematic illustration of a hypothesis that explains the sudden re-appearance of the time-transient signals in the form of a spike after the
main transient signals appear to terminate, the so-called “quantum jump.” See text for explanation.

the AlexNet model, the accuracy increases by around 2% over
Pipeline 2. The improvement in accuracy is also reflected in
our second-worst model, which is GoogLeNet. The perform-
ances of the models mirror what we have seen in ref 28 where
AlexNet and GoogLeNet performed relatively poorly when
compared to the other models on data sets that were processed
as done for data set pseudocolor.

5. CONCLUSIONS

This paper proposed and demonstrated an effective array of
FOSs based on an EFPI system and machine learning (ML)
techniques, which were employed for the identification of
VOLs. Combining the responses of three different tip sensors
in the array of three FOSs for liquid evaporation events
provided more robust predictive information for liquid
identification compared to using only one optical fiber tip
sensor. The array of three FOSs, in combination with ML-
based analyses, effectively identified 11 different liquids. The
CNN models were employed to learn a hierarchy of abstract
features from the image data sets (image data sets correspond
to time-transient responses from the array of three FOSs to the
evaporation events for the 11 test liquids).

The trained CNN models achieved 100% accuracy in
identifying 11 different liquids. The proposed array of three
FOSs can find many applications and be very useful in
chemical industries because it is easy to fabricate and provides
high sensitivity, a rapid response time, and high fidelity. In
conclusion, diversifying the kinds of sensor heads to gain
varied responses improves the distinguishability of liquids
within a machine learning/deep learning framework, as
presented here. This approach can aid in the improvement
and development of new arrays of fiber-optic sensor devices for
chemical analyses.

Please note that some of the time-transient signals in the
Supplementary Information exhibit a sudden re-appearance in
the form of a spike after the main transient signals appear to
terminate. This so-called “quantum jump” is repeatable. One
hypothesis of the quantum jump observation that we may test
in a future study is that the droplet evaporation process
culminates in a thin film that spans the diameter of the optical
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fiber endface and has a surface energy that can be substantially
reduced if the film reorganizes into a pendant microdroplet.
Due to the reduced overlap and interaction with the optical
fiber endface, the newly formed microdroplet instantly
vanishes by mechanically separating and falling away from
the supporting face of the optical fiber or through evaporation.
Because the microdroplet extends further from the center of
the optical fiber endface compared to the thickness of the thin
film, an effectively larger FP cavity is formed for an instant
before separating or evaporating. In the two processes of thin-
film rearrangement and pendant microdroplet separation, the
fringe visibility changes dramatically. The fringe visibility is
determined by the similarity of the two effective reflection
intensities (I, and I,) of the FP cavity.’® Figure 10 illustrates
the aforementioned hypothesis. Testing the hypothesis more
thoroughly is beyond the scope of the current work.
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