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Vascular endothelial growth factor antagonism with angiogenesis inhibitors in cancer pa-
tients induces a ‘preeclampsia-like’ syndrome including hypertension, proteinuria and ele-
vated endothelin (ET)-1. Cyclo-oxygenase (COX) inhibition with aspirin is known to prevent
the onset of preeclampsia in high-risk patients. In the present study, we hypothesised that
treatment with aspirin would prevent the development of angiogenesis inhibitor-induced hy-
pertension and kidney damage. Our aims were to compare the effects of low-dose (COX-1
inhibition) and high-dose (dual COX-1 and COX-2 inhibition) aspirin on blood pressure,
vascular function, oxidative stress, ET-1 and prostanoid levels and kidney damage during
angiogenesis-inhibitor therapy in rodents. To this end, Wistar Kyoto rats were treated with
vehicle, angiogenesis inhibitor (sunitinib) alone or in combination with low- or high-dose
aspirin for 8 days (n=5–7/group). Our results demonstrated that prostacyclin (PGI2) and
ET-1 were increased during angiogenesis-inhibitor therapy, while thromboxane (TXA2) was
unchanged. Both low- and high-dose aspirin blunted angiogenesis inhibitor-induced hy-
pertension and vascular superoxide production to a similar extent, whereas only high-dose
aspirin prevented albuminuria. While circulating TXA2 and prostaglandin F2α levels were re-
duced by both low- and high-dose aspirin, circulating and urinary levels PGI2 were only
reduced by high-dose aspirin. Lastly, treatment with aspirin did not significantly affect ET-1
or vascular function. Collectively our findings suggest that prostanoids contribute to the
development of angiogenesis inhibitor-induced hypertension and renal damage and that
targeting the prostanoid pathway could be an effective strategy to mitigate the unwanted
cardiovascular and renal toxicities associated with angiogenesis inhibitors.

Introduction
Angiogenesis, the formation of new blood vessels from the pre-existing vasculature, is essential for tumour
growth and metastatic spread. Inhibition of angiogenesis by targeting the vascular endothelial growth
factor (VEGF) pathway, either alone or in combination with other therapies such as the latest breakthrough
cancer therapy, immune checkpoint inhibitors, is an effective strategy for various types of cancer and leads
to prolonged patient survival [1–3]. However, angiogenesis inhibitors can induce severe cardiovascular
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and renal toxicities, most frequently hypertension and nephropathy, which may require dose reduction or early ter-
mination of therapy. Four types of angiogenesis inhibitors are used clinically: anti-VEGF monoclonal antibodies,
VEGF-soluble decoy receptors that capture freely available VEGF, anti-VEGF receptor (VEGFR) monoclonal an-
tibodies and multitargeted tyrosine kinase inhibitors (TKIs) such as sunitinib that have anti-VEGFR activity. Of
note, almost all patients experience a rise in blood pressure, with the incidence of hypertension ranging from 4 to
84% depending on the angiogenesis inhibitor used [1], demonstrating that this is a class effect rather than a phe-
nomenon linked to a particular type of angiogenesis inhibitor. Understanding the mechanisms underlying angiogen-
esis inhibitor-induced hypertension and nephropathy is integral if we are to develop preventative strategies to protect
cardiovascular health and allow cancer patients to remain on this lifesaving treatment.

Angiogenesis inhibitor-induced hypertension and kidney damage recapitulate the clinical presentation of
preeclampsia, including glomerular endotheliosis, proteinuria and a rise in endothelin (ET)-1 [4]. Since preeclampsia
is characterised by high levels of soluble Fms-like tyrosine kinase 1 (sFlt-1), a naturally occurring antagonist of VEGF,
it is perhaps not surprising that angiogenesis inhibitors cause a ‘preeclampsia-like’ syndrome and that the underlying
mechanisms are thought to be the same [1,5,6]. Here it is of interest to note that cyclo-oxygenase (COX) inhibition
with aspirin can prevent the onset of preeclampsia in high-risk patients [6]. Although the initial studies used higher
doses of aspirin, resulting in dual COX-1 and COX-2 inhibition [7,8], clinical trials have only investigated the efficacy
of low-dose aspirin (i.e., selective COX-1 inhibition) [9,10]. Further, while the protective effect of aspirin is primarily
attributed to the restoration of the prostacyclin (PGI2)/thromboxane (TXA2) ratio [11], other mechanisms such as a
reduction in oxidative stress and decreased activation of the ET system are likely to contribute as well [6]. Importantly,
these effects may be linked to COX-2 rather than COX-1 dependent prostanoid generation [6].

In the present study, we hypothesised that treatment with aspirin would prevent the development of angiogenesis
inhibitor-induced hypertension and kidney damage. To test this hypothesis, we utilised an established model of an-
giogenesis inhibitor (sunitinib)-induced hypertension and kidney damage [4,12–16]. Our aims were to compare the
effects of low-dose (COX-1 inhibition) and high-dose (dual COX-1 and COX-2 inhibition) aspirin on blood pres-
sure, vascular function, oxidative stress, ET-1 and prostanoid levels and kidney damage during angiogenesis-inhibitor
therapy in rodents. To this end, male Wistar Kyoto (WKY) rats were treated with vehicle, the angiogenesis inhibitor,
sunitinib, alone or in combination with low- or high-dose aspirin for 8 days.

Materials and methods
In vivo study
Animal experiments were performed at the Erasmus Medical Centre (Rotterdam, The Netherlands). The experiments
were approved by the Animal Ethics Committee of the Erasmus University Medical Center Rotterdam (protocol num-
ber 118-16-01) and were performed in accordance with the guidelines from Directive 2010/63/EU of the European
Parliament and the Netherlands Experiments on Animals Act (Wod, 2014). Male WKY rats were obtained at 10 weeks
of age from Charles River, Germany and Janvier Labs, France. Animals were housed in an experimental room with
temperature maintained at 21–22◦C and a 12-h light–dark cycle. Rats had ad libitum access to normal rodent chow
and water.

Following a 1-week acclimatisation period, rats were anaesthetised using Forane (isoflurane; inhalation anaesthetic
at a dose of 2–3% for induction and then maintained at 2% for the duration of the surgery) for implantation of
a radiotelemetry probe (HD-S10, Data Sciences International, MN, U.S.A.) into the abdominal aorta as described
previously [15]. Analgesia (temgesic, 0.05 mg/kg s.c.; RB Pharmaceuticals) was administered prior to the surgery
and for 2 days afterwards. Following a 10-day recovery period, arterial pressures and heart rate were measured via
radiotelemetry as described previously [16]. After establishing baseline values, rats were randomly assigned to one
of the four treatment groups: vehicle (n=6), the angiogenesis inhibitor sunitinib (14 mg/kg/day; SU; n=7) alone or
in combination with low-dose aspirin (5 mg/kg/day; SU+low-dose A; n=5) or high-dose aspirin (100 mg/kg/day;
SU+high-dose A; n=5). The low- and high-dose aspirin correspond to human equivalent doses of ∼60 and ∼1200
mg, respectively. Previous studies have demonstrated that these doses of aspirin result in selective COX-1 inhibition
and dual COX-1 and COX-2 inhibition, respectively [17–19]. Some of the data for the vehicle and SU-treated groups
and a subset of the data from the SU+high-dose A treated group have been reported recently [16]. Treatments were
administered by oral gavage for 8 days. Arterial pressures and heart rate were measured on days 1–6 of treatment. On
days 7–8 of treatment, rats were placed into metabolic cages to collect a 24-h urine sample. Thereafter, rats were killed
by Forane (isoflurane) anaesthesia overdose and exsanguinated via abdominal vein puncture. Blood was collected into
a heparinised tube and then centrifuged at 3000 rpm to obtain plasma. Thereafter, plasma was stored at −80◦C for
later analysis.
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Ex vivo vascular function
Vascular function was assessed in response to the vasodilator acetylcholine (ACh) or the vasoconstrictor ET-1 in iso-
lated iliac segments as described previously [16]. In additional segments, ACh experiments were performed in the
presence (30 min pre-incubation) of NO-synthase inhibition with l-ω-Nitro-l-arginine methyl ester hydrochloride
(l-NAME; 100 μmol/l), endothelium-derived hyperpolarising factor inhibition with the intermediate conductance
Ca2+-activated K+ channel inhibitor TRAM34 (10 μmol/l) or the small conductance Ca2+-activated K+ channel in-
hibitor apamin (100 μmol/l) or their combination and for ET-1, in the presence of ETA receptor (BQ123; 1 μmol/l)
or ETB receptor (BQ788; 1 μmol/l) blockade as described previously [16].

Circulating and urinary measurements
ELISAs were used to determine circulating and urinary ET-1 (ET-1 Quantikine ELISA Kit DET100, R&D systems),
PGF2α (circulating PGF2α via 8-isoprostane ELISA Kit No. 516351, Cayman Chemical and urinary PGF2α via Di-
rect 8-iso-PGF2α ELISA Kit ADI-900-091, Enzo Life Sciences), PGI2 (6-keto-PGF1α ELISA Kit ADI-900-004, Enzo
Life Sciences) and TXA2 (TXB2 ELISA Kit ADI-900-002, Enzo Life Sciences) levels and the urinary excretion of al-
bumin (Rat ELISA Ab108790, Abcam), neutrophil gelatinase-associated lipocalin (NGAL; Rat lipocalin-2 ELISA Kit
Ab207925, Abcam), kidney injury molecule-1 (KIM-1) (Rat TIM-1/KIM-1/HAVCR Quantikine ELISA Kit RKM100,
R&D Systems), PGE2 (Prostaglandin E2 ELISA Kit No. 514010, Cayman Chemical) and its metabolite, PGE-M
(Prostaglandin E Metabolite ELISA Kit No. 514531, Cayman Chemical).

Markers of oxidative stress
To assess oxidative stress, aortic and renal superoxide anion (O2

−) levels were measured by lucigenin chemilumines-
cence assay as described previously [20]. Aortic, cardiac and renal hydrogen peroxide (H2O2) levels were measured
by Amplex Red assay (A22188; Life Technologies, Paisley, U.K.). Aortic mRNA expression of NADPH oxidase (Nox)
isoforms 1, 2 and 4 and antioxidant enzymes (SOD1, catalase, GXP1, HO1, Trdx1 and Prdx1) were determined by
qPCR using SYBR Green PCR Master Mix (Applied Biosystems, U.K.) and the relative mRNA expression (target
gene/18S housekeeping gene) was calculated using the ��Ct method as described previously [16]. RNA was isolated
from the renal cortex using TRIzol (Ambion, Foster City, CA), in accordance with the manufacturer’s instructions
and reverse transcribed into cDNA using an AMV cDNA synthesis kit (Roche, Indianapolis, IN). Primers used are
as described previously [16]. Aortic protein expression of Nox 1, 2 and 4 were determined using Western blotting.
Protein (30 μg) was separated by electrophoresis on a polyacrylamide gel and transferred to a nitrocellulose mem-
brane. Non-specific-binding sites were blocked with 3% bovine serum albumin in Tris-buffered saline (TBS) solution.
Membranes were then incubated with specific antibodies overnight at 4◦C. Membranes were washed three times with
TBS-Tween20 and incubated with infrared dye-labelled secondary antibodies for 1 h at room temperature. Results
were visualised using an Odyssey CLx infrared imaging system (Li-COR Biosciences U.K. Ltd, U.K.) and results were
normalised to α-tubulin protein and are expressed in arbitrary units compared with vehicle group. Antibodies used
were as follows: anti-α-tubulin (1:5000; Abcam, U.K.); anti-Nox1 (1:1000; Sigma, U.K.); anti-Nox2 (1:1000; Abcam,
U.K.); anti-Nox4 (1:500; Santa Cruz, U.K.).

Renal mRNA and protein expression
Renal mRNA expression of nephrin, podocin, VEGF, ECE, ET-1, ETA receptor, ETB receptor, COX-1, COX-2, PGI2
synthase and TXA2 synthase were determined via qPCR using iQSYBR Green supermix (Bio-Rad) and the relative
mRNA expression (target gene/hypoxanthine phosphoribosyltrasferase-1 (Hprt1) housekeeping gene) was calcu-
lated using the ��Ct method as described previously [16]. RNA was isolated from the renal cortex using TRIzol
(Ambion, Foster City, CA), in accordance with the manufacturer’s instructions and reverse transcribed into cDNA
using an AMV cDNA synthesis kit (Roche, Indianapolis, IN). Primers used are as described previously [16]. Renal
protein abundance of the ETA and ETB receptors were determined using Western blotting. Protein (40 μg) was sepa-
rated by electrophoresis on a polyacrylamide gel and transferred to a nitrocellulose membrane. Non-specific-binding
sites were blocked with 5% bovine serum albumin in TBS solution containing 0.1% Tween-20. Membranes were
then incubated with specific antibodies overnight at 4◦C. Membranes were washed three times with TBS-Tween20
and incubated with infrared dye-labelled secondary antibodies for 1 h at room temperature. Signals were detected
by chemiluminescence (Clarity Western ECL substrate; Bio-Rad) and quantified using Image Studio Lite software.
Results were normalised to β-actin protein and are expressed in arbitrary units compared with vehicle group. Anti-
bodies used were as follows: anti-ETA (1:1000, Abcam, U.K.), anti-ETB (1:1000, Abcam, U.K.), β-actin (1:1000, Cell
Signaling 4967).
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Qualitative assessment of kidney morphology
Transverse kidney samples were fixed in 3.5–4% formaldehyde solution for light microscopy evaluation. After fixa-
tion, tissues were dehydrated, and paraffin embedded. Deparaffinised 2-μm-thick sections were stained for Periodic
Acid–Schiff (PAS) as described previously. In PAS-stained sections, the glomeruli were blindly evaluated by a pathol-
ogist (Marian C. Clahsen-van Groningen) for the presence or absence of endothelial cell and epithelial cell swelling
and the presence of ischaemia and intraepithelial protein. Kidney biopsies from vehicle and sunitinib-treated animals
(n=2/group) were immersed in Karnovsy’s fixative containing 2% glutaraldehyde in 0.1 M sodium cacodylate buffer
and processed for transmission electron microscopy as described previously [14]. Glomeruli were blindly evaluated
by a pathologist (Marian C. Clahsen-van Groningen) for the occurrence of glomerular endotheliosis (endothelial cell
swelling, encroachment of the capillary spaces and loss of endothelial fenestrations) and podocyte morphology.

Statistical analyses
Data are presented as mean +− SEM and were analysed using a one-way ANOVA followed by post-hoc t tests with
Holm–Sidak correction to reduce the risk of type-1 error associated with multiple comparisons. P≤0.05 was consid-
ered to be statistically significant.

Results
Low- and high-dose aspirin blunted sunitinib-induced hypertension to a
similar extent
Basal systolic and diastolic arterial pressures and heart rate were 135 +− 1 mmHg, 90 +− 1 mmHg and 333 +− 5 bpm,
respectively. Sunitinib induced a rapid pressor response, with the increase in systolic and diastolic arterial pres-
sures measuring 25 +− 2 and 24 +− 2 mmHg, respectively, on day 6 of treatment (Figure 1A,B). Low-dose aspirin
blunted the systolic pressor response to sunitinib by 31% (P<0.05 versus sunitinib alone; Figure 1A,D). This effect
was slightly greater during co-treatment with high-dose aspirin, such that the rise in systolic arterial pressure in re-
sponse to sunitinib was attenuated by 49% (P<0.01 versus sunitinib alone, P=0.16 versus co-treatment with low-dose
aspirin; Figure 1A,D). Similar changes were observed in diastolic arterial pressure during co-treatment with low- and
high-dose aspirin (Figure 1B,E). Sunitinib significantly reduced heart rate (P<0.01 versus vehicle-treated) and this
response was unaffected by co-treatment with low- or high-dose aspirin (Figure 1C,F).

To determine whether the effect of aspirin on the pressor response to sunitinib was associated with altered vascular
reactivity to ACh and ET-1, concentration–response curves were constructed ex vivo in isolated iliac arteries. The
vasodilator response to ACh was comparable between the vehicle and sunitinib-treated groups and was unaffected
by co-treatment with low- or high-dose aspirin (Figure 2A–D and Table 1). Similarly, in the presence of NOS inhi-
bition (with l-NAME) alone or in combination with endothelium-derived hyperpolarising factor inhibition (with
TRAM34 and apamin), the vasodilator response to ACh was reduced by a similar extent between the groups, except
for sunitinib group co-treated with high-dose aspirin (Figure 2A–D and Table 1). In the sunitinib only treated group,
the vasodilator response to ACh tended to be reduced in the presence of TRAM34 and apamin (P=0.07 versus con-
trol segment; Figure 2B and Table 1). The magnitude of the vasoconstrictor response to ET-1 was similar between
the groups and was not significantly altered by ETA receptor blockade (with BQ123) or ETB receptor blockade (with
BQ788) (Figure 2E–H and Table 1). However, in the presence of BQ123 the sensitivity to ET-1 was reduced in all
groups such that the curve was shifted rightward (Figure 2E–H and Table 1).

Effect of low- and high-dose aspirin on circulating ET-1 and prostanoid
levels during sunitinib treatment
Circulating ET-1 was higher in the sunitinib-treated groups, however this only reached statistical significance when
sunitinib was administered alone (P=0.05 versus vehicle-treated; Figure 3A). PGI2, measured via its stable metabolite
6-keto-PGF1α, was increased during treatment with sunitinib alone and this response was unaffected by co-treatment
with low-dose aspirin (both P<0.05 versus vehicle-treated; Figure 3B) and reduced by 30% during co-treatment with
high-dose aspirin (Figure 3B). Circulating TXB2, the stable metabolite of TXA2, was reduced by 67% during treatment
with sunitinib and by 93 and 94% during co-treatment with low- and high-dose aspirin respectively (all P<0.05
versus vehicle-treated; Figure 3C). Consequently, the PGI2/TXA2 ratio was greater during treatment with sunitinib
and this reached statistical significance during co-treatment with aspirin (Figure 3D). Circulating PGF2α, measured
as 8-iso-PGF2α, was similar between the vehicle and sunitinib-treated groups and reduced by a similar extent during
co-treatment with low- and high-dose aspirin (both P<0.01 versus vehicle-treated; Figure 3E).
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Figure 1. The effect of treatment on blood pressures and heart rate

Changes in systolic arterial pressure (SAP), diastolic arterial pressure (DAP) and heart rate (HR) in response to treatment with vehicle,

sunitinib (14 mg/kg/day) alone or during co-treatment with low-dose aspirin (COX-1 inhibition, 5 mg/kg/day; SU+low-dose A) or

high-dose aspirin (dual COX-1 and COX-2 inhibition, 100 mg/kg/day; SU+high-dose A). Time course of changes in (A) SAP, (B)

DAP and (C) HR and areas under the curve (AUCs) for the cumulative change in (D) SAP, (E) DAP and (F) HR. Data are presented as

mean +− SEM (n=5–7/group). Data were analysed by one-way ANOVA followed by Holm–Sidak’s post-hoc test. *P<0.5, **P<0.01,

***P<0.001, ****P<0.0001 versus vehicle-treated unless otherwise indicated.
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Figure 2. The effect of treatment on vascular function

Iliac artery concentration–response curves to (A–D) ACh in the absence or presence of L-NAME (100 μmol/l), TRAM34 (10 μmol/l)

and apamin (100 μmol/l) (T+A) or their combination (L-NAME+T+A) and for (E–H) ET-1, in the absence or presence of BQ123 (1

μmol/l) or BQ788 (1 μmol/l) following 8 days of treatment with vehicle, sunitinib (14 mg/kg/day; SU) alone or in combination with

low-dose aspirin (COX-1 inhibition, 5 mg/kg/day; SU+low-dose A) or high-dose aspirin (dual COX-1 and COX-2 inhibition, 100

mg/kg/day; SU+high-dose A) in WKY rats. Data are presented as mean +− SEM (n=4–7/group). Relaxation data are expressed as

a percentage of the response to U46619 (0.1–0.3 μmol/l). See Table 1 for statistical information.

Both low- and high-dose aspirin prevented sunitinib-induced vascular
reactive oxygen species generation
Sunitinib increased aortic O2

− production (P=0.01 versus vehicle-treated; Figure 4A) and this effect was prevented
by co-treatment with low- and high-dose aspirin (both P<0.05 versus sunitinib alone; Figure 4A). Conversely, aortic
H2O2 levels were unaffected by treatment (Figure 4B). Aortic mRNA expression of Nox1, which is involved in the
production of O2

−, was higher in the sunitinib-treated group (P=0.02 versus vehicle-treated; Figure 4C) and this
effect was absent during co-treatment with low- and high-dose aspirin (Figure 4C). There were no significant dif-
ferences in the aortic mRNA expression of Nox2 and Nox4 (Figure 4D,E). While Nox1 was the most abundant Nox
protein expressed, the aortic protein expression of Nox1, Nox2 and Nox 4 was similar between the groups (Figure
4F–K). However, aortic mRNA expression of catalase, which is an H2O2 scavenger was reduced by sunitinib treat-
ment (P=0.002; versus vehicle-treated; Figure 5A) and this effect was prevented by high-dose aspirin (P=0.04 versus
sunitinib alone; Figure 5A). Aortic mRNA expression for the antioxidants, SOD1, GPX1, HO1, Prdx or Trdx was
similar between the treatment groups (Figure 5B–F). Renal O2

− production and renal and cardiac H2O2 levels were
unaffected by treatment (Figure 6A–C).
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Figure 3. The effect of treatment on circulating endothelin (ET)-1 and prostanoid levels

Circulating levels of (A) ET-1 and (B) PGI2, (C) TXA2, (D) the PGI2/TXA2 ratio and (E) PGF2α as measured by their metabolites,

6-keto-PGF1α, TXB2, and 8-iso-PGF2α respectively, following treatment with vehicle, sunitinib (14 mg/kg/day; SU) alone or dur-

ing co-treatment with low-dose aspirin (COX-1 inhibition, 5 mg/kg/day; SU+low-dose A) or high-dose aspirin (dual COX-1 and

COX-2 inhibition, 100 mg/kg/day; SU+high-dose A). Data are presented as mean +− SEM (n=5–7/group). Data were analysed us-

ing a one-way ANOVA followed by post-hoc t tests with Holm–Sidak correction where appropriate. *P≤0.05, **P<0.01 versus

vehicle-treated.
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Table 1 pEC50 and Emax values for iliac artery concentration–response curves for ACh in the absence or presence of
L-NAME (100 μmol/l), TRAM34 (10 μmol/l) and apamin (100 μmol/l) (T+A) or their combination (L-NAME+T+A) and ET-1 in the
absence or presence of BQ123 (1 μmol/l) or BQ788 1 (μmol/l) following 8 days of treatment with vehicle, sunitinib (14
mg/kg/day) alone or in combination with low-dose aspirin (5 mg/kg/day; SU+low-dose A) or high-dose aspirin (100
mg/kg/day; SU+high-dose A) in WKY rats

Vehicle SU SU+low-dose A SU+high-dose A

pEC50

ACh 6.7 +− 0.2 6.6 +− 0.1 6.5 +− 0.3 6.3 +− 0.4

ACh+L-NAME 6.9 +− 0.4 7.7 +− 0.6 6.4 +− 0.4 6.6 +− 0.2

ACh+T+A 6.6 +− 0.4 6.7 +− 0.3 6.3 +− 0.4 5.9 +− 0.3

ACh+L-NAME+T+A 7.0 +− 0.5 7.4 +− 0.3 6.4 +− 0.5 6.5 +− 0.4

ET-1 8.5 +− 0.1 8.3 +− 0.2 8.2 +− 0.2 8.0 +− 0.1

ET-1+BQ123 7.5 +− 0.2§ 7.5 +− 0.2‡ 7.4 +− 0.2† 7.3+− 0.1†

ET-1+BQ788 8.4 +− 0.1 8.2 +− 0.1 8.2 +− 0.1 7.9 +− 0.1

Emax

ACh 89 +− 10 77 +− 6 90 +− 4 84 +− 10

ACh+L-NAME 39 +− 13* 36 +− 16* 28 +− 14† 65 +− 6

ACh+T+A 65 +− 18 44 +− 13 80 +− 21 75 +− 12

ACh+L-NAME+T+A 24 +− 4† 37 +− 13* 20 +− 12† 30 +− 17*

ET-1 145 +− 23 132 +− 31 165 +− 14 172 +− 18

ET-1+BQ123 148 +− 37 159 +− 31 202 +− 46 150 +− 37

ET-1+BQ788 149 +− 31 125 +− 35 189 +− 30 200 +− 28

Data are presented as mean +− SEM (n=4–7/group).
*P<0.5.
†P<0.01.
‡P<0.001.
§P<0.0001, ‡P<0.001, †P<0.01 versus control segment.

High-dose aspirin, but not low-dose aspirin, prevented the
sunitinib-induced increase in albuminuria in association with a reduction
in the urinary excretion of 6-keto-PGF1α
Sunitinib treatment increased albuminuria and this effect was prevented by co-treatment with high-, but not low-dose
aspirin (Figure 7A). Neither the renal mRNA expression of the genes encoding nephrin and podocin, which are
essential for the normal functioning of the glomerular filtration barrier, nor the urinary excretion of NGAL and
KIM-1, which are markers of tubular damage, were affected by treatment (Figure 7B–E). Qualitative light microscopy
evaluation in PAS-stained kidney sections did not suggest any differences in glomerular morphology among the four
groups (Supplementary Figure S1A–D). In vehicle and SU-treated rats, qualitative electron microscopy examination
revealed mild loss of endothelial fenestrations and endothelial activation in response to SU treatment (Supplementary
Figure S2A–D). Glomerular basement membrane thickness remained unaffected by SU treatment compared with
vehicle (180 versus 164 nm, respectively).

The urinary excretion of 6-keto-PGF1α was 12-fold higher following treatment with sunitinib alone, 15-fold
during co-treatment with low-dose aspirin and 7-fold during co-treatment with high-dose aspirin compared with
vehicle-treated rats (all P<0.05; Figure 8A). The urinary excretion of TXB2 was reduced during treatment with suni-
tinib alone and during co-treatment with aspirin (all P<0.05 versus vehicle-treated; Figure 8B). Conversely, the uri-
nary excretion of 8-iso-PGF2α, PGE2 and PGE-M were unaffected by treatment (Figure 8C–E). Renal mRNA expres-
sion of the genes encoding VEGF, COX-1, COX-2, PGI2 synthase and TXA2 synthase were unaffected by treatment
(Supplementary Figure S3A–E). Similarly, renal activation of the ET system, as assessed by mRNA expression of the
genes encoding ECE, ET-1, ETA receptor and ETB receptor and the protein expression of the ETA and ETB receptors
were unaffected by treatment (Figure 9A–G).

Discussion
The main findings of the present study were: (i) angiogenesis inhibitor-induced hypertension and renal injury is as-
sociated with an up-regulation in circulating and urinary PGI2 levels while TXA2, PGF2α and PGE2 levels remained
unchanged or decreased (as reported previously [16]), (ii) both low- and high-dose aspirin blunted angiogenesis
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Figure 4. The effect of treatment on vascular oxidative stress

Aortic (A) superoxide (O2
−) generation and (B) H2O2 production, the mRNA expression of the pro-oxidant Nox isoforms (C) Nox1,

(D) Nox2 and (E) Nox4 and Western blot of (F) Nox1, (G) Nox2 and (H) Nox4 and (I–K) their quantification relative to α-tubulin, re-

spectively, following treatment with vehicle, sunitinib (14 mg/kg/day; SU) alone or during co-treatment with low-dose aspirin (COX-1

inhibition, 5 mg/kg/day; SU+low-dose A) or high-dose aspirin (dual COX-1 and COX-2 inhibition, 100 mg/kg/day; SU+high-dose

A). Aortic mRNA expression is normalised to the internal housekeeping gene 18S and are expressed relative to the vehicle-treated

group. Data are presented as mean +− SEM (n=4–7/group). Data were analysed using a one-way ANOVA followed by post-hoc t

tests with Holm–Sidak’s correction where appropriate. *P<0.05, **P<0.01 versus vehicle-treated unless otherwise indicated.

inhibitor-induced hypertension and vascular superoxide production to a similar extent, whereas only high-dose as-
pirin prevented albuminuria, (iii) while circulating TXA2 and PGF2α levels were reduced by both low- and high-dose
aspirin, circulating and urinary levels of PGI2 were only reduced by high-dose aspirin and (iv) treatment with aspirin
did not significantly affect ET-1 or vascular function. Collectively our findings suggest that prostanoids, and in par-
ticular PGI2, contribute the development of angiogenesis inhibitor-induced hypertension and renal damage and that
targeting the prostanoid pathway could be an effective strategy to mitigate the unwanted cardiovascular and renal
toxicities associated with angiogenesis inhibitors (Figure 10).

Since VEGF stimulates the production of PGI2, angiogenesis-inhibitor therapy is thought to lead to a reduction in
PGI2, thereby contributing to the rise in blood pressure and increased thrombotic tendency [21]. However, this is yet
to be confirmed in patients. Our data in an established rodent model of angiogenesis inhibitor-induced hypertension
and renal injury argues against this concept [16]. The up-regulation in PGI2 during angiogenesis-inhibitor therapy
likely occurs as a protective mechanism. The concentration of PGI2, which is dependent on the abundance of COX-1,
COX-2 and PGI2 synthase, is integral in determining its effects on vascular tone and renal function. At physiological
concentrations, PGI2 stimulates its own receptor, the prostacyclin prostanoid (IP) receptor, to elicit vasodilation and
reductions in vascular remodelling, inflammation and thrombosis. However, IP receptors are desensitised and inter-
nalised after activation [22,23] and at higher concentrations, IP receptors become saturated. In this situation PGI2 may
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Figure 5. The effect of treatment on the vascular expression of antioxidants

Aortic mRNA expression of the antioxidant systems (A) catalase (B) SOD1, (C) HO1, (D) GPX1, (E) Trdx1 and (F) Prdx1 following treat-

ment with vehicle, sunitinib (14 mg/kg/day; SU) alone or during co-treatment with low-dose aspirin (COX-1 inhibition, 5 mg/kg/day;

SU+low-dose A) or high-dose aspirin (dual COX-1 and COX-2 inhibition, 100 mg/kg/day; SU+high-dose A). Aortic mRNA expression

is normalised to the internal housekeeping gene 18S and are expressed relative to the vehicle-treated group. Data are presented

as mean +− SEM (n=4–7/group). Data were analysed using a one-way ANOVA. *P<0.05, **P<0.01 versus vehicle-treated unless

otherwise indicated.
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Figure 6. The effect of treatment on renal and cardiac oxidative stress

Renal (A) superoxide (O2
−) generation and (B) renal and (C) cardiac H2O2 production following treatment with vehicle, sunitinib (14

mg/kg/day; SU) alone or during co-treatment with low-dose aspirin (COX-1 inhibition, 5 mg/kg/day; SU+low-dose A) or high-dose

aspirin (dual COX-1 and COX-2 inhibition, 100 mg/kg/day; SU+high-dose A) in WKY rats. Data are presented as mean +− SEM

(n=5–7/group). Data were analysed using a one-way ANOVA.
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Figure 7. The effect of treatment on renal injury

Markers of renal injury following treatment with vehicle, sunitinib (14 mg/kg/day; SU) alone or during co-treatment with low-dose

aspirin (COX-1 inhibition, 5 mg/kg/day; SU+low-dose A) or high-dose aspirin (dual COX-1 and COX-2 inhibition, 100 mg/kg/day;

SU+high-dose A) in WKY rats. (A) Albuminuria, the renal mRNA expression of (B) nephrin and (C) podocin and the urinary excretion

of (D) NGAL and (E) KIM-1. Renal mRNA expression is normalised to the internal housekeeping gene, Hprt1, and is expressed

relative to the vehicle-treated group. Data are presented as mean +− SEM (n=5–7/group). Data were analysed using a one-way

ANOVA. *P<0.05 versus vehicle-treated.
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Figure 8. The effect of treatment on urinary prostanoid levels

The urinary excretion of (A) PGI2, (B) TXA2 and (C) PGF2α as measured by their metabolites, 6-keto-PGF1α, TXB2, and 8-iso-PGF2α,

respectively, and (D) PGE2 and (E) its metabolite, PGE-M, following treatment with vehicle, sunitinib (14 mg/kg/day; SU) alone or

during co-treatment with low-dose aspirin (COX-1 inhibition, 5 mg/kg/day; SU+low-dose A) or high-dose aspirin (dual COX-1 and

COX-2 inhibition, 100 mg/kg/day; SU+high-dose A) in WKY rats. Data are presented as mean +− SEM (n=5–7/group). Data were

analysed using a one-way ANOVA followed by post-hoc t tests with Holm–Sidak’s correction where appropriate. *P<0.05, **P<0.01,

***P<0.001 versus vehicle-treated.
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Figure 9. The effect of treatment on renal expression of components of the endothelin (ET) system

Renal mRNA expression of (A) endothelial-converting enzyme (ECE), (B) ET-1, the ET receptors, (C) ETA receptor (ETA R) and (D)

ETB receptor (ETB R), and (E) Western blot of ETA R and ETB R and (F–G) their quantification relative to β-actin, respectively,

following treatment with vehicle, sunitinib (14 mg/kg/day; SU) alone or during co-treatment with low-dose aspirin (COX-1 inhibition,

5 mg/kg/day; SU+low-dose A) or high-dose aspirin (dual COX-1 and COX-2 inhibition, 100 mg/kg/day; SU+high-dose A). Renal

mRNA expression is normalised to the internal housekeeping gene, Hprt1, and is expressed relative to the vehicle-treated group.

Data are presented as mean +− SEM (n=5–7/group). Data were analysed using a one-way ANOVA.
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Figure 10. Working hypothesis of the role of the prostanoid pathway in angiogenesis inhibitor-induced hypertension and

renal injury

Treatment with angiogenesis inhibitors (VEGF antibodies (Abs), VEGFR Ab, VEGF trap, or TKIs), as well as elevated levels of sFlt-1

(a soluble VEGFR) in preeclampsia all lead to disturbed VEGF signaling, thereby increasing ET-1. This causes hypertension and

renal injury via endothelin type A (ETA) receptor stimulation. Such stimulation is accompanied by reactive oxygen species (ROS)

formation and COX type 1 and type 2 (COX-1/COX-2)-mediated PGI2 production. Normally, binding of PGI2 to its prostacyclin

(IP) receptor results in beneficial vascular and renal effects, and thus initially this may be protective. Yet, in case of excessive

PGI2 production, PGI2 can additionally stimulate other prostanoid receptors such as the thromboxane (TP) receptor, the main

signaling receptor for TXA2, acting as an endothelium-derived contracting factor (EDCF). This could contribute to angiogenesis

inhibitor-induced hypertension and nephrotoxicity. The present study has found that low-dose aspirin (resulting in selective COX-1

inhibition and TXA2 suppression) ameliorates TKI-induced hypertension, while high-dose aspirin (additionally resulting in COX-2

inhibition and PGI2 suppression) prevents renal injury.
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activate other prostanoid receptors to induce IP-like effects via the stimulation of prostaglandin E prostanoid (EP) 2,
EP4 and prostaglandin D prostanoid (DP) receptors or to functionally opposing effects via stimulation of thrombox-
ane prostanoid (TP), prostaglandin F prostanoid (FP), EP1 or EP3 receptors. Since the sensitivity of PGI2 is greater
for TP receptors than FP, EP1 and EP3 receptors [24], it is likely that high levels of PGI2 during angiogenesis-inhibitor
therapy primarily lead to the stimulation of TP receptors. In agreement with this hypothesis, it has been demonstrated
in mice that sFlt-1-induced hypertension is abolished by high-dose aspirin or picotamide, which is a dual TXA2 syn-
thase and TP receptor antagonist [25]. This is also consistent with the pathophysiology of preeclampsia, in that the
beneficial effect of low-dose aspirin is primarily attributed to a reduction in TXA2 [6], and hence, reduced TP re-
ceptor activation. Further, previous studies have demonstrated during pathological situations such as hypertension,
obesity and diabetes, that PGI2 elicits vasoconstriction via stimulation of TP receptors [24,26–31]. A caveat of this
is that this phenomenon is mainly studied in aortic vessels, which may explain why we did not detect any changes
in the vasodilator response to ACh in the presence or absence of NO synthase inhibition with l-NAME or calcium
channel blockade with apamin and TRAM 34 in our experiments which were conducted in segments of isolated iliac
vessels. Here, we must also acknowledge that a limitation of our study is that the vascular function experiments were
performed iliac vessels which are not a resistance vessel. Detailed in vivo and in vitro studies are required to dissect
out the contribution of the various prostanoid receptors to the effects of PGI2 during angiogenesis-inhibitor therapy.

In the present study, low- and high-dose aspirin blunted the pressor response to sunitinib by a similar extent,
suggesting that COX-1-dependent PGI2 generation contributes to angiogenesis inhibitor-induced hypertension. This
is in-line with previous studies in the spontaneously hypertensive rat demonstrating a key role for COX-1-dependent
PGI2 generation in endothelium-dependent contractions, such that PGI2 acts an endothelium-derived contracting
factor (EDCF). Yet, we did not observe a reduction in PGI2 in the sunitinib group that was co-treated with low-dose
aspirin. This may be explained by the fact that blood samples were collected at the end of day 8 of treatment, i.e., 24
h after the last dose of aspirin was administered. Previous studies have demonstrated that recovery from low-dose
aspirin-induced inhibition of endothelial PGI2 formation is complete 24 h after the last dose, suggesting that COX-1 is
rapidly turned over in the endothelium, at least in humans [32]. Similarly, following treatment with aspirin in cultured
vascular endothelial cells from humans, rats and bovine, recovery of PGI2 production took up to 24 h [33]. However, in
this study there was no discrimination between COX-1 and COX-2-dependent PGI2 generation. The 30% reduction
in circulating PGI2 observed in sunitinib group that was co-treated with high-dose aspirin likely reflects a reduction
in COX-2 dependent PGI2 generation. Further, while circulating TXA2 and PGF2α, levels were unchanged during
treatment with sunitinib alone, co-treatment with low- and high-dose aspirin significantly reduced these prostanoids.
Thus, it is likely that reductions in these prostanoids contributed to the attenuated pressor response to sunitinib during
co-treatment with low- and high-dose aspirin. As such, we postulate that COX inhibition (such as that achieved with
aspirin) will exert greater protective effects during angiogenesis-inhibitor therapy than targeting a specific prostanoid
or prostanoid receptor. Further studies are warranted to test this hypothesis.

The up-regulation in vascular O2
− during treatment with sunitinib alone most likely contributed to the effects of

COX-1-dependent PGI2 generation on vascular tone. It is known that O2
− facilitates EDCF-mediated contractions, ei-

ther directly by acting as an EDCF or indirectly by reducing the bioavailability of NO and stimulating COX-dependent
prostanoid generation. In canine basilar artery, endothelium-dependent contractions are prevented by SOD, which
converts O2

− into H2O2, but not by catalysis which scavenge H2O2 [34]. Similarly, in spontaneously hypertensive
rats, reactive oxygen species (ROS)-dependent EDCF-mediated contractions were prevented by SOD, indomethacin
(a non-specific COX inhibitor). These observations suggest an important role for O2

− in EDCF-mediated contrac-
tions. However, we previously demonstrated that the SOD mimetic tempol does not alter the pressor response to
sunitinib in rats [4]. Thus, the increase in O2

− seems to be secondary to the rise in ET-1 and PGI2 during treatment
with sunitinib. Consistent with this hypothesis, it has been shown that ET-1 up-regulates COX-1 and COX-2 via ROS,
with increased aortic Nox activity and a reduction in SOD [35]. Further, in the present study, treatment with both
high- and low-dose prevented the sunitinib-induced increase in O2

−, suggesting that the up-regulation in O2
− during

angiogenesis-inhibitor therapy is COX-dependent.
Activation of the ET likely plays a key role in the activation of the prostanoid biosynthesis pathway during

angiogenesis-inhibitor therapy [16]. In preclinical studies, we, and others, have demonstrated that ETA/B or ETA re-
ceptor blockade blunts angiogenesis inhibitor-induced hypertension and proteinuria [4,16,36,37]. Importantly, we
recently demonstrated that ETA receptor blockade lowers PGI2 to a similar extent as dual COX inhibition during
sunitinib-induced hypertension [16]. ET-1 leads to an up-regulation of both COX-1 and COX-2, with intrarenal or
systemic administration of ET-1 augmenting plasma PGI2 [31]. In addition to ET-1 [38], other factors such as inflam-
matory mediators e.g., nuclear factor-κB (NF-κB) [39], hyperosmolality [40] and hypoxia [41] are key drivers for an
up-regulation in COX-2. Angiogenesis inhibitors are known to cause hypoxia-induced up-regulation of COX-2, with
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concomitant COX-2 inhibition resulting in synergistic effects with angiogenesis-inhibitor therapy as PGE2 is an an-
giogenic factor [42]. Thus, COX-2, and hence PGI2, may be up-regulated during angiogenesis-inhibitor therapy due
to hypoxia (independent of ET-1) and/or the up-regulation in ET-1.

In the present study, albuminuria was increased during sunitinib treatment, yet we did not detect a significant
difference in the renal mRNA expression of the podocyte-specific molecules, podocin or nephrin. This is consis-
tent with clinical data which reported that the cumulative dose of bevacizumab is positively correlated with albu-
minuria rather than the urinary mRNA expression nephrin, podocin and VEGF-A [43]. Also, transmission electron
micrographs demonstrated that sunitinib induced a loss of endothelial fenestrations and mild endothelial activation,
which can be indicative of glomerular endothelial injury [44]. Importantly, high-dose aspirin, but not low-dose as-
pirin, completely prevented the development of sunitinib-induced albuminuria and this effect was associated with
a reduction in urinary PGI2 excretion. The latter finding is in contrast with Robinson et al., who did not observe a
change in urinary PGI2 after angiogenesis-inhibitor therapy in patients [45]. Nevertheless, our data suggest that an-
giogenesis inhibitor-induced renal injury is mediated, at least in part, via COX-2-dependent PGI2 generation. Con-
sistent with the rise in circulating PGI2, we postulate that the massive up-regulation of renal PGI2 production during
angiogenesis-inhibitor therapy most likely occurs as a protective mechanism. PGI2 plays a critical role in the main-
tenance of renal blood flow and glomerular filtration rate when actual or effective circulating volume is decreased by
blunting vasoconstriction of the pre-glomerular afferent arteriole [46]. Thus, the up-regulation in PGI2 may occur to
offset renal NO deficiency [4,47] and the shift in the pressure–natriuresis curve [13,47] during angiogenesis-inhibitor
therapy. Further studies are necessary to delineate the effect of PGI2 on renal autoregulation and pressure-natriuresis
during angiogenesis-inhibitor therapy and whether blocking COX-2 to prevent the kidney injury associated with
these drugs will adversely affect renal function.

Conclusion
The present study provides a rationale for the use of COX inhibitors, particularly COX-2 inhibition, for the prevention
of angiogenesis inhibitor-induced hypertension and renal injury. Theoretically, COX inhibition is an attractive option
in patients receiving angiogenesis inhibitor therapy as other benefits including a reduction in thrombotic tendency
which is COX-1/TP receptor mediated [21,48] and the inhibition of tumour growth and prevention of resistance
to angiogenesis-inhibitor therapy, which are both linked to COX-2 [49–53], are likely to be present as well. Further
studies are warranted to determine the contribution of the prostanoid pathway to angiogenesis inhibitor-induced
hypertension and renal injury and the potential of targeting this pathway as novel strategy to prevent these unwanted
effects.

Clinical perspectives
• Background as to why the study was undertaken: Understanding the mechanisms underlying an-

giogenesis inhibitor-induced hypertension and nephropathy is integral if we are to develop preventa-
tive strategies to protect cardiovascular health and allow cancer patients to remain on this life-saving
treatment.

• A brief summary of the results: Our data demonstrate that PGI2 is paradoxically up-regulated dur-
ing angiogenesis-inhibitor therapy. Low-dose aspirin (COX-1 inhibition) and high-dose aspirin (dual
COX inhibition) blunted angiogenesis inhibitor-induced hypertension to a similar extent, whereas only
high-dose aspirin prevented albuminuria.

• The potential significance to human health and disease: Our results uncover a novel role for PGI2
during angiogenesis-inhibitor therapy and suggest that targeting the prostanoid pathway may be a
novel strategy to prevent angiogenesis inhibitor-induced hypertension and kidney damage.
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