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Abstract: Drosophila melanogaster has been for over a century the model of choice of several
neurobiologists to decipher the formation and development of the nervous system as well as to
mirror the pathophysiological conditions of many human neurodegenerative diseases. The rare
disease Friedreich’s ataxia (FRDA) is not an exception. Since the isolation of the responsible gene
more than two decades ago, the analysis of the fly orthologue has proven to be an excellent avenue
to understand the development and progression of the disease, to unravel pivotal mechanisms
underpinning the pathology and to identify genes and molecules that might well be either disease
biomarkers or promising targets for therapeutic interventions. In this review, we aim to summarize
the collection of findings provided by the Drosophila models but also to go one step beyond and
propose the implications of these discoveries for the study and cure of this disorder. We will present
the physiological, cellular and molecular phenotypes described in the fly, highlighting those that have
given insight into the pathology and we will show how the ability of Drosophila to perform genetic
and pharmacological screens has provided valuable information that is not easily within reach of
other cellular or mammalian models.
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1. Molecular and Cellular Aspects of Friedreich’s Ataxia

1.1. Pathophysiology of the Disease

Friedreich’s ataxia (FRDA) is an autosomal recessive degenerative disease present only in
Indo-European and Afro-Asiatic populations [1]. It is the most frequent autosomal recessive ataxia in
the Caucasian population. The major clinical features of FRDA include age of onset around puberty,
progressive ataxia, muscle weakness, sensory loss and non-neurological features such as skeletal
defects and cardiomyopathy. FRDA neuropathology starts with the degeneration of the large sensory
neurons of the dorsal root ganglia (DRG), followed by atrophy of the dorsal columns that produces
loss of proprioception and vibration sense. Degeneration of the spinocerebellar tracts of the spinal cord
results in upper motor weakness. Atrophy of the dentate nuclei is also observed and accounts for the
cerebellar component of ataxia. The neuronal degeneration is also accompanied with demyelination
of sural nerves and DRG fibres. Most FRDA patients develop hypertrophic cardiomyopathy with
thickened septum walls and iron deposits in the myocardium [2,3]. Other clinical signs are diabetes
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mellitus and carbohydrate intolerance [3] and in agreement, postmortem analysis of pancreas from
FRDA patients revealed loss of β cells in islets of Langerhans [4]. Although the expression of frataxin is
ubiquitous [5,6], the selective tissue vulnerability and cell death in FRDA is still far from understood.

Reduced expression of the nuclear-encoded protein frataxin is the molecular cause of the disease.
Such a reduced expression originates from the presence of a guanine-adenine-adenine (GAA) expansion
in the first intron of the gene [5]. However, around 2–4% of FRDA patients are compound heterozygotes
with a GAA expansion on one allele and a small mutation on the second allele [7]. The GAA has
been shown to alter chromatin structure and to induce epigenetic modifications that lead to a reduced
transcription of the gene [8], whereas the point mutations induce a loss-of-function [7]. Human
frataxin (FXN) is translated in the cytoplasm as a precursor of 210 amino acids that is imported into the
mitochondria [6]. It is then proteolytically cleaved by the mitochondrial processing peptidase (MPP)
in a two-step process that leads to the successive generation of an intermediate form of 19 kDa and of
the mature form of 14 kDa [9,10]. Frataxin is a protein highly conserved among eukaryotes and some
prokaryotes. Sequence alignment of the frataxin family shows two distinct regions, an N-terminal
block of 70–90 amino acids that is absent in prokaryotes and poorly conserved among eukaryotes,
and a highly conserved block of 100–120 residues in the C-terminus of the protein [11,12].

The three-dimensional structure of the human frataxin, the Escherichia coli homolog (CyaY)
and the Yeast frataxin homolog 1 (Yfh1), have been fully characterized [13–15]. All three proteins
share conserved C-terminal regions that consist of an antiparallel β-sheet flanked by two α-helices.
The N-terminal tail present in eukaryotes appears to be intrinsically unfolded. The presence of
acidic residues within the first α-helix and the edge of the first β strand forms a negatively charged
surface that is involved in iron binding, whereas a neutral flat area on the β-sheet probably allows
protein-protein interactions [12,16]. A crucial difference among frataxin orthologs is their ability to
undergo iron-dependent oligomerization. Moreover, the functional relevance of such oligomers is
still controversial. In the presence of excess of iron, Yfh1 has been shown to assemble into trimmers,
hexamers and to larger 12-mers, 24-mers and 48-mers [17,18]. However, some authors suggest that
such oligomers are dispensable since a yeast frataxin defective for oligomerization was able to perfectly
replace the endogenous protein [19]. Unlike CyaY and Yfh1, the mature form of the human frataxin
did not seem to form oligomers [20], although recent experiments suggest the opposite [21].

The function of frataxin has been linked to different mitochondrial pathways, but still remains
partially unclear. The most accepted hypothesis based on all the available data supports the
participation of frataxin in iron-sulfur (Fe–S) cluster biosynthesis in the mitochondrial matrix [22].
Fe–S clusters constitute one of the most ancient and ubiquitous of the biological prosthetic groups.
More than 200 types of proteins, exhibiting a remarkable functional and structural diversity, contain
Fe–S centres. Fe–S clusters are composed by two or more iron atoms bridged by sulfide centres,
most frequently in a [2Fe–2S] or a [4Fe–4S] conformation [23]. In higher eukaryotes, Fe–S biogenesis
takes place in the mitochondria by means of homologous components of the bacterial Fe–S system that
were transferred from the bacterial endosymbiotic ancestor of this organelle. Mitochondrial de novo
Fe–S cluster biogenesis occurs in two steps. The first step involves the assembly of inorganic iron and
sulfur on a scaffold protein, IscU in bacteria and Isu1 in yeast. It is known that this reaction needs a
cysteine desulphurase as sulfur donor, IscS in bacteria and Nfs-1-Isd11 in yeast, whereas the origin
of the iron still needs to be fully elucidated. In the second step, the clusters are transferred from the
scaffold to recipient apoproteins for incorporation within specific amino acid residues [23].

The involvement of frataxin in this biosynthetic process was first suggested by the deficient
activity of proteins containing Fe–S clusters in FRDA patients and in mouse models [24,25]. Additional
data supporting this hypothesis was provided by studies in Saccharomyces cerevisiae [26]. Analysis
using mammalian recombinant proteins further characterized the interaction of human frataxin with a
preformed complex composed of NFS1, ISCU and ISD11 [20,27]. However, the exact role of frataxin in
the Fe–S cluster assembly process is still a matter of debate. On one hand, the iron-binding properties
of the human protein indicated that frataxin acts as the iron donor in the first step of the assembly
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reaction [28]. On the other hand, other groups showed that frataxin functions as an allosteric regulator
that facilitates the transfer of sulfur from NFS1 for the assembly and that iron is not required for
the interaction between human frataxin and the NFS1/ISCU/ISD11complex [20,27,29]. Surprisingly,
CyaY seems to inhibit the Fe–S cluster biogenesis [30]. In addition to its primary role in Fe–S cluster
biogenesis, frataxin has been proposed to act directly as a chaperone that provides iron to aconitase [31]
and ferrochelatase [32] or electrons to ubiquinone/mitochondrial respiratory chain complex II [33] via
protein-protein interaction.

1.2. Current and Prospective Treatments

Several clinical trials have been or are currently conducted to evaluate pharmacological
compounds in FRDA patients. These trials are based on various strategies, such as increasing frataxin
expression, lowering oxidative stress, improving mitochondrial function, reducing iron-mediated
toxicity or modulating frataxin-controlled metabolic pathways [34]. However, to date, there is no
pharmacological treatment with demonstrated efficacy to cure or even to stop the progression of the
disease. It is therefore crucial to identify new candidate molecules for pharmacological approaches,
and we believe that Drosophila models have a major role to play in this process.

An alternative, complementary and promising future approach is the possibility of a gene
therapy. Two preclinical studies, performed on cardiac and sensory mouse models of FRDA using
adeno-associated virus (AAV) vectors to express frataxin, showed that intravenous injection of
an AAV vector expressing FXN not only prevented the development of cardiac and neurological
features, but also improved cellular functions when injections were made in symptomatic mice [35,36].
The major challenges in the development of such gene therapy approaches will undoubtedly be to
target efficiently the affected cells and tissues in FRDA patients and to succeed in inducing frataxin
expression at levels that remain physiological. Indeed, studies in Drosophila showed that overexpression
of endogenous or human frataxin in the nervous system decreased longevity, affected locomotor
activity, and induced neurodegeneration [37,38], revealing the importance of a finely controlled level
of expression of frataxin in the development of gene therapy approaches. Very recently, a study using
human cells confirmed the hypothesis from these fly reports [39].

2. Analysis of Frataxin Function in Drosophila melanogaster

Frataxin homolog (fh) is the Drosophila homolog of FXN. The gene fh, of 965 bp, is in the region 8C/D
of the X chromosome. It is composed of one intron flanked by two exons, encoding for the 190 amino
acid Drosophila frataxin protein (Fh). Frataxin is a highly conserved protein, and the Drosophila
protein shares conservation in both sequence and structure. Preliminary in silico analysis predicted the
presence of a signal peptide for mitochondrial import [40]. The mitochondrial localization of fly frataxin
was corroborated by a co-localization experiments in cell culture [41]. The biophysical and iron binding
properties of the Drosophila frataxin are consistent with those from orthologs. Interestingly, Fh is stable
as an iron-repleted monomer, not very prone to form oligomers and delivers iron to the scaffold on
Fe–S cluster assembly [42]. This might be an advantage to study frataxin function. Furthermore, there
has been some controversy regarding the existence and the function of an extramitochondrial frataxin
pool that seemed sufficient to enhance survival [43] or to revert iron deregulation in FRDA cells [44].
Drosophila offers a nice experimental scenario to assess this issue in vivo. In agreement with evidence
from Trypanosoma brucei [45], expression of a fly frataxin lacking the mitochondrial signal peptide
failed to rescue the defects induced by the mutation present in the fh1 allele compared to the full length
frataxin [46].

2.1. Methodologies Applied to Generate FRDA Models in Flies

The fruit fly is a versatile model organism used in biomedical research to study a broad range of
phenomena. The use of disease models is essential to understand the pathophysiological mechanisms
of human disorders. For over a century, different approaches have been developed to obtain Drosophila
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models that recapitulate the hallmarks of human pathologies. Many of them take advantage of the
GAL4/UAS system. This bipartite system, adapted from yeast, involves two transgenes and allows,
up to some degree, the spatial and temporal control of the expression of the transgene of interest [47].
On the one hand, one that carries the GAL4 transcription factor under the control of a given promoter
and on the other hand, the construct of interest downstream of an upstream activating sequence (UAS).
Using this approach, the fly has successfully mimicked human conditions by overexpressing mutant
forms of human genes [48,49] or by promoting posttranscriptional silencing by means of the RNA
interference (RNAi) strategy [50], of your favorite gene [51].

Using the RNAi strategy, John P. Phillip’s lab developed the first Drosophila model of FRDA [52].
This work was the first showing that loss of frataxin in flies reproduced the main molecular and
biochemical features of the human disorder. Therefore, it was pivotal to stablish Drosophila as an
excellent platform to reveal factors that can modulate the phenotypes and mechanisms involved in the
disease. This first RNAi construct consisted of two inverted repeated copies of the first 391 nucleotides
of fh cloned into the pUAST vector. Authors generated three transgenic lines—UDIR1, UDIR2 and
UDIR3 (also named as fhRNAi, DfhIR, fhRNAi-1 in the literature)—able to almost completely suppress
the expression of FH protein [52,53]. These lines have been also combined with the gene switch
system [54,55] at the lab of Hervé Tricoire [56]. In this system, a modified GAL4 protein is fused
to a progesterone steroid receptor, allowing the regulation of its GAL4 activity via the presence or
absence of the synthetic progesterone analogue mifepristone (RU486). Using the same methodology
and a different construct, Maria Dolores Moltó’s group developed a second RNAi model [41] named
UAS-fhIR (also known as fhRNAi-2). In this model, two copies of the fh cDNA were cloned in the
pUAST vector in an opposite direction and separated with a fragment of the GFP sequence as a
linker to facilitate the formation of the loop [57]. Although based in a similar idea, there is a critical
difference between both models. As stated above, the UDIR lines strongly abolish frataxin expression
whereas, the UAS-fhIR line triggers a moderate and mild reduction of frataxin levels (around 70%
compared to controls) down to levels that better resemble the frataxin expression found in FRDA
patients [58]. Importantly, this line has the advantage to allow working with adult flies upon ubiquitous
downregulation of frataxin expression [41,59–61], whereas the UDIR lines are extremely useful to
unveil pathological events and mechanisms upon tissue-specific silencing [56,61–64]. In this review,
we decided to keep the original names—UDIR and UAS-fhIR—throughout the entire manuscript.

The last model was recently developed in Hugo Bellen’s lab. In an outstanding effort to unravel
genes of the X chromosome involved in neuronal function and likely in neurodegeneration [65],
authors performed an ethyl methanesulfonate (EMS) based mosaic genetic screen of lethal mutations.
Using this mutagenic alkylating agent, they identified a missense mutant allele of fh (S136R, named
fh1) [46]. The mutation is located in a highly conserved region of the protein used for the binding
of frataxin to the ISC machinery [66]. Such a change triggers a strong loss of function leading to
developmental arrest in larval stages. Remarkably, the fly stock used in the EMS screen also allowed
the authors to carry out a mosaic mutant analysis by generating mitotic clones of adult photoreceptor
neurons using the eyeless flippase and flippase recognition target (FLP/FRT) system [67]. This way,
it is possible to generate a fly mutant for frataxin in a non-vital organ/tissue, while the rest of the fly
remains wild-type like.

These are the models of FRDA developed so far in Drosophila melanogaster. All phenotypes induced
by these genetic tools/models were recently described in detail [68]. Therefore, in the next chapters,
we will focus on the detailed analysis of how all these models have contributed to the understanding
of the pathophysiological mechanisms of the disease and the implications of such discoveries.

2.2. Fly Models Recapitulate FRDA Features

RNAi-mediated frataxin ubiquitous inactivation, using the daughterless (da-GAL4) driver, leads to
developmental lethality. Third instar-larvae (L3) fail to pupariate or reach the pupal stage much later
than controls and are not capable of becoming viable adults [52]. Similarly, fh1 hemizygote mutants
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are lethal at the L3 or pupal stages, with prolonged larval stages. Removal of the maternal source of
wild-type frataxin in these mutants leads to an earlier lethality, occurring at the embryonic stage [46].
This shows that frataxin is an essential protein during early embryogenesis in Drosophila, similarly to
observations on mouse frataxin knock-out mutants [69] and in line with the lack of FRDA patients
containing point mutations in both frataxin alleles [70].

To study the effects of partial frataxin inactivation on adults, and thus more closely mimic the
situation of human FRDA patients, several strategies were used to bypass the preadult lethality. First,
taking advantage of the fact that the activity of the UAS-GAL4 system is temperature dependent,
some da-GAL4>UDIR adults were obtained by switching flies from 25 to 18 ◦C at the beginning of the
pupal stage. These adults are mostly short-lived, with a peak of mortality between 3 and 6 days of
adult life. Interestingly, the cohort of flies still alive after this initial high-mortality phase could live up
to 40 days of age, suggesting that frataxin is particularly needed in the early days of adulthood [52].
Another study used the actin-GAL4 ubiquitous driver to express the UAS-fhIR construct that allowed
experiments on viable adults due a moderate but significant reduction of frataxin expression, as
indicated above. Such flies also exhibited decreased lifespan and defective climbing activities [41].

In addition to these systemic approaches, a major advantage of RNAi-based Drosophila models lies
in the ability to target specific tissues and therefore to evaluate which tissue or organs are particularly
sensitive to frataxin depletion and to study tissue-specific physiopathological mechanisms.

Several studies targeted frataxin inactivation in neurons. Surprisingly, frataxin inactivation
using various neuronal drivers resulted in viable progeny. Noticeably, flies in which RNAi-mediated
frataxin inactivation is induced in the larval brain (c698a-GAL4) or in specific subtypes of neurons
such as motorneurons (D42-GAL4 driver) or dopaminergic neurons (Ddc-GAL4) are viable without
any obvious phenotypes [41,52]. Reduced adult lifespan and climbing activity were observed using
the neur-GAL4 and C96-GAL4 drivers, allowing frataxin inactivation in the peripheral nervous system,
suggesting that these neurons might be more sensitive to frataxin deficiency [41]. In agreement,
in our unpublished observations, we did not observe any significant effect on fly fitness when frataxin
was downregulated in all neurons by means of Elav-GAL4 and a moderate effect when using the
RU486 inducible Elav-GS driver (as described in [71]). Silencing of frataxin in glial cells, using the
pan-glial Repo-GAL4 driver, leads to partial developmental lethality, reduced adult lifespan and
impaired locomotor activity [63]. Following this initial discovery in Drosophila, studies on human
and mouse astrocytes confirmed a detrimental effect of frataxin silencing in astrocytes with non-cell
autonomous effects on neurons, showing that glial cells are highly susceptible to contribute to the
FRDA disease [72,73].

Heart-specific developmental inactivation of frataxin in flies, using the RU486 inducible Hand-GS
driver, leads to cardiac dilatation and impaired systolic function [56]. Remarkably, those alterations
are very similar to cardiac dysfunctions observed in patients and mouse models of FRDA [25,74,75].
Importantly, these phenotypes are fully rescued by complementation with human frataxin, showing
conserved cardiac functions of frataxin between Drosophila and mammals. Interestingly, adult-specific
frataxin inactivation did not lead to cardiac phenotypes, showing that the fly heart is particularly
sensitive to frataxin depletion during developmental stages before adulthood. In human FRDA
patients, the cardiomyopathy can already be observed in children, and patients with an earlier onset
of disease generally also showed more severe cardiac involvement, suggesting a similar specific
requirement of cardiac frataxin in young humans before adulthood [75]. It would be interesting to
know whether such a developmental component is crucial exclusively in the heart or whether it is also
a key element in other tissues/organs of the fly. Analyzing this aspect is of high interest in light of
the new inducible and reversible mouse model [76] in which reactivation of frataxin expression after
12 weeks is sufficient to stop the progression of the disease and to recover morphological features in
the affected heart and DRG.

Frataxin downregulation in muscles using the Mef2-GAL4 driver leads to reduced longevity and
locomotion, associated with expected mitochondrial dysfunctions [62]. Although often considered as
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secondary in the disease, pathological manifestations are also observed in muscles of FRDA patients.
Those defects include loss of muscle strength, particularly affecting the lower limbs and prolonged
recovery of calf muscle following exercise [77,78]. Moreover, magnetic resonance spectroscopy of the
calf muscles in FRDA patients has also demonstrated impairment of ATP synthesis and inadequate
oxygen utilization [78–80]. Therefore, Drosophila can be considered as an attractive and pertinent
organism to study muscular dysfunctions, besides heart dysfunctions described above, induced by
frataxin deficiency.

Finally, inactivation of frataxin in the steroidogenic prothoracic gland (the gland that produces
ecdysteroids involved in larval molts, pupariation and metamorphosis) was sufficient to lead to
developmental lethality. Although this appears at first glance to be specific to insect physiology,
it could eventually reveal cellular and metabolic dysfunctions induced by frataxin deficiency relevant
in the context of the FRDA disease [81].

As summarized in Table 1, ubiquitous and tissue-specific inactivation of frataxin allowed
recapitulation of clinical features characteristic of the FRDA disease, such as reduced lifespan, impaired
locomotor activity, cellular degeneration and cardiac dysfunction, providing relevant models to study
the physiopathological mechanisms involved in the disease at various scales, to screen for genetic and
pharmacological modifiers and ultimately propose therapeutic strategies.
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Table 1. Comparison of physiological hallmarks of FRDA in patients and phenotypes observed in FRDA fly models.

Patient Phenotype Tissue Affected Genotype Fly Phenotype

Reduced longevity

Ubiquitous downregulation
Ubiquitous downregulation

Panneuronal
Panneuronal

Actin-GAL4>UAS-fhIR
Da-GAL4>UDIR
Elav-GS>UDIR

Elav-GAL4; UAS-Dicer2>UDIR

Shortened life span
Developmental lethality

Shortened life span
Shortened life span

Ataxia

Ubiquitous downregulation
Panneuronal

Larval and adult CNS
Serotonergic and Dopaminergic neurons

Actin-GAL4>UAS-fhIR
Elav-GAL4; UAS-Dicer2>UDIR

c698a-GAL4>UAS-fhIR
Ddc-GAL4>UAS-fhIR

impaired locomotion
impaired locomotion

No effect
No effect

Degeneration and atrophy of DN mutant photoreceptor neurons fh1 Degeneration of neuronal photoreceptors

Degeneration of large sensory neurons
from the DRG

PNS
PNS

C96-GAL4>UDIR
Neur-GAL4>UAS-fhIR

Reduced longevity
Reduced longevity, impaired locomotion

Degeneration of spinocerebellar tracts Motorneurons D42-GAL4>UDIR
No effect in life span, reduced

mitochondrial transport and axonal
degeneration

Demyelination of sural nerves and DRG
fibres Panglial Repo-GAL4>UDIR

Shortened life span, impaired
locomotion, brain degeneration,

lipid dyshomeostasis

Hypertrophic cardiomyopathy Heart Hand-GS>UDIR Heart dilatation an impairment of
heart function

Abnormal muscle performance and
recovery after exercise Indirect Flight Muscles Mef2-GAL4>UDIR Reduced ATP production, shortened life

span, impaired locomotion

CNS: Central Nervous System; DN: Dentatte nucleus; DRG: Dorsal root ganglia.
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3. The Contribution of Drosophila to the Analysis and Cure of FRDA

3.1. Understanding the Molecular Physiopathology of the Disease

As shown in Section 2, frataxin depletion in the fly strongly resembles the physiological effects
observed in FRDA patients. Starting from this premise, the labs of John P. Phillips, Maria Dolores
Moltó, Stephan Schneuwly, Peter J Hollenbeck, Hervé Tricoire, and Hugo Bellen investigated the
molecular and cellular pathological mechanisms underlying the defects described in fly fitness upon
frataxin downregulation. Those labs exploited the possibility to easily perform in fly genetic screens
because of the outstanding available genetic toolbox. Moreover, Drosophila has shown in several
instances its pivotal ability to react to pharmaceuticals compounds, similar to humans [82,83]. Such an
ability facilitates testing of several hundreds of drugs in a short period of time [84,85]. Both strategies
have allowed the unveiling of novel molecules and mechanisms that seem to be crucial for the etiology
of the disease.

3.1.1. Biogenesis of Fe–S Clusters: The Beginning of the End

As mentioned previously, frataxin deficiency leads to a deficit in Fe–S cluster biogenesis in many
organisms, including yeast, plants and mammals. Fe–S clusters are essential cofactors of proteins
located in mitochondria, cytosol and nucleus, essential for many cellular processes such as respiration,
replication, DNA repair, ribosome biogenesis and iron regulation. Importantly, the cellular machinery
involved in Fe–S synthesis is conserved between mammals and flies [86]. Thus, frataxin inactivation is
susceptible to affect many cellular and physiological functions that are pivotal during development and
aging. In agreement, activities of several mitochondrial Fe–S proteins have been shown to be affected
by frataxin deficiency in Drosophila and are presumably responsible for subsequent mitochondrial
dysfunctions (Figure 1). Strong ubiquitous RNAi-mediated frataxin inactivation dramatically reduced
activities of mitochondrial aconitase and of respiratory chain (MRC) complexes I, II, III and IV [52],
whereas moderate reduction only provokes a reduction of aconitase activity and complexes I, II and
indirectly complexes III and IV were normal [41]. Interestingly, human frataxin expression restores
the aconitase activity in frataxin-deficient flies, further showing that these two proteins share similar
functions in both organisms [38]. Reduced activity of MRC complex I, associated with an increased
ADP/ATP ratio, was also observed in the fh1 mutant [46]; frataxin knockdown in muscles leads to
impaired aconitase activity, ATP production and mitochondrial membrane potential [62].

Ubiquitous or specific inactivation of frataxin in the steroidogenic prothoracic gland leads to a
hormonal deficit in the steroid hormone 20-hydroxyecdysone, responsible for the developmental
blockage at the third instar larval stage and the formation of giant larvae described previously.
These hormonal defects are also likely to be a consequence of defective Fe–S cluster assembly, leading
to decreased activities of Fe–S enzymes involved in steroidogenesis such as ferredoxins or Neverland
(Nvd), which convert cholesterol into 7-dehydrocholesterol. Interestingly, frataxin silencing decreases
progesterone synthesis in human KGN ovarian granulosa cells, suggesting that the involvement of
frataxin in steroid synthesis is a conserved function of frataxin protein from flies to human and that
steroidogenesis could be affected in FRDA patients [81].

Although loss of Fe–S containing enzymes is a common feature of all FRDA fly models, it is
striking to observe that some unexpected differences are also present. The differences between
UDIR and fhIR models are likely related to levels of frataxin downregulation achieved with both.
The comparison suggests that aconitase is much more sensitive to a reduction of Fe–S generation than
the MRC complexes as it has been seen in FRDA patients [24]. However, it is difficult to understand
that the flies containing a mutant allele of frataxin triggering a severe loss-of-function only display a
clear reduction in Complex I activity, but not of other mitochondrial respiratory chain complexes.
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3.1.2. Alterations in Iron Metabolism: The Cornerstone behind FRDA

Keeping in mind the toxic biochemistry of iron surplus, the first aspect to study downstream of the
impairment of Fe–S cluster formation in frataxin deficient cells is the fate of the mitochondrial iron that
cannot be incorporated into the clusters. The first answer came around 40 years ago from biopsy studies
from patients [87,88] in which mitochondrial iron deposits were detected in cardiac tissue. However,
such accumulations are not a general feature and, for example, in DRG or DN, iron redistribution and
not iron accumulation seems to be the main consequence [89,90]. Unexpectedly, results from patients’
samples revealed a high variability in the total iron content that prevent concluding that there are
significant changes in the total amount of this transition metal [89–92].

Under these circumstances, Drosophila might represent a nice approach because of the genetic and
phenotypical homogeneity of this model organism. Indeed, when these questions were addressed in
the fly models, the results were robust and clear. Importantly, frataxin deficiency in flies triggers a
strong accumulation of mitochondrial iron [46,93]. However, levels of total iron inversely correlate
with amounts of functional frataxin. On one hand, total iron remained unaltered upon partial
reduction of fh [93], whereas a clear increase was detected in flies with a drastic loss-of-frataxin
function [46]. Remarkably, Drosophila has been the first FRDA model organism showing that iron
also accumulates in the nervous system [46]. In this report, Chen and collaborators also suggested
that lack of detection of ferric iron in the nervous system of mouse models [25,69,94,95] was likely
a methodological issue rather than absence of iron accumulation. In a second manuscript, the same
group showed that implementation of Fe3+ detection is sufficient to visualize iron accumulation in
the nervous system of a new FRDA mouse model [96]. It would be interesting and of high relevance
to apply this new iron-detection method to all fly and mouse FRDA models in order to definitively
clarify this issue. In agreement with the presence of a detrimental mitochondrial iron accumulation,
frataxin deficiency triggers hypersensitivity towards iron supplementation in food. Increased iron
content further impaired pupariation [46,52] and worsened the reduced longevity [59] or the neuronal
activity [46] of frataxin-deficient individuals. This is in agreement with cell culture models [97,98],
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although a diet enriched with iron was able to ameliorate the heart dysfunction of the muscle creatine
kinase (MCK) conditional knockout mouse model [99].

As indicated above, an outstanding advantage of Drosophila over other model organisms is the
possibility to modulate the frataxin knockdown using different RNAi constructs. In this sense, a fly
model with moderate reduction of frataxin will allow identification of primary events compared to the
broader panoply of changes triggered by complete loss of frataxin function. With this strategy, Navarro
and colleagues were able to provide an insight into the molecular mechanisms behind iron toxicity.
Importantly, as nicely reviewed in [100,101], the main actors of iron metabolism are conserved between
humans and flies. This ensures the translation of fly results into clinical outcomes. Authors found
changes in three genes: (i) Mitoferrin, the main mitochondrial iron importer; (ii) the iron regulatory
protein 1A (IRP-1A) also known as the cytosolic aconitase, which is involved in the translation of
other iron-related genes depending on the iron availability via Iron Responsive Elements (IREs) at
the 5′UTR and 3′UTR of the transcripts, and (iii) ferritin, the key protein required for iron storage in
Drosophila. In short, frataxin silencing upregulated mitoferrin along with a strong cytosolic scarcity
that impaired ferritin translation because of an increase expression of IRP-1A. These results are in
agreement with those reported in the cardiac tissue of the MCK frataxin knock-out mice [25]. This group
of phenotypes clearly suggests different genetic strategies to improve FRDA conditions in fly models.
Downregulation of mitoferrin and thus, reducing mitochondrial iron transport, was sufficient to recover
the cellular iron metabolism to a control-like situation [59]. This concomitantly rescued aconitase
activity as well as the brain degeneration observed upon frataxin downregulation in glia. Unexpectedly,
coexpression of ferritins failed to recover those phenotypes in these RNAi-based models [59]. On the
other hand, promotion of iron chelation by overexpressing ferritin subunits or mitochondrial ferritin
successfully suppressed neuronal degeneration in fly photoreceptors [46] and increased longevity
of UAS-fhIR flies [59]. Such a difference between models might be attributed to differences in the
iron dyshomeostasis, which seems to be more severe in the fh1 mutant allele [46]. Soriano and
colleagues followed a similar strategy in a new biased genetic screen. In this case, authors impaired
cellular iron uptake by knocking down the expression of Malvolio (Mvl), Tsf1 and Tsf3 (the Drosophila
homologues of the mammalian Divalent metal transporter-1 and of iron Transferrins, respectively).
Silencing of all three genes improved locomotion as well as eye morphology in frataxin deficient flies.
They also tested the effect of IRP-1A and IRP-1B silencing to counteract the upregulation of IRP-1A
detected previously [59]. As expected, suppression of IRP activity elicits a positive effect on FRDA
phenotypes. Although no rescue mechanism was reported in this case, the reduction of mitochondrial
iron accumulation driven by IRP1 depletion in mouse livers mutants for frataxin suggests a possible
explanation [102]. All these results are summarized in Figure 2. As suggested above, Drosophila models
display a reduced iron-storage capacity in the cytosol due to a decrease in ferritin protein levels [52,59].
The same defect has been found in mouse and worm FRDA models [103,104]. In contrast to all
three animal models, histological analyses of patient’s samples suggest cytosolic iron accumulation
instead of iron depletion in DRG, DN, satellites cells and heart [89,90,105,106]. Although the reasons of
these discrepancies still remain unclear, such a remarkable difference might be attributed to the specific
biology and iron homeostasis in each model, tissue, or cell type. For example, ferritin accumulates in
the liver of a mouse FRDA model, whereas it decreases in the heart of the same model [99].

It has been largely speculated that a mitochondrial signal might act as an iron sensor regulating the
activity of IRPs and, in turn, iron metabolism. Such a signal would not be present in frataxin deficient
cells, leading to the loss of iron equilibrium. We can speculate that the Fe–S clusters themselves might
be the missing link. Recently, Fanis Missirlis suggested that mitochondrial superoxide dismutase
(SOD2) might be the key molecule. This is interesting since Fe can replace Mn in the SOD2 catalytic
core, leading to inactivation of the enzyme. This will boost oxidative stress, generating a feedback
loop that further contributes to inactivation of aconitase [86]. In agreement, genetic reduction of SOD1
and SOD2 in flies affects aconitase activity [107]. This hypothesis fits with the reduced SOD2 activity
displayed in the yeast FRDA model [108]. However, SOD2 activity seems to not be decreased in FRDA
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flies [52], suggesting that other signals might be participating in the process. Deciphering the precise
nature of this signal would facilitate the complete understanding of iron dyshomeostasis in FRDA.

The last contribution of the fly in unraveling the toxic mechanism of iron in FRDA was reported a
couple of years ago by Hugo Bellen’s lab [46]. Authors describe a pathological mechanism that includes
sphingolipid synthesis and Pdk1/Mef2 signaling downstream of iron accumulation. This mechanism
will be further discussed later.
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3.1.3. To Be or Not to Be: The Controversy of Oxidative Stress

Oxidative stress can be defined as an imbalance between the production of Reactive Oxygen
Species (ROS) and the antioxidant systems that protect the cell from them. Mitochondria are the main
source of ROS. The consequences of increased ROS production or reduction of ROS protection include
damage in DNA and RNA by incorporating oxidized bases or oxidizing bases already integrated in
the DNA [109], in proteins by oxidizing backbone and amino-acids [110] and in lipids by the formation
of lipid peroxyl radicals and hydroperoxides that can damage many cellular structures [111].

As stated above, alterations caused by frataxin deficiency include impaired Fe–S cluster
biogenesis with the concomitant aconitase and respiratory chain dysfunctions and mitochondrial
iron accumulation [112]. Those defects have been proposed to alter the cellular redox status and lead to
oxidative damage in FRDA. This is a hallmark of FRDA that may further contribute to the progression
of the disease [113]. Three mechanisms have been suggested to participate: (i) the enhanced ROS
production due to the uncoupling of the Electron Transport Chain (ETC) [24]; (ii) the increased ROS
production through the Fenton chemistry due to an accumulation of free iron [114] and (iii) the
impairment of antioxidant response [115]. Furthermore, since ROS also act as signaling molecules in
the nervous system [116], their dysregulation may well disturb other cellular processes in addition to
non-specific oxidative damage.
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The relation of oxidative stress and FRDA in all models has been recently nicely summarized by
Annalisa Pastore’s group [117]. In short, two main manifestations of such redox alterations are present
in the FRDA literature. On one hand, loss of frataxin function triggers the production of oxidative stress
biomarkers in yeast [6,108,118–122], C. elegans [123], mouse [25,95] as well as in FRDA patients and
patients-derived samples [97,115,122,124–129]. On the other hand, frataxin deficient cells have been
shown to display increased sensitivity towards antioxidant insult [97,98]. However, those markers are
absent in other FRDA models [76,130] or in different brain regions from FRDA patients [131].

Although treatments based on antioxidants were promising in preclinical studies, they show a
very limited benefit in patient clinical trials [132,133]. Thus, it is crucial to understand the true influence
of oxidative stress in the pathophysiology of FRDA. We can only speculate about the inefficacy of
this type of drugs in clinical trials. It is possible that the moment of application of the treatment
is crucial. In some preclinical models, the compound could possibly be administered in the early
stages of the disease, in which case improvement is feasible. However, in Phase III (last phase) clinical
trials, the heterogeneity of patients, including some displaying more severe symptoms, avoids a clear
analysis of these chemicals.

To this purpose, researchers have analyzed three parameters in fly models: (i) increased
production of ROS; (ii) enhanced sensitivity towards oxidative insults and (iii) positive effect of
antioxidant treatments (Figure 3). Unfortunately, contradictory results have been obtained. On one
hand, frataxin deficiency in glia, muscle and ubiquitously induced hypersensitivity to oxidative
stress [41,62,63] and accumulation of lipid peroxides [60,63]. On the other hand, increased ROS levels
have not been reported when frataxin was silenced in larval motor neurons [64] or in fh1 flies that carry
a missense mutation in the fh locus that triggers a strong loss-of-function [46]. This was unexpected
since these mutant flies exhibit a clear complex I deficiency that is normally associated with increased
ROS production [134–136]. Moreover, because drugs based on combating oxidative stress are being
used to treat FRDA patients [132,133], Drosophila studies have tried to recover FRDA phenotypes by
overexpressing antioxidant enzymes. Initially, the suppression of defects in the PNS was achieved by
coexpression of some scavenging enzymes such as catalase, mitochondrial catalase and mitochondrial
peroxiredoxin [53]. Moreover, the lack of recovery by both cytosolic and mitochondrial superoxide
dismutase (SOD1 and SOD2, respectively) [52] strongly suggested that hydrogen peroxide (H2O2)
and not superoxide (O2

−) free radicals were key contributors to the pathology. Similar results were
obtained when antioxidant defenses were activated in glial cells in which frataxin was silenced. Indeed,
only hydrogen peroxide scavengers were able to improve the negative geotaxis impairment [62].
The hypothesis is in line with observations in a FRDA mouse model in which overexpression of SOD1
and a SOD2 mimetic also failed to improve FRDA conditions [130]. As previously mentioned, Fe might
replace Mn in the catalytic site of SOD2 and thus, in a situation of mitochondrial iron accumulation
such as FRDA, overexpression of SOD2 will not guarantee an increase activity of this enzyme [86].
Peroxiredoxins are one of the hydroperoxides scavengers that showed a positive impact on PNS of
frataxin-deficient flies [53]. Although they have not been further used in the fly models, their interplay
with aging signaling pathways such as p38 MAPKinase [137] and the recent identification of this
kinase as a therapeutic agent in FRDA [138] might indicate that further studies with peroxiredoxins
are of great interest.
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However, overexpression of catalase or treatment with a synthetic catalase mimetic did not
improve heart function in the impressive FRDA fly heart model [56] and failed to suppress the
neurodegeneration observed in photoreceptors of fh1 mutant flies [46]. This might indicate a lack
of contribution of ROS in the neurological and cardiac phenotypes associated with FRDA. We can
also guess that the relevance of specific ROS subtypes might be a tissue-specific effect. It is difficult
to extract definitive conclusions when every parameter is not studied in each model. For example,
it would be interesting to know whether oxidative stress enhances the cardiac dysfunction and
neurodegenerative phenotypes observed in FRDA fly models or if the presence of lipid peroxides
is a common feature of all FRDA models. We have studied redox imbalance in two situations in
which frataxin deficiency triggered hypersensitivity to oxidative insult [62,63] by means of a redox
sensitive GFP, named roGFP, which changes its excitation maximum from 488 to 405 nm when
oxidized [139]. In particular, we used a fusion of the glutaredoxin (Grx1) to a mitochondrial targeted
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roGFP, which allows effective measurement of the ratio of oxidized glutathione (GSSG) to reduced
glutathione (GSH) within this organelle [140]. Glutathione is a powerful cellular antioxidant capable
of neutralizing reactive oxygen species and becomes oxidized after donating an electron [141]. In our
unpublished observations, we observed higher levels of reduced glutathione in frataxin-deficient
glial and muscle cells. This result is in contrast to findings in the erythrocytes of a cohort of FRDA
patients [125], in skeletal mouse muscles and motorneurons [142,143], in yeast [120,122] and in human
cell cultures [122,144] in which total GSH levels were low and the ratio of GSSG to GSH was increased.
However, such ratio is not altered in neurons of the FRDA mouse model [145]. One possible explanation
for the lack of oxidized glutathione in flies is that the GSSG/GSH ratio was measured at time points
where mitochondria are strongly affected and thus less ROS are produced as a byproduct of respiration.
This might also partially explain the contradictory results regarding the involvement of oxidative
stress. Up to this moment, the only evidence regarding glutathione in fly models was an increase
of total glutathione observed upon ubiquitous downregulation of frataxin [60] without additional
information of the contribution of each form.

Finally, in line with the idea that oxidative stress might play a role in the pathology, it was found
that a slight overexpression of fly frataxin increases resistance to hydrogen peroxide [146], whereas a
strong overexpression makes the flies more sensitive [37,38].

3.1.4. Beyond Iron: Importance of Other Metals in the Development and Progression of the Pathology

As explained exhaustively above, there are many studies that provide evidence for the role of
frataxin in iron homeostasis, in both humans and model organisms. Interestingly, few studies on biopsy
samples of Dentate Nucleus (DN) and DRG from FRDA patients have shown loss of homeostasis of
other metals [147–149]. Those studies describe the redistribution of other crucial transition metals
such as copper (Cu) and zinc (Zn) and the expression of proteins involved in metal-trafficking such
as metallothioneins. However, no further mechanism was offered in those reports. Because of this,
the group of María Dolores Moltó started a pioneer research that aimed to better understand the
molecular basis underlying the altered homeostasis of these metals and to reveal whether those
alterations are able to suggest alternative pathways for therapy development (Figure 2). As reported
by Soriano and colleagues [61], ubiquitous frataxin deficiency led to a significant accumulation of
aluminium (Al), manganese (Mn), Zn and Cu. In addition, it seems that frataxin-deficient flies are
more vulnerable to Al. The authors suggested that Al exposure resulted in iron dyshomeostasis and
ROS [150]. In line with these results in the fly, it was recently shown that yeast frataxin is able to
bind Cu and Mn, even with higher affinity than Fe. Concomitantly, frataxin-deficient yeast display
enhance sensitivity towards exogenous Cu and Mn and accumulate Cu in mitochondria, albeit to a
lesser extent compared to iron [151]. In agreement, the role of frataxin in Cu metabolism has been
also suggested in plants [152]. Taking these data into account, a biased genetic screen was carried
out with key regulators of Zn and Cu homeostasis such as Zn transporters (Zips and ZnTs) and Cu
chaperones. This is important since beneficial effects triggered by Zn and Cu genes have never been
addressed in any FRDA model. Authors observed that downregulation of genes involved in Cu
and Zn regulation improved FRDA conditions in the fly [61]. For example, silencing of Drosophila
Atox1 orthologue recovered locomotion and eye degeneration. Loss of function of Atox1 induces Cu
accumulation in intestinal cells and prevents Cu transport into other cell types [153]. This might
abolish the accumulation of Cu in critical tissues in FRDA flies. It is easy to speculate whether frataxin
may be acting as a mitochondrial Cu chaperone in the given circumstances, as has been suggested
for Fe [31]. In case of Zn, downregulation of genes involved in the transport of Zn into (Zip genes)
and out of (ZnT genes) the cytoplasm rescued FRDA phenotypes. Although it is initially difficult
to reconcile the results from groups of genes, it is possible that altering one of them is sufficient to
influence the rest of the genetic network controlling Zn homeostasis, leading to the same positive result.
In addition, some of the Zip/ZnT genes also seem to be able to transport Fe [154,155]. This property
might also contribute to reducing mitochondrial iron accumulation in a manner that has not been
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studied yet. Supporting those results, the overexpression of MTF-1 (Metal-responsive Transcription
Factor-1), the master regulator of gene expression under metal stress conditions, suppresses locomotor
phenotypes in a FRDA Drosophila model [61].

3.1.5. Dyshomeostasis of Lipid Metabolism: Much More Than a Supporting Actor

Some years ago, Navarro and collaborators found that downregulation of frataxin in glia
cells triggered a massive accumulation of lipid droplets [63]. The first histological evidence was
further corroborated by means of gas chromatography coupled with mass spectrometry (GC/MS).
This lipidomic approach showed that only a subgroup of free fatty acids (FFA) was really contributing
to the accumulation observed. Such analysis identified myristic acid (C14:0), palmitic acid (C16:0),
palmitoleic acid (C16:1), oleic acid (C18:1) and linoleic acid (C18:2) as most abundant FFA in
frataxin-deficient cells. Although lipid droplets were previously described in cardiac muscles of
a FRDA mouse model [25], this Drosophila study was the first that considered them as a pathological
element. Indeed, presence of lipid droplets have been associated with neurodegeneration in other fly
models [156,157]. Following this logic and considering that lipids are extremely prone to oxidation
by Fenton’s reaction, authors also found increased levels of lipid peroxides in FRDA flies. Reduction
of these free radicals by co-expression of the scavenger glial lazarillo was sufficient to improve some
FRDA phenotypes [63] (Figure 3). Recently, reduction of lipid peroxides in fibroblasts and neurons
from different FRDA mouse models have also improved FRDA phenotypes [158,159]. Although
Navarro and coworkers suggested that the boost of lipoperoxides and not the lipid accumulation
was the driving force behind the phenotypes, this issue was not completely clarified. Moreover,
the authors hypothesized that the impairment of FFA beta-oxidation because of loss of mitochondrial
function would lead to their accumulation. This hypothesis is supported by the interaction in yeast
between frataxin and the electron transfer flavoprotein complex (ETF), which transfers electrons from
beta-oxidation into ubiquinone [33]. However, transcriptomic studies in mouse models and patient
samples [160,161] suggested that other pathways might also be participating in the derangement of
lipid homeostasis. For example, downregulation of the peroxisome proliferator-activated receptor
gamma (PPARγ) expression or an increased lipogenesis via upregulation of the sterol-responsive
element-binding protein 1 (SREBP1) have been reported in FRDA. Furthermore, in absence of aconitase
activity (the most affected enzyme in FRDA), citrate accumulates and is exported to the cytosol where
it promotes lipid biogenesis [86]. Therefore, it is worthwhile to further analyze these pathways in
fly FRDA models as well as others that are related to lipid metabolism in humans, and flies such as
Adenosine monophosphate-dependent protein kinase (AMPK) [162].

Although the lipid accumulation found in the FRDA flies seems to differ from the pathological
features found in postmortem analysis of FRDA patients [163], several indications suggest lipid
dyshomeostasis in the patients [129,164–168]. Since this fly report from Navarro et al. [63],
the accumulation of lipids has been reported in mouse, rat and human cell culture FRDA
models [169–171] and remodeling of lipid metabolism has been observed in C. elegans [172]. In addition,
FFA seem to further reduce frataxin expression [171]. Interestingly, a lipotoxic-induced cardiomyopathy
has already been described in the fly [173] and it is characterized by similar phenotypes to those
reported by Tricoire and collaborators in their cardiac fly FRDA model [56]. Moreover, accumulation
of lipids has also been found after silencing of dCPT2 or ND23 in Drosophila glial cells [157,174],
suggesting that this might be a common defect of mitochondrial dysfunction in glia. On the other
hand, no lipid accumulation or just minor defects were observed when genes were knockdown in
neurons. Similarly, frataxin silencing in neurons also failed to induce lipid accumulation (Navarro,
unpublished observation).

It is important to mention that frataxin inactivation in fly photoreceptor neurons also triggers
accumulation of lipids in glia [46]. The same effect has been shown in photoreceptor neurons that are
mutant for other mitochondrial genes [175,176]. All this indicates the existence of a specific mechanism
coupling photoreceptor neurons and their accessory glia. A recent report suggests that in response
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to an increase in oxidative stress, glia fuel neurons with lactate. This promotes lipid biogenesis in
neurons that are transferred back to the glia, producing the lipid droplets [176]. Whether the same
mechanism is occurring in fh1 mutant photoreceptors stills need to be elucidated, since no increased
oxidative stress was found in this case [46].

As indicated above, lack of frataxin activity triggers accumulation of iron in the fly’s nervous
system [46]. It is known than in yeast, sphingolipid synthesis mediates iron toxicity [177]. Therefore,
Chen and collaborators investigated the role of this pathway in their fly model. Interestingly, authors
concluded that, in agreement with the yeast study, biogenesis of sphingolipids was also increased
in frataxin mutant flies. Remarkably, the excess of these lipids, in turn, activated the expression
of 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2),
which resulted in degeneration and loss of photoreceptors in the ommatidia of mutant frataxin
flies. In line with the proposed mechanism, silencing of serine palmitoyltransferase (lace), the limiting
factor in the generation of sphingolipid, as well as of Pdk1 and Mef2, partially reverted the cellular
degeneration (Figure 3). At this point, it was of extreme relevance to establish whether this pathological
mechanism was exclusive to fly models or whether it was conserved among different models. Analysis
of a new FRDA mouse model based on a CRISPR/Cas9 strategy as well as heart samples from
FRDA patients also revealed activation of the Pdk1-Mef2 pathway downstream of accumulation of
iron [96]. This suggests a conserved mechanism and highlights, once more, the relevance of Drosophila
models in the study of FRDA. However, the mechanism might not be as universal as it was initially
thought, and other factors might contribute. The Pdk1-Mef2 pathway is not consistently active in
a new reversible mouse model [76], although it displays the characteristic iron deposits. It is also
reasonable to speculate that the sphingolipids might be triggering deleterious effects by alternative
mechanisms. Dihydrosphingosine (dhSph), dihydroceramide (dhCer), ceramide (Cer) and sphingosine
(Sph) levels are increased in fh1 flies and such sphingolipids have been already associated with cellular
degeneration in different fly tissues [156,173,178–181]. For a comprehensive and detailed review about
frataxin and lipid metabolism, please check the recent manuscript from Tamarit and collaborators [182].

3.1.6. The Endoplasmic Reticulum Factor: An Alternative Vision to the Pathology

A recent fly report indicates, for the first time, that Endoplasmic Reticulum (ER) stress plays
critical roles in the development and progression of frataxin loss-of-function phenotypes in glia [62].
The presence of ER stress markers or hypersensitivity to ER stress has already been reported in FRDA
models. Different cell culture models (neuroblastoma, human embryonic kidney cells, rat pancreatic
cells, human lymphoblasts among others) and knock-out cardiomyocytes from the MCK mouse
model display increased levels of the activating transcription factor (ATF4), the chaperone binding
immunoglobulin protein (BiP) and phosphorylated α subunit of eukaryotic translation initiation
factor 2 (eIF2α) [4,183–186]. Edenharter and collaborators identified Drosophila Mitofusin (Marf )
as a suppressor of frataxin-deficient phenotypes in glia, including brain degeneration and lipid
dyshomeostasis (Figure 3). Comprehensive analysis of this genetic interaction pointed towards
modulation of ER stress as the pivotal element underlying the rescue mediated by Marf knockdown.
The results presented in this manuscript showed that the roles of Marf in the mitochondrial fusion
or as a substrate of Pink1-Parkin pathway were not important contributors. Furthermore, authors
detected increased levels of ER stress markers in all FRDA models tested, including fh1 mutant flies [62].
Furthermore, it would also be of enormous importance to further characterize the effects downstream
of ER stress. For example, some results in flies show that ER stress promotes the activation of the
transcription factor ATF4 and such an event is able to induce metabolic remodeling, altering insulin
responsiveness and upregulating glycolysis [187–189]. Moreover, increased levels of phosphorylated
eI2Fα have also been related to dendritic loss upon mitochondrial dysfunction in the fly [190]. Are such
responses also activated in frataxin-deficient flies and in other FRDA models? Are they responsible
for the metabolic alterations observed in FRDA patient samples [168] and contributing to the axonal
“dying back” phenotype?
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Interestingly, there is a growing body of findings that highlights the relevance of ER stress in
several human neurodegenerative diseases [191]. In this sense, ER stress is also a central element in
the pathological mechanism of fly models of other neurological disorders such as Parkinson’s [192],
Alzheimer’s [193] and Gaucher’s [194,195] diseases.

The relevance of ER stress in FRDA is also supported by the detection of elevated ER stress levels
even prior to deficits in Fe–S biogenesis [184] and by the rescue of phenotypes reducing ER stress
without improving mitochondrial function [62]. However, the causes that place ER stress at the core of
the FRDA pathology are still obscure. Different possibilities can be inferred from the existing literature.
On one hand, it seems that the upregulation of ER stress markers follows the depletion of ER calcium
stores in a FRDA cell model [186]. Calcium-handling defects have been observed in several models of
FRDA and modulation of calcium signaling is able to ameliorate FRDA defects [196–199]. However,
this aspect has not been addressed yet in any fly FRDA work. Such an analysis would be feasible,
since the main elements in the regulation of cellular calcium metabolism are conserved in flies [200–202].
In addition, it has been already shown that, in flies, mitochondria are required for calcium homeostasis
and physiological calcium levels are essential for mitochondrial transport in neurons [203]. On the
other hand, it has been suggested by experts in iron biology that in flies, iron might be mainly stored
bound to ferritin in the ER [86]. Interestingly, sphingolipids are synthesized in the ER [178] and,
both iron and sphingolipids are known to mediate neurodegeneration in FRDA flies [46]. Remarkably,
the mitochondria-associated membranes (MAMs) are cellular structures that connect mitochondria
and ER, and both organelles exchange several substrates such as calcium or sphingolipids. Moreover,
MAMs have raised a hub of neurodegeneration in several human diseases [204]. Analysis of MAMs
in FRDA fly models is compulsory in order to validate this hypothesis and establish a pathological
mechanism that links the ER and the mitochondria more precisely.

3.1.7. To Be Continued: Additional Pathways That Might Be Participating

In this section, we would like to present a couple of interesting and promising pathological
/therapeutical pathways that we, and others, have published or observed in fly FRDA models, but are
not completely exploited.

Although frataxin is involved in the bioenergetics of mitochondria, little is known regarding
the influence of frataxin deficiency on mitochondrial dynamics, transport and degradation in a
frataxin-deficient context. However, changes in mitochondrial morphology have been reported in
several models, including the fly [46,62]. Edenharter and collaborators performed on the fly a molecular
analysis of the mitochondrial fusion and fission pathway [62]. The authors analyzed the expression
levels of the main regulators of mitochondrial fusion (Opa1 and Marf ), mitochondrial fission (Drp1),
mitochondrial biogenesis (tfam and spargel) and mitochondrial quality control (Pink1 and parkin).
Interestingly, authors observed in the fly musculature increased expression of Opa1 and reduction of
Drp1 expression, indicating promotion of mitochondrial fusion. Authors suggested that this was a
pathological consequence of frataxin deficiency. However, further experiments are needed to better
understand this phenotype. A similar analysis was carried out in the yeast FRDA model a few years
ago that did not detect significant differences [205]. The fruit fly is the first organism examined to study
the efficiency of mitochondrial transport in frataxin-deficient neurons [64]. Shidara and Hollenbeck
effectively describe diminished anterograde and retrograde transport in the distal axons of larval
motorneurons, which might account for the dying back neuropathy [64]. This result was corroborated
much later in a mouse model [198]. Analysis of mitochondrial morphology in the Drosophila indirect
flight muscles revealed a strong mitochondrial fragmentation. These structural changes normally
precede the degradation of those organelles. In agreement, the autophagy marker p62 was dramatically
increased and it formed vesicle-like structures, engulfing damaged mitochondria [62]. These results
agree with those reported in mouse models of the disease in which autophagy structures or markers
tend to accumulate [94,95,185]. However, this result may also raise the question whether autophagy
is impaired in FRDA flies or not, as it is normally indicated by p62 accumulation [206]. Further
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experiments have unambiguously proven that autophagy is enhanced and not affected in FRDA
flies [62]. Such an induction of basal autophagy has also been found in C. elegans [103,172] and in cell
culture [186]. All these results have been summarized in Figure 4.
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Finally, during the analysis of the iron metabolism in frataxin-deficient flies, we also detected
changes in the expression of the master regulators of hypoxia response. This is in agreement with
data from the MCK (heart conditional) mouse model [104]. The hypoxia signaling is conserved in
Drosophila, which is driven by the two-fly hypoxia inducible factors (HIFs)—sima (HIFα ortholog) and
tango (HIFβ ortholog) [207]. As this happens in higher organisms, they are also stable under hypoxia
in the fly but degraded under elevated oxygen conditions [207]. We have found that upon ubiquitous
silencing of frataxin, sima and its partner tango were significantly upregulated (our unpublished
observations). Such an upregulation may suggest that frataxin-deficient cells also sense low oxygen
conditions. However, we cannot rule out alternative explanations. For example, mouse frataxin is
regulated in a HIF-dependent manner due to the presence of a Hypoxia Responsive Element (HRE)
at position-1947 in its promoter [208]. Interestingly, the promoter sequence of the fly frataxin also
contains a HRE sequence (ACGTG). In agreement, sima downregulation lowers the expression of
fh (data not shown). Altogether, these facts might well suggest that sima upregulation is a cellular
compensatory response by enhancing frataxin expression. Therefore, in line with current strategies that
stimulate frataxin expression to treat patients [209], HIFs might be an interesting possibility. Indeed,
such HIFs-frataxin axis seems to be cardio protective against myocardial infarction [210]. In addition,
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since several reports indicate that hypoxia changes mitochondrial biology in the fly [211–213], we can
suggest that this is a pathway worth studying in depth in the FRDA context. Remarkably, a recent
paper from Schiavi and collaborators has added a new level of complexity to the relation between
hypoxia and FRDA [103]. In this manuscript, authors describe that the prolonged longevity of their
C. elegans frataxin-deficiency model is mediated by an iron-starvation response that activates HIF,
among others, leading to enhanced mitophagy. Since, cytosolic iron scarcity is also seen in fly [59] as
well as in mouse [104] FRDA models, we can speculate that this might be a compensatory mechanism
conserved throughout evolution.

3.2. Revealing Possible Therapies in FRDA Fly Models

3.2.1. Analysis of Specific Drugs

Based on the molecular defects and mechanisms shown above in Section 3.1, researchers have
also tried to improve FRDA conditions in Drosophila by means of pharmacological treatments.

María Dolores Moltó’s lab performed the first chemical treatments as a proof of concept to
validate Drosophila models as an avenue to identify therapeutic molecules. In this first attempt, Soriano
and colleagues aimed to improve mitochondrial function using idebenone. Idebenone is a synthetic
analogue of Coenzyme Q10, with the ability to enhance mitochondrial respiration by improving
the electron flux along the electron transport chain and also acting as a free-radical scavenger [214].
Idebenone treatment increases lifespan and climbing activities of flies ubiquitously depleted for
frataxin, using the actin-GAL4 driver as well as longevity of flies with frataxin depletion specifically
in the peripheral nervous system (PNS) with neur-GAL4 driver [93]. However, idebenone failed
to prevent cardiac dilatation or defective systolic function of Drosophila frataxin-deficient hearts,
suggesting that the efficacy of idebenone treatment is dependent on affected tissues [56]. It should be
noted that clinical trials have not yet been able to show a clear effect of idebenone on the progression
of the disease [215]. Methylene Blue, another compound with electron carrier properties that bypass
mitochondrial complexes I-III has also been evaluated on the Drosophila cardiac model (Figure 1) and
fully prevented cardiac dysfunctions [56]. The potential of this type of drug to improve mitochondrial
function has been very recently confirmed in patient’s lymphocytes [216]. This compound is thus a
promising candidate, but it has not yet been evaluated on murine models or in clinical trials.

Although fly models display discrepancies regarding the detection of ROS markers and the
rescue ability of antioxidant enzymes, the effect of antioxidant treatments has been also analyzed.
Calap-Quintana and colleagues observed that rapamycin treatment reduced levels of lipid peroxides
in the UAS-fhIR model [60] and this was sufficient to restore some additional FRDA phenotypes.
Importantly, the authors showed that rapamycin drove its effects by promoting protection against
oxidative stress via the Cnc-Keap1 pathway (Figure 3). Cap-n-collar (Cnc) is the fly orthologue of
mammalian NRF2. NRF2 is the master regulator of the expression of several antioxidant genes such as
SOD1 and 2 [217]. Interestingly, activation of NRF2 is impaired in frataxin-deficient cells [115,145,218].
Importantly and in agreement with these Drosophila results [60], chemical induction of NRF2 expression
is neuroprotective in FRDA motorneurons [219]. Unfortunately, rapamycin failed to improve the effects
of strong frataxin depletion in glia [62]. Furthermore, rapamycin is known to induce autophagy in
flies [220]. Edenharter and collaborators already showed that mitochondrial clearance by mitophagy
(a special form of autophagy) was enhanced in frataxin-deficient glia and muscles [62]. In addition,
genetic stimulation of autophagy by overexpression of Atg8a (Figure 4) reduced brain degeneration in
a FRDA fly model [62]. Therefore, drugs promoting autophagy might be beneficial. Such approach was
tested a few years ago in cell culture [221] and yeast [222] with some level of success in reducing cell
death and ROS production, respectively. However, experiments in higher organisms were still required.
Drosophila is the first multicellular FRDA model that has shown that promotion of autophagy with
rapamycin [60] was sufficient to improve fly survival under oxidative stress insult and to recuperate
aconitase activity. Since rapamycin does not affect frataxin expression in flies [60], speeding up
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the degradation of damaged mitochondria will concomitantly reduce oxidative stress and other
downstream defects, and improve fly fitness (as summarized in Figure 4). This hypothesis has been
nicely demonstrated by Marobbio and coworkers [222]. Although, it is reasonable to consider that
effects of the drug over antioxidant enzymes and autophagy are independent, a recent publication on
Drosophila links the regulation of p62 and Atg8 to Cnc [223].

Besides the genetic interactions between frataxin and iron-related genes, pharmacological
manipulation of iron metabolism has also presented beneficial effects in FRDA fly models.
Two different molecules—deferiprone (DFP) [93] and desferrioxamine B (DFOB) [224]—were active
in vivo and improved longevity and fly locomotion (Figure 2) and transition from larvae to pupa,
respectively. While DFP was shown to remove the excess of mitochondrial iron and to prevent
Fenton’s reaction, DFOB seems to avoid iron precipitation in the mitochondria increasing, in turn,
its bioavailability. An additional group of compounds displaying thioamide function was suggested
to act through the chelation of iron, but further experiments are required to prove this capacity [224].
Unfortunately, clinical trials using iron chelators as therapy reported contradictory results ranging
from improvement to inefficacy and even further deterioration [91,225–228]. It has been shown that
iron chelators are able to negatively affect frataxin expression as well as activity of mitochondrial
enzymes [229,230]. In agreement, mitoferrin knockdown in flies [59] or IRP1 depletion in mouse [102]
also worsened some other phenotypes in the respective FRDA models. All this might suggest that
precise and accurate control of iron amount is crucial for the efficacy of these types of therapies.
The cellular iron concentration might vary among patients and thus, personalized treatment is
necessary. Since one of the most important effects of accumulation of toxic iron seems to be the
increased generation of sphingolipids, chemical inhibition of sphingolipid biosynthesis has also been
evaluated. Myriocin, a drug that suppresses serine palmitoyltransferase function (Figure 3), has also
improved neurodegeneration in frataxin-deficient fly photoreceptors [46]. Unfortunately, there is not
enough data on the benefits of a therapy based on attacking this pathway in higher organisms.

Due to the accumulation of other metals in a fly model [61], it was interesting to test whether
their chelation was also able to counteract some effects triggered by frataxin loss-of-function (Figure 2).
Remarkably, fly food supplementation with Zn and Cu chelators (BCS, Bathocuproine disulphonate;
TPEN, N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine and TTM, Tetrathiomolybdate),
also improved the locomotor ability of the FRDA flies [61]. It is known that Cu might interfere
with Fe–S cluster production, further aggravating this defect in FRDA flies [86]. This might explain the
positive effect of Cu chelation seen by Soriano and colleagues. Therefore, it would be interesting to test
whether this new therapeutic approach is able to improve other Drosophila loss-of-frataxin phenotypes
in glia, muscle, heart and photoreceptor neurons as well as in other cellular and mouse models. Finally,
the impact of ER stress [62] was further corroborated due to the protection conferred by two drugs
that reduce ER stress (Figure 3). Tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid
(PBA) successfully reduced ER stress, cellular degeneration and partially restored aconitase activity
in frataxin-deficient flies [62]. It would be important to assess whether increased levels of ER stress
markers are present in other fly tissues and if TUDCA or PBA also exert a positive effect on longevity.

All this should be considered as a solid proof of concept to use the fly as an outstanding model to
test drugs that might counteract FRDA conditions.

3.2.2. Unbiased Drug Screens

To date, two pharmacological screenings have been performed on fly models of FRDA. The first
one was not strictly unbiased. Instead, Drosophila models were used for secondary screening of
compounds identified in yeast [224]. More than 6,000 compounds issued from the French National
Chemical library and the Prestwick Chemical library were first tested for their ability to improve the
growth of frataxin-deficient yeast cells. From this primary screening, 12 compounds were selected and
then further evaluated in Drosophila for their ability to improve the capability of larvae ubiquitously
depleted for frataxin to reach the pupal stage. Significant improvement was observed for six of them.
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One compound, LPS 01-04-L-G10 is particularly interesting, since it also allows reduction in heart
dilatation in the cardiac model. Its mechanism of action remains to be elucidated. This study illustrates
the interest of coupling complementary models for unbiased approaches to identify new molecules
with protective effects. The second is an unbiased pharmacological screening recently performed
on the Drosophila cardiac model of FRDA [231]. In this study, 1280 compounds of the Prestwick
chemical library were tested in vivo for their ability to prevent cardiac dysfunction. Eleven drugs were
significantly protective. The drug with the strongest effect was paclitaxel, a microtubule-stabilizing
drug. This, together with the observation that the microtubule network was fully disrupted in
frataxin-deficient cardiomyocytes, suggests that cardiac dysfunction results at least in part from
alterations of the microtubule network.

4. Future Perspectives

We have shown that the fly has been a pioneer, unveiling novel pathological mechanisms that will
contribute to better understanding of the complete puzzle that the etiology of the disease seems to be,
as well as identifying new potential treatments. We hope that these works will inspire researchers on
vertebrate FRDA models to investigate the impact of other metals, sphingolipids metabolism, ER stress,
and the microtubule network on the pathophysiology of the disease and analyze the attenuation of
such defects as therapy in patients.

The panoply of possibilities that the fruit fly offers to inactivate frataxin and the constantly
growing genetic toolbox of Drosophila place this organism in a privileged position to be a leader model
organism in the analysis of frataxin function. We are convinced that the fly will continue providing
valuable information by means of: (i) generation of new FRDA models, (ii) characterization of new
phenotypes or disease biomarkers and, (iii) development of pharmacological and genetic screens.

(i) Current RNAi-based FRDA models have the major advantage to better mimic frataxin
levels in patients, compared to models based on frataxin’s complete loss of function. However,
a weakness of these RNAi models is that they are based on the generation of long double strand
RNA fragments [41,52]. Because of this, these models display two major limitations. On one hand,
the long hairpins are more prone to generating off-target effects [232,233]. On the other hand, Dicer2 in
Drosophila neurons shows weak expression [234]. This protein plays a key role in the processing of long
dsRNA into small (21–23 nucleotides) functional molecules. This would explain the weak (or none)
effects observed when the current RNAi models were applied to silence frataxin in the fly CNS [41,52],
as summarized in Table 1. Accordingly, Shidhara and Hollenbeck only detected around 30% reduction
of frataxin expression in motor neurons with UDIR2 line [64], when the same RNAi line decreased
frataxin expression to undetectable levels using a ubiquitous GAL4 driver. Indeed, coexpression of
Dicer2 in neurons dramatically increased frataxin downregulation effects in neurons (data not shown).
Therefore, it would be highly interesting to downregulate frataxin by means of new RNAi lines based
on a short hairpin strategy (as described by Norbert Perrimon’s lab [235]) that bypasses the need of
coexpressing Dicer2 and excludes the presence of off-targets.

Although the recently developed approach of genome editing by clustered, regularly interspaced,
short palindromic repeat (CRISPR) technology [236] has been successfully applied in the fly in the last
years [237] even to model diseases such as hereditary spastic paraplegia [238], there are no reports in
the FRDA field. Interestingly, Simon Bullock’s lab recently combined the UAS/GAL4 system with the
CRISPR/Cas9 strategy; this will allow to easily generate neurons-specific frataxin mutants flies in a
reasonable short period of time [239]. The CRISPR/Cas9 tools will also facilitate the generation of
FRDA fly models based on introduction of a GAA repeat expansions in the Drosophila frataxin gene
intron. As indicated above, the presence of a pathological GAA expansion in the first intron of the
human gene is the most common alteration in the human frataxin locus in FRDA patients [5]. This will
provide an outstanding platform to test drugs and pathways that might help revert the effect of the
expansion by interfering with GAA-induced silencing mechanisms or to evaluate genome-editing
strategies to delete the expansions.
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(ii) Although FRDA patients show clear peripheral neuropathy [2] and fly and human sensory
neurons are strongly similar [240], little has been done to analyze the integrity and neurodegenerative
mechanisms in adult Drosophila PNS. Interestingly, alterations in sphingolipid metabolism, similar
to those described in frataxin deficient photoreceptors [46], are also participating in sensorimotor
neuropathy in a fly model of hereditary sensory and autonomic neuropathy type 1 (HSAN1) [241].
The approach, recently implemented at the lab of Stefan Thor to use leg neurons as a model system,
is an appealing possibility [242]. Moreover, recent studies have started to reveal cognitive defects in
FRDA patients, such as deficits in memory and social skills that have remained unexplored for a long
time [243]. The analysis of the behavior of frataxin-deficient flies is mostly limited to longevity and
locomotion and no attention has been paid to more complex traits, such as learning and memory [244]
with the exception of circadian rhythmicity that was not affected in FRDA flies [245]. We believe these
behaviors should also be studied, since they might provide additional information about the protective
and anti-degenerative properties of drugs and genetic modifiers.

Besides deeper studies on the physiological phenotypes triggered by frataxin deficiency in
the fly, it would be of high relevance to reveal how each cell type or tissue responds to the loss
of frataxin. One of the main handicaps in the development of treatments for FRDA is the lack
of a cell-specific transcription profile, even when several evidences support specific mitochondrial
and cellular alterations upon frataxin silencing in different cells types. Some methodologies have
been recently implemented on Drosophila to achieve this aim. On one hand, single cell sequencing
approaches such as Drop-seq have been successfully applied on Drosophila to reveal the cell-specific
gene combination in fly embryo and adult midbrain [246,247]. On the other hand, the generation of flies
to express the fusion of an Escherichia coli DNA adenine methyltransferase to the RNA polymerase II has
allowed a targeted DNA adenine methyltransferase identification (DamID) and subsequently enabled
genome-wide or tissue/cell specific in vivo profiling of the transcribed genes [248,249]. All these
techniques require only a few thousand cells to get robust results and the DamID method has the
additional advantage of not needing any cell sorting.

(iii) Finally, up to now, only biased genetic interactions have been performed on the FRDA
fly models [46,59–62]. Unbiased genetic screens should reveal novel pathways involved in the
progression and etiology of the disease as well as possible disease biomarkers. Similarly, unbiased
pharmacological screens should be conducted to fully exploit the in vivo screening capacity of this
organism. An appealing idea might be the possibility to test how the manipulation of different
metabolic pathways influences loss of frataxin in the fly. In agreement with this hypothesis, recent
studies in isolated platelets from FRDA patients [168] and in a FRDA yeast model [250] have reported
a metabolic remodeling. As reviewed by Filadi and colleagues, the mitochondria-ER axis is a pivotal
element in such metabolic homeostasis [251].

Both genetic and pharmacological screening approaches should enable the identification of
therapeutic compounds that might be relevant not only in the context of FRDA, but also for other
mitochondrial diseases.
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Abbreviations

AAV adeno-associated virus
Al aluminium
AMPK adenosine monophosphate-dependent protein kinase
ATF4 activating transcription factor
BCS bathocuproine disulphonate
BiP binding immunoglobulin protein
Cer ceramide
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Cnc cap-n-collar
CNS central nervous system
CRISPR clustered, regularly interspaced, short palindromic repeat
Cu copper
CyaY Escherichia coli frataxin homolog
Da daughterless
DamID targeted DNA adenine methyltransferase identification
DFOB desferrioxamine B
DFP deferiprone
dhCer dihydroceramide
dhSph dihydrosphingosine
DMT1 divalent metal transporter-1
DN dentate nucleus
DRG dorsal root ganglia
DTT dithiothreitol
eIF2α α subunit of eukaryotic translation initiation factor 2
EMS ethyl methanesulfonate
ER endoplasmic reticulum
ETC electron transport chain
Fe iron
Fe–S iron–sulfur
FFA free fatty acid
fh frataxin homolog
FLP/FRT flippase and flippase recognition target
FRDA Friedreich’s ataxia
FXN human frataxin
GAA guanine-adenine-adenine
GC/MS gas chromatography coupled with mass spectrometry
Grx1 glutaredoxine
GSH reduced glutathione
GSSG oxidized glutathione
HIFs hypoxia inducible factors
HRE hypoxia responsive element
HSAN1 hereditary sensory and autonomic neuropathy type 1
IREs iron responsive elements
IRP-1A iron regulatory protein 1A
KO knock-out
lace palmitoyltransferase
MAMs mitochondria-associated membranes
Marf mitofusin
MCK muscle creatine kinase
Mef-2 myocyte enhancer factor-2
Mn manganese
MPP mitochondrial processing peptidase
Mvl Malvolio
PBA 4-phenylbutyric acid
Pdk1 protein kinase-1
PNS peripheral nervous system
PPARγ peroxisome proliferator-activated receptor gamma
RNAi RNA interference
ROS reactive oxygen species
SOD1 cytosolic superoxide dismutase
SOD2 mitochondrial superoxide dismutase
Sph sphingosine
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SREBP1 sterol-responsive element-binding protein 1
TPEN N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine
Tsf transferrins
TTM tetrathiomolybdate
TUDCA tauroursodeoxycholic acid
UAS upstream activating sequence
Yfh1 yeast frataxin homolog 1
Zn zinc

References

1. Labuda, M.; Labuda, D.; Miranda, C.; Poirier, J.; Soong, B.-W.; Barucha, N.E.; Pandolfo, M. Unique origin
and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology 2000, 54, 2322–2324.
[CrossRef] [PubMed]

2. Koeppen, A.H.; Mazurkiewicz, J.E. Friedreich ataxia: Neuropathology revised. J. Neuropathol. Exp. Neurol.
2013, 72, 78–90. [CrossRef] [PubMed]

3. Parkinson, M.H.; Boesch, S.; Nachbauer, W.; Mariotti, C.; Giunti, P. Clinical features of Friedreich’s ataxia:
Classical and atypical phenotypes. J. Neurochem. 2013, 126 (Suppl. 1), 103–117. [CrossRef] [PubMed]

4. Cnop, M.; Igoillo-Esteve, M.; Rai, M.; Begu, A.; Serroukh, Y.; Depondt, C.; Musuaya, A.E.; Marhfour, I.;
Ladrière, L.; Moles Lopez, X.; et al. Central role and mechanisms of β-cell dysfunction and death in friedreich
ataxia-associated diabetes. Ann. Neurol. 2012, 72, 971–982. [CrossRef] [PubMed]

5. Campuzano, V.; Montermini, L.; Moltò, M.D.; Pianese, L.; Cossée, M.; Cavalcanti, F.; Monros, E.; Rodius, F.;
Duclos, F.; Monticelli, A.; et al. Friedreich’s ataxia: Autosomal recessive disease caused by an intronic GAA
triplet repeat expansion. Science 1996, 271, 1423–1427. [CrossRef] [PubMed]

6. Koutnikova, H.; Campuzano, V.; Foury, F.; Dollé, P.; Cazzalini, O.; Koenig, M. Studies of human, mouse and
yeast homologues indicate a mitochondrial function for frataxin. Nat. Genet. 1997, 16, 345–351. [CrossRef]
[PubMed]

7. Cossée, M.; Dürr, A.; Schmitt, M.; Dahl, N.; Trouillas, P.; Allinson, P.; Kostrzewa, M.; Nivelon-Chevallier, A.;
Gustavson, K.H.; Kohlschütter, A.; et al. Friedreich’s ataxia: Point mutations and clinical presentation of
compound heterozygotes. Ann. Neurol. 1999, 45, 200–206. [CrossRef]

8. Sandi, C.; Sandi, M.; Anjomani Virmouni, S.; Al-Mahdawi, S.; Pook, M.A. Epigenetic-based therapies for
Friedreich ataxia. Front. Genet. 2014, 5, 165. [CrossRef] [PubMed]

9. Koutnikova, H.; Campuzano, V.; Koenig, M. Maturation of wild-type and mutated frataxin by the
mitochondrial processing peptidase. Hum. Mol. Genet. 1998, 7, 1485–1489. [CrossRef] [PubMed]

10. Condò, I.; Ventura, N.; Malisan, F.; Rufini, A.; Tomassini, B.; Testi, R. In vivo maturation of human frataxin.
Hum. Mol. Genet. 2007, 16, 1534–1540. [CrossRef] [PubMed]

11. Gibson, T.J.; Koonin, E.V.; Musco, G.; Pastore, A.; Bork, P. Friedreich’s ataxia protein: Phylogenetic evidence
for mitochondrial dysfunction. Trends Neurosci. 1996, 19, 465–468. [CrossRef]

12. Adinolfi, S.; Trifuoggi, M.; Politou, A.S.; Martin, S.; Pastore, A. A structural approach to understanding
the iron-binding properties of phylogenetically different frataxins. Hum. Mol. Genet. 2002, 11, 1865–1877.
[CrossRef] [PubMed]

13. Dhe-Paganon, S.; Shigeta, R.; Chi, Y.I.; Ristow, M.; Shoelson, S.E. Crystal structure of human frataxin.
J. Biol. Chem. 2000, 275, 30753–30756. [CrossRef] [PubMed]

14. Lee, M.G.; Cho, S.J.; Yang, J.K.; Song, H.K.; Suh, S.W. Crystallization and preliminary X-ray crystallographic
analysis of Escherichia coli CyaY, a structural homologue of human frataxin. Acta Crystallogr. Sect. D
Biol. Crystallogr. 2000, 56, 920–921. [CrossRef]

15. He, Y.; Alam, S.L.; Proteasa, S.V.; Zhang, Y.; Lesuisse, E.; Dancis, A.; Stemmler, T.L. Yeast frataxin solution
structure, iron binding, and ferrochelatase interaction. Biochemistry 2004, 43, 16254–16262. [CrossRef]
[PubMed]

16. Foury, F.; Pastore, A.; Trincal, M. Acidic residues of yeast frataxin have an essential role in Fe–S cluster
assembly. EMBO Rep. 2007, 8, 194–199. [CrossRef] [PubMed]

http://dx.doi.org/10.1212/WNL.54.12.2322
http://www.ncbi.nlm.nih.gov/pubmed/10881262
http://dx.doi.org/10.1097/NEN.0b013e31827e5762
http://www.ncbi.nlm.nih.gov/pubmed/23334592
http://dx.doi.org/10.1111/jnc.12317
http://www.ncbi.nlm.nih.gov/pubmed/23859346
http://dx.doi.org/10.1002/ana.23698
http://www.ncbi.nlm.nih.gov/pubmed/23280845
http://dx.doi.org/10.1126/science.271.5254.1423
http://www.ncbi.nlm.nih.gov/pubmed/8596916
http://dx.doi.org/10.1038/ng0897-345
http://www.ncbi.nlm.nih.gov/pubmed/9241270
http://dx.doi.org/10.1002/1531-8249(199902)45:2&lt;200::AID-ANA10&gt;3.0.CO;2-U
http://dx.doi.org/10.3389/fgene.2014.00165
http://www.ncbi.nlm.nih.gov/pubmed/24917884
http://dx.doi.org/10.1093/hmg/7.9.1485
http://www.ncbi.nlm.nih.gov/pubmed/9700204
http://dx.doi.org/10.1093/hmg/ddm102
http://www.ncbi.nlm.nih.gov/pubmed/17468497
http://dx.doi.org/10.1016/S0166-2236(96)20054-2
http://dx.doi.org/10.1093/hmg/11.16.1865
http://www.ncbi.nlm.nih.gov/pubmed/12140189
http://dx.doi.org/10.1074/jbc.C000407200
http://www.ncbi.nlm.nih.gov/pubmed/10900192
http://dx.doi.org/10.1107/S0907444900005916
http://dx.doi.org/10.1021/bi0488193
http://www.ncbi.nlm.nih.gov/pubmed/15610019
http://dx.doi.org/10.1038/sj.embor.7400881
http://www.ncbi.nlm.nih.gov/pubmed/17186026


Int. J. Mol. Sci. 2018, 19, 1989 25 of 36

17. Adamec, J.; Rusnak, F.; Owen, W.G.; Naylor, S.; Benson, L.M.; Gacy, A.M.; Isaya, G. Iron-dependent
self-assembly of recombinant yeast frataxin: Implications for Friedreich ataxia. Am. J. Hum. Genet. 2000, 67,
549–562. [CrossRef] [PubMed]

18. Gakh, O.; Adamec, J.; Gacy, A.M.; Twesten, R.D.; Owen, W.G.; Isaya, G. Physical evidence that yeast frataxin
is an iron storage protein. Biochemistry 2002, 41, 6798–6804. [CrossRef] [PubMed]

19. Aloria, K.; Schilke, B.; Andrew, A.; Craig, E.A. Iron-induced oligomerization of yeast frataxin homologue
Yfh1 is dispensable in vivo. EMBO Rep. 2004, 5, 1096–1101. [CrossRef] [PubMed]

20. Schmucker, S.; Martelli, A.; Colin, F.; Page, A.; Wattenhofer-Donzé, M.; Reutenauer, L.; Puccio, H.
Mammalian frataxin: An essential function for cellular viability through an interaction with a preformed
ISCU/NFS1/ISD11 iron-sulfur assembly complex. PLoS ONE 2011, 6, e16199. [CrossRef] [PubMed]

21. Ahlgren, E.-C.; Fekry, M.; Wiemann, M.; Söderberg, C.A.; Bernfur, K.; Gakh, O.; Rasmussen, M.; Højrup, P.;
Emanuelsson, C.; Isaya, G.; et al. Iron-induced oligomerization of human FXN81-210 and bacterial CyaY
frataxin and the effect of iron chelators. PLoS ONE 2017, 12, e0188937. [CrossRef] [PubMed]

22. Pastore, A.; Puccio, H. Frataxin: A protein in search for a function. J. Neurochem. 2013, 126 (Suppl. 1), 43–52.
[CrossRef] [PubMed]

23. Lill, R. Function and biogenesis of iron-sulphur proteins. Nature 2009, 460, 831–838. [CrossRef] [PubMed]
24. Rötig, A.; de Lonlay, P.; Chretien, D.; Foury, F.; Koenig, M.; Sidi, D.; Munnich, A.; Rustin, P. Aconitase and

mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat. Genet. 1997, 17, 215–217. [CrossRef]
[PubMed]

25. Puccio, H.; Simon, D.; Cossée, M.; Criqui-Filipe, P.; Tiziano, F.; Melki, J.; Hindelang, C.; Matyas, R.; Rustin, P.;
Koenig, M. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe–S
enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet. 2001, 27, 181–186. [CrossRef]
[PubMed]

26. Gerber, J.; Mühlenhoff, U.; Lill, R. An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S
cluster synthesis on Isu1. EMBO Rep. 2003, 4, 906–911. [CrossRef] [PubMed]

27. Tsai, C.-L.; Barondeau, D.P. Human frataxin is an allosteric switch that activates the Fe–S cluster biosynthetic
complex. Biochemistry 2010, 49, 9132–9139. [CrossRef] [PubMed]

28. Yoon, T.; Cowan, J.A. Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for
assembly of 2Fe–2S clusters in ISU-type proteins. J. Am. Chem. Soc. 2003, 125, 6078–6084. [CrossRef]
[PubMed]

29. Bridwell-Rabb, J.; Fox, N.G.; Tsai, C.-L.; Winn, A.M.; Barondeau, D.P. Human frataxin activates Fe–S cluster
biosynthesis by facilitating sulfur transfer chemistry. Biochemistry 2014, 53, 4904–4913. [CrossRef] [PubMed]

30. Adinolfi, S.; Iannuzzi, C.; Prischi, F.; Pastore, C.; Iametti, S.; Martin, S.R.; Bonomi, F.; Pastore, A. Bacterial
frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS. Nat. Struct. Mol. Biol. 2009,
16, 390–396. [CrossRef] [PubMed]

31. Bulteau, A.-L.; O’Neill, H.A.; Kennedy, M.C.; Ikeda-Saito, M.; Isaya, G.; Szweda, L.I. Frataxin acts as an
iron chaperone protein to modulate mitochondrial aconitase activity. Science 2004, 305, 242–245. [CrossRef]
[PubMed]

32. Yoon, T.; Cowan, J.A. Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis.
J. Biol. Chem. 2004, 279, 25943–25946. [CrossRef] [PubMed]

33. González-Cabo, P.; Vázquez-Manrique, R.P.; García-Gimeno, M.A.; Sanz, P.; Palau, F. Frataxin interacts
functionally with mitochondrial electron transport chain proteins. Hum. Mol. Genet. 2005, 14, 2091–2098.
[CrossRef] [PubMed]

34. Aranca, T.V.; Jones, T.M.; Shaw, J.D.; Staffetti, J.S.; Ashizawa, T.; Kuo, S.-H.; Fogel, B.L.; Wilmot, G.R.;
Perlman, S.L.; Onyike, C.U.; et al. Emerging therapies in Friedreich’s ataxia. Neurodegener. Dis. Manag. 2016,
6, 49–65. [CrossRef] [PubMed]

35. Perdomini, M.; Belbellaa, B.; Monassier, L.; Reutenauer, L.; Messaddeq, N.; Cartier, N.; Crystal, R.G.;
Aubourg, P.; Puccio, H. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in
a mouse model of Friedreich’s ataxia. Nat. Med. 2014, 20, 542–547. [CrossRef] [PubMed]

36. Piguet, F.; Montigny, C. de; Vaucamps, N.; Reutenauer, L.; Eisenmann, A.; Puccio, H. Rapid and Complete
Reversal of Sensory Ataxia by Gene Therapy in a Novel Model of Friedreich Ataxia. Mol. Ther. J. Am.
Soc. Gene Ther. 2018, 26. [CrossRef] [PubMed]

http://dx.doi.org/10.1086/303056
http://www.ncbi.nlm.nih.gov/pubmed/10930361
http://dx.doi.org/10.1021/bi025566+
http://www.ncbi.nlm.nih.gov/pubmed/12022884
http://dx.doi.org/10.1038/sj.embor.7400272
http://www.ncbi.nlm.nih.gov/pubmed/15472712
http://dx.doi.org/10.1371/journal.pone.0016199
http://www.ncbi.nlm.nih.gov/pubmed/21298097
http://dx.doi.org/10.1371/journal.pone.0188937
http://www.ncbi.nlm.nih.gov/pubmed/29200434
http://dx.doi.org/10.1111/jnc.12220
http://www.ncbi.nlm.nih.gov/pubmed/23859340
http://dx.doi.org/10.1038/nature08301
http://www.ncbi.nlm.nih.gov/pubmed/19675643
http://dx.doi.org/10.1038/ng1097-215
http://www.ncbi.nlm.nih.gov/pubmed/9326946
http://dx.doi.org/10.1038/84818
http://www.ncbi.nlm.nih.gov/pubmed/11175786
http://dx.doi.org/10.1038/sj.embor.embor918
http://www.ncbi.nlm.nih.gov/pubmed/12947415
http://dx.doi.org/10.1021/bi1013062
http://www.ncbi.nlm.nih.gov/pubmed/20873749
http://dx.doi.org/10.1021/ja027967i
http://www.ncbi.nlm.nih.gov/pubmed/12785837
http://dx.doi.org/10.1021/bi500532e
http://www.ncbi.nlm.nih.gov/pubmed/24971490
http://dx.doi.org/10.1038/nsmb.1579
http://www.ncbi.nlm.nih.gov/pubmed/19305405
http://dx.doi.org/10.1126/science.1098991
http://www.ncbi.nlm.nih.gov/pubmed/15247478
http://dx.doi.org/10.1074/jbc.C400107200
http://www.ncbi.nlm.nih.gov/pubmed/15123683
http://dx.doi.org/10.1093/hmg/ddi214
http://www.ncbi.nlm.nih.gov/pubmed/15961414
http://dx.doi.org/10.2217/nmt.15.73
http://www.ncbi.nlm.nih.gov/pubmed/26782317
http://dx.doi.org/10.1038/nm.3510
http://www.ncbi.nlm.nih.gov/pubmed/24705334
http://dx.doi.org/10.1016/j.ymthe.2018.05.006
http://www.ncbi.nlm.nih.gov/pubmed/29853274


Int. J. Mol. Sci. 2018, 19, 1989 26 of 36

37. Edenharter, O.; Clement, J.; Schneuwly, S.; Navarro, J.A. Overexpression of Drosophila frataxin triggers cell
death in an iron-dependent manner. J. Neurogenet. 2017, 31, 189–202. [CrossRef] [PubMed]

38. Navarro, J.A.; Llorens, J.V.; Soriano, S.; Botella, J.A.; Schneuwly, S.; Martínez-Sebastián, M.J.; Moltó, M.D.
Overexpression of human and fly frataxins in Drosophila provokes deleterious effects at biochemical,
physiological and developmental levels. PLoS ONE 2011, 6, e21017. [CrossRef] [PubMed]

39. Vannocci, T.; Notario Manzano, R.; Beccalli, O.; Bettegazzi, B.; Grohovaz, F.; Cinque, G.; de Riso, A.;
Quaroni, L.; Codazzi, F.; Pastore, A. Adding a temporal dimension to the study of Friedreich’s ataxia:
The effect of frataxin overexpression in a human cell model. Dis. Models Mech. 2018. [CrossRef] [PubMed]

40. Cañizares, J.; Blanca, J.M.; Navarro, J.A.; Monrós, E.; Palau, F.; Moltó, M.D. dfh is a Drosophila homolog of
the Friedreich’s ataxia disease gene. Gene 2000, 256, 35–42. [CrossRef]

41. Llorens, J.V.; Navarro, J.A.; Martínez-Sebastián, M.J.; Baylies, M.K.; Schneuwly, S.; Botella, J.A.; Moltó, M.D.
Causative role of oxidative stress in a Drosophila model of Friedreich ataxia. FASEB J. 2007, 21, 333–344.
[CrossRef] [PubMed]

42. Kondapalli, K.C.; Kok, N.M.; Dancis, A.; Stemmler, T.L. Drosophila frataxin: An iron chaperone during
cellular Fe–S cluster bioassembly. Biochemistry 2008, 47, 6917–6927. [CrossRef] [PubMed]

43. Condò, I.; Ventura, N.; Malisan, F.; Tomassini, B.; Testi, R. A pool of extramitochondrial frataxin that promotes
cell survival. J. Biol. Chem. 2006, 281, 16750–16756. [CrossRef] [PubMed]

44. Condò, I.; Malisan, F.; Guccini, I.; Serio, D.; Rufini, A.; Testi, R. Molecular control of the cytosolic
aconitase/IRP1 switch by extramitochondrial frataxin. Hum. Mol. Genet. 2010, 19, 1221–1229. [CrossRef]
[PubMed]

45. Long, S.; Jirku, M.; Ayala, F.J.; Lukes, J. Mitochondrial localization of human frataxin is necessary but
processing is not for rescuing frataxin deficiency in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 2008,
105, 13468–13473. [CrossRef] [PubMed]

46. Chen, K.; Lin, G.; Haelterman, N.A.; Ho, T.S.-Y.; Li, T.; Li, Z.; Duraine, L.; Graham, B.H.; Jaiswal, M.;
Yamamoto, S.; et al. Loss of Frataxin induces iron toxicity, sphingolipid synthesis, and Pdk1/Mef2 activation,
leading to neurodegeneration. eLife 2016, 5, e16034. [CrossRef] [PubMed]

47. Brand, A.H.; Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant
phenotypes. Development 1993, 118, 401–415. [PubMed]

48. Jackson, G.R.; Salecker, I.; Dong, X.; Yao, X.; Arnheim, N.; Faber, P.W.; MacDonald, M.E.; Zipursky, S.L.
Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor
neurons. Neuron 1998, 21, 633–642. [CrossRef]

49. Feany, M.B.; Bender, W.W. A Drosophila model of Parkinson’s disease. Nature 2000, 404, 394–398. [CrossRef]
[PubMed]

50. Kennerdell, J.R.; Carthew, R.W. Heritable gene silencing in Drosophila using double-stranded RNA.
Nat. Biotechnol. 2000, 18, 896–898. [CrossRef] [PubMed]

51. Liu, S.; Lu, B. Reduction of protein translation and activation of autophagy protect against PINK1
pathogenesis in Drosophila melanogaster. PLoS Genet. 2010, 6, e1001237. [CrossRef] [PubMed]

52. Anderson, P.R.; Kirby, K.; Hilliker, A.J.; Phillips, J.P. RNAi-mediated suppression of the mitochondrial iron
chaperone, frataxin, in Drosophila. Hum. Mol. Genet. 2005, 14, 3397–3405. [CrossRef] [PubMed]

53. Anderson, P.R.; Kirby, K.; Orr, W.C.; Hilliker, A.J.; Phillips, J.P. Hydrogen peroxide scavenging rescues
frataxin deficiency in a Drosophila model of Friedreich’s ataxia. Proc. Natl. Acad. Sci. USA 2008, 105, 611–616.
[CrossRef] [PubMed]

54. Roman, G.; Endo, K.; Zong, L.; Davis, R.L. PSwitch, a system for spatial and temporal control of gene
expression in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2001, 98, 12602–12607. [CrossRef]
[PubMed]

55. Osterwalder, T.; Yoon, K.S.; White, B.H.; Keshishian, H. A conditional tissue-specific transgene expression
system using inducible GAL4. Proc. Natl. Acad. Sci. USA 2001, 98, 12596–12601. [CrossRef] [PubMed]

56. Tricoire, H.; Palandri, A.; Bourdais, A.; Camadro, J.-M.; Monnier, V. Methylene blue rescues heart defects in a
Drosophila model of Friedreich’s ataxia. Hum. Mol. Genet. 2014, 23, 968–979. [CrossRef] [PubMed]

57. Piccin, A.; Salameh, A.; Benna, C.; Sandrelli, F.; Mazzotta, G.; Zordan, M.; Rosato, E.; Kyriacou, C.P.; Costa, R.
Efficient and heritable functional knock-out of an adult phenotype in Drosophila using a GAL4-driven hairpin
RNA incorporating a heterologous spacer. Nucleic Acids Res. 2001, 29, e55. [CrossRef] [PubMed]

http://dx.doi.org/10.1080/01677063.2017.1363200
http://www.ncbi.nlm.nih.gov/pubmed/28838288
http://dx.doi.org/10.1371/journal.pone.0021017
http://www.ncbi.nlm.nih.gov/pubmed/21779322
http://dx.doi.org/10.1242/dmm.032706
http://www.ncbi.nlm.nih.gov/pubmed/29794127
http://dx.doi.org/10.1016/S0378-1119(00)00343-7
http://dx.doi.org/10.1096/fj.05-5709com
http://www.ncbi.nlm.nih.gov/pubmed/17167074
http://dx.doi.org/10.1021/bi800366d
http://www.ncbi.nlm.nih.gov/pubmed/18540637
http://dx.doi.org/10.1074/jbc.M511960200
http://www.ncbi.nlm.nih.gov/pubmed/16608849
http://dx.doi.org/10.1093/hmg/ddp592
http://www.ncbi.nlm.nih.gov/pubmed/20053667
http://dx.doi.org/10.1073/pnas.0806762105
http://www.ncbi.nlm.nih.gov/pubmed/18768799
http://dx.doi.org/10.7554/eLife.16043
http://www.ncbi.nlm.nih.gov/pubmed/27343351
http://www.ncbi.nlm.nih.gov/pubmed/8223268
http://dx.doi.org/10.1016/S0896-6273(00)80573-5
http://dx.doi.org/10.1038/35006074
http://www.ncbi.nlm.nih.gov/pubmed/10746727
http://dx.doi.org/10.1038/78531
http://www.ncbi.nlm.nih.gov/pubmed/10932163
http://dx.doi.org/10.1371/journal.pgen.1001237
http://www.ncbi.nlm.nih.gov/pubmed/21151574
http://dx.doi.org/10.1093/hmg/ddi367
http://www.ncbi.nlm.nih.gov/pubmed/16203742
http://dx.doi.org/10.1073/pnas.0709691105
http://www.ncbi.nlm.nih.gov/pubmed/18184803
http://dx.doi.org/10.1073/pnas.221303998
http://www.ncbi.nlm.nih.gov/pubmed/11675496
http://dx.doi.org/10.1073/pnas.221303298
http://www.ncbi.nlm.nih.gov/pubmed/11675495
http://dx.doi.org/10.1093/hmg/ddt493
http://www.ncbi.nlm.nih.gov/pubmed/24105471
http://dx.doi.org/10.1093/nar/29.12.e55
http://www.ncbi.nlm.nih.gov/pubmed/11410678


Int. J. Mol. Sci. 2018, 19, 1989 27 of 36

58. Pianese, L.; Turano, M.; Lo Casale, M.S.; de Biase, I.; Giacchetti, M.; Monticelli, A.; Criscuolo, C.; Filla, A.;
Cocozza, S. Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich
ataxia patients and carriers. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1061–1063. [CrossRef] [PubMed]

59. Navarro, J.A.; Botella, J.A.; Metzendorf, C.; Lind, M.I.; Schneuwly, S. Mitoferrin modulates iron toxicity in a
Drosophila model of Friedreich’s ataxia. Free Radic. Biol. Med. 2015, 85, 71–82. [CrossRef] [PubMed]

60. Calap-Quintana, P.; Soriano, S.; Llorens, J.V.; Al-Ramahi, I.; Botas, J.; Moltó, M.D.; Martínez-Sebastián, M.J.
TORC1 Inhibition by Rapamycin Promotes Antioxidant Defences in a Drosophila Model of Friedreich’s Ataxia.
PLoS ONE 2015, 10, e0132376. [CrossRef] [PubMed]

61. Soriano, S.; Calap-Quintana, P.; Llorens, J.V.; Al-Ramahi, I.; Gutiérrez, L.; Martínez-Sebastián, M.J.; Botas, J.;
Moltó, M.D. Metal Homeostasis Regulators Suppress FRDA Phenotypes in a Drosophila Model of the Disease.
PLoS ONE 2016, 11, e0159209. [CrossRef] [PubMed]

62. Edenharter, O.; Schneuwly, S.; Navarro, J.A. Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and
Nervous System Degeneration in a Drosophila Model of Friedreich’s Ataxia. Front. Mol. Neurosci. 2018, 11, 38.
[CrossRef] [PubMed]

63. Navarro, J.A.; Ohmann, E.; Sanchez, D.; Botella, J.A.; Liebisch, G.; Moltó, M.D.; Ganfornina, M.D.; Schmitz, G.;
Schneuwly, S. Altered lipid metabolism in a Drosophila model of Friedreich’s ataxia. Hum. Mol. Genet. 2010,
19, 2828–2840. [CrossRef] [PubMed]

64. Shidara, Y.; Hollenbeck, P.J. Defects in mitochondrial axonal transport and membrane potential without
increased reactive oxygen species production in a Drosophila model of Friedreich ataxia. J. Neurosci. 2010, 30,
11369–11378. [CrossRef] [PubMed]

65. Yamamoto, S.; Jaiswal, M.; Charng, W.-L.; Gambin, T.; Karaca, E.; Mirzaa, G.; Wiszniewski, W.; Sandoval, H.;
Haelterman, N.A.; Xiong, B.; et al. A Drosophila genetic resource of mutants to study mechanisms underlying
human genetic diseases. Cell 2014, 159, 200–214. [CrossRef] [PubMed]

66. Tsai, C.-L.; Bridwell-Rabb, J.; Barondeau, D.P. Friedreich’s ataxia variants I154F and W155R diminish
frataxin-based activation of the iron-sulfur cluster assembly complex. Biochemistry 2011, 50, 6478–6487.
[CrossRef] [PubMed]

67. Stowers, R.S.; Schwarz, T.L. A genetic method for generating Drosophila eyes composed exclusively of mitotic
clones of a single genotype. Genetics 1999, 152, 1631–1639. [PubMed]

68. Calap-Quintana, P.; Navarro, J.A.; González-Fernández, J.; Martínez-Sebastián, M.J.; Moltó, M.D.; Llorens, J.V.
Drosophila melanogaster Models of Friedreich’s Ataxia. BioMed Res. Int. 2018, 2018, 5065190. [CrossRef]
[PubMed]

69. Cossée, M.; Puccio, H.; Gansmuller, A.; Koutnikova, H.; Dierich, A.; LeMeur, M.; Fischbeck, K.; Dollé, P.;
Koenig, M. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron
accumulation. Hum. Mol. Genet. 2000, 9, 1219–1226. [CrossRef] [PubMed]

70. Clark, E.; Butler, J.S.; Isaacs, C.J.; Napierala, M.; Lynch, D.R. Selected missense mutations impair frataxin
processing in Friedreich ataxia. Ann. Clin. Transl. Neurol. 2017, 4, 575–584. [CrossRef] [PubMed]

71. Latouche, M.; Lasbleiz, C.; Martin, E.; Monnier, V.; Debeir, T.; Mouatt-Prigent, A.; Muriel, M.-P.; Morel, L.;
Ruberg, M.; Brice, A.; et al. A conditional pan-neuronal Drosophila model of spinocerebellar ataxia 7 with
a reversible adult phenotype suitable for identifying modifier genes. J. Neurosci. 2007, 27, 2483–2492.
[CrossRef] [PubMed]

72. Loría, F.; Díaz-Nido, J. Frataxin knockdown in human astrocytes triggers cell death and the release of factors
that cause neuronal toxicity. Neurobiol. Dis. 2015, 76, 1–12. [CrossRef] [PubMed]

73. Franco, C.; Genis, L.; Navarro, J.A.; Perez-Domper, P.; Fernandez, A.M.; Schneuwly, S.; Torres Alemán, I.
A role for astrocytes in cerebellar deficits in frataxin deficiency: Protection by insulin-like growth factor I.
Mol. Cell. Neurosci. 2017, 80, 100–110. [CrossRef] [PubMed]

74. Seznec, H.; Simon, D.; Monassier, L.; Criqui-Filipe, P.; Gansmuller, A.; Rustin, P.; Koenig, M.; Puccio, H.
Idebenone delays the onset of cardiac functional alteration without correction of Fe–S enzymes deficit in a
mouse model for Friedreich ataxia. Hum. Mol. Genet. 2004, 13, 1017–1024. [CrossRef] [PubMed]

75. Weidemann, F.; Rummey, C.; Bijnens, B.; Störk, S.; Jasaityte, R.; Dhooge, J.; Baltabaeva, A.; Sutherland, G.;
Schulz, J.B.; Meier, T. The heart in Friedreich ataxia: Definition of cardiomyopathy, disease severity, and
correlation with neurological symptoms. Circulation 2012, 125, 1626–1634. [CrossRef] [PubMed]

http://dx.doi.org/10.1136/jnnp.2003.028605
http://www.ncbi.nlm.nih.gov/pubmed/15201375
http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.014
http://www.ncbi.nlm.nih.gov/pubmed/25841783
http://dx.doi.org/10.1371/journal.pone.0132376
http://www.ncbi.nlm.nih.gov/pubmed/26158631
http://dx.doi.org/10.1371/journal.pone.0159209
http://www.ncbi.nlm.nih.gov/pubmed/27433942
http://dx.doi.org/10.3389/fnmol.2018.00038
http://www.ncbi.nlm.nih.gov/pubmed/29563863
http://dx.doi.org/10.1093/hmg/ddq183
http://www.ncbi.nlm.nih.gov/pubmed/20460268
http://dx.doi.org/10.1523/JNEUROSCI.0529-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20739558
http://dx.doi.org/10.1016/j.cell.2014.09.002
http://www.ncbi.nlm.nih.gov/pubmed/25259927
http://dx.doi.org/10.1021/bi200666h
http://www.ncbi.nlm.nih.gov/pubmed/21671584
http://www.ncbi.nlm.nih.gov/pubmed/10430588
http://dx.doi.org/10.1155/2018/5065190
http://www.ncbi.nlm.nih.gov/pubmed/29850527
http://dx.doi.org/10.1093/hmg/9.8.1219
http://www.ncbi.nlm.nih.gov/pubmed/10767347
http://dx.doi.org/10.1002/acn3.433
http://www.ncbi.nlm.nih.gov/pubmed/28812047
http://dx.doi.org/10.1523/JNEUROSCI.5453-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17344386
http://dx.doi.org/10.1016/j.nbd.2014.12.017
http://www.ncbi.nlm.nih.gov/pubmed/25554687
http://dx.doi.org/10.1016/j.mcn.2017.02.008
http://www.ncbi.nlm.nih.gov/pubmed/28286293
http://dx.doi.org/10.1093/hmg/ddh114
http://www.ncbi.nlm.nih.gov/pubmed/15028670
http://dx.doi.org/10.1161/CIRCULATIONAHA.111.059477
http://www.ncbi.nlm.nih.gov/pubmed/22379112


Int. J. Mol. Sci. 2018, 19, 1989 28 of 36

76. Chandran, V.; Gao, K.; Swarup, V.; Versano, R.; Dong, H.; Jordan, M.C.; Geschwind, D.H. Inducible and
reversible phenotypes in a novel mouse model of Friedreich’s Ataxia. eLife 2017, 6, e30054. [CrossRef]
[PubMed]

77. Beauchamp, M.; Labelle, H.; Duhaime, M.; Joncas, J. Natural history of muscle weakness in Friedreich’s
Ataxia and its relation to loss of ambulation. Clin. Orthop. Relat. Res. 1995, 311, 270–275.

78. Lynch, D.R.; Lech, G.; Farmer, J.M.; Balcer, L.J.; Bank, W.; Chance, B.; Wilson, R.B. Near infrared muscle
spectroscopy in patients with Friedreich’s ataxia. Muscle Nerve 2002, 25, 664–673. [CrossRef] [PubMed]

79. Nachbauer, W.; Boesch, S.; Schneider, R.; Eigentler, A.; Wanschitz, J.; Poewe, W.; Schocke, M. Bioenergetics
of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with
recombinant human erythropoietin. PLoS ONE 2013, 8, e69229. [CrossRef] [PubMed]

80. Vorgerd, M.; Schöls, L.; Hardt, C.; Ristow, M.; Epplen, J.T.; Zange, J. Mitochondrial impairment of human
muscle in Friedreich ataxia in vivo. Neuromuscul. Disord. NMD 2000, 10, 430–435. [CrossRef]

81. Palandri, A.; L’hôte, D.; Cohen-Tannoudji, J.; Tricoire, H.; Monnier, V. Frataxin inactivation leads to steroid
deficiency in flies and human ovarian cells. Hum. Mol. Genet. 2015, 24, 2615–2626. [CrossRef] [PubMed]

82. Min, K.T.; Benzer, S. Preventing neurodegeneration in the Drosophila mutant bubblegum. Science 1999, 284,
1985–1988. [CrossRef] [PubMed]

83. Van der Voet, M.; Harich, B.; Franke, B.; Schenck, A. ADHD-associated dopamine transporter, latrophilin
and neurofibromin share a dopamine-related locomotor signature in Drosophila. Mol. Psychiatry 2016, 21,
565–573. [CrossRef] [PubMed]

84. Lawal, H.O.; Terrell, A.; Lam, H.A.; Djapri, C.; Jang, J.; Hadi, R.; Roberts, L.; Shahi, V.; Chou, M.-T.;
Biedermann, T.; et al. Drosophila modifier screens to identify novel neuropsychiatric drugs including
aminergic agents for the possible treatment of Parkinson’s disease and depression. Mol. Psychiatry 2014, 19,
235–242. [CrossRef] [PubMed]

85. Qurashi, A.; Liu, H.; Ray, L.; Nelson, D.L.; Duan, R.; Jin, P. Chemical screen reveals small molecules
suppressing fragile X premutation rCGG repeat-mediated neurodegeneration in Drosophila. Hum. Mol. Genet.
2012, 21, 2068–2075. [CrossRef] [PubMed]

86. Marelja, Z.; Leimkühler, S.; Missirlis, F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the
Drosophila Life Cycle by Controlling Cell Metabolism. Front. Physiol. 2018, 9, 50. [CrossRef] [PubMed]

87. Sanchez-Casis, G.; Cote, M.; Barbeau, A. Pathology of the heart in Friedreich’s ataxia: Review of the literature
and report of one case. Can. J. Neurol. Sci. 1976, 3, 349–354. [CrossRef] [PubMed]

88. Lamarche, J.B.; Côté, M.; Lemieux, B. The cardiomyopathy of Friedreich’s ataxia morphological observations
in 3 cases. Can. J. Neurol. Sci. 1980, 7, 389–396. [CrossRef] [PubMed]

89. Koeppen, A.H.; Michael, S.C.; Knutson, M.D.; Haile, D.J.; Qian, J.; Levi, S.; Santambrogio, P.;
Garrick, M.D.; Lamarche, J.B. The dentate nucleus in Friedreich’s ataxia: The role of iron-responsive proteins.
Acta Neuropathol. 2007, 114, 163–173. [CrossRef] [PubMed]

90. Koeppen, A.H.; Morral, J.A.; Davis, A.N.; Qian, J.; Petrocine, S.V.; Knutson, M.D.; Gibson, W.M.; Cusack, M.J.;
Li, D. The dorsal root ganglion in Friedreich’s ataxia. Acta Neuropathol. 2009, 118, 763–776. [CrossRef]
[PubMed]

91. Boddaert, N.; Le Quan Sang, K.H.; Rötig, A.; Leroy-Willig, A.; Gallet, S.; Brunelle, F.; Sidi, D.; Thalabard, J.-C.;
Munnich, A.; Cabantchik, Z.I. Selective iron chelation in Friedreich ataxia: Biologic and clinical implications.
Blood 2007, 110, 401–408. [CrossRef] [PubMed]

92. Harding, I.H.; Raniga, P.; Delatycki, M.B.; Stagnitti, M.R.; Corben, L.A.; Storey, E.; Georgiou-Karistianis, N.;
Egan, G.F. Tissue atrophy and elevated iron concentration in the extrapyramidal motor system in Friedreich
ataxia: The IMAGE-FRDA study. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1261–1263. [CrossRef] [PubMed]

93. Soriano, S.; Llorens, J.V.; Blanco-Sobero, L.; Gutiérrez, L.; Calap-Quintana, P.; Morales, M.P.; Moltó, M.D.;
Martínez-Sebastián, M.J. Deferiprone and idebenone rescue frataxin depletion phenotypes in a Drosophila
model of Friedreich’s ataxia. Gene 2013, 521, 274–281. [CrossRef] [PubMed]

94. Simon, D.; Seznec, H.; Gansmuller, A.; Carelle, N.; Weber, P.; Metzger, D.; Rustin, P.; Koenig, M.;
Puccio, H. Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic
neurodegeneration in dorsal root ganglia. J. Neurosci. 2004, 24, 1987–1995. [CrossRef] [PubMed]

http://dx.doi.org/10.7554/eLife.30054
http://www.ncbi.nlm.nih.gov/pubmed/29257745
http://dx.doi.org/10.1002/mus.10077
http://www.ncbi.nlm.nih.gov/pubmed/11994959
http://dx.doi.org/10.1371/journal.pone.0069229
http://www.ncbi.nlm.nih.gov/pubmed/23922695
http://dx.doi.org/10.1016/S0960-8966(00)00108-5
http://dx.doi.org/10.1093/hmg/ddv024
http://www.ncbi.nlm.nih.gov/pubmed/25628335
http://dx.doi.org/10.1126/science.284.5422.1985
http://www.ncbi.nlm.nih.gov/pubmed/10373116
http://dx.doi.org/10.1038/mp.2015.55
http://www.ncbi.nlm.nih.gov/pubmed/25962619
http://dx.doi.org/10.1038/mp.2012.170
http://www.ncbi.nlm.nih.gov/pubmed/23229049
http://dx.doi.org/10.1093/hmg/dds024
http://www.ncbi.nlm.nih.gov/pubmed/22298836
http://dx.doi.org/10.3389/fphys.2018.00050
http://www.ncbi.nlm.nih.gov/pubmed/29491838
http://dx.doi.org/10.1017/S0317167100025580
http://www.ncbi.nlm.nih.gov/pubmed/187309
http://dx.doi.org/10.1017/S0317167100022927
http://www.ncbi.nlm.nih.gov/pubmed/6452194
http://dx.doi.org/10.1007/s00401-007-0220-y
http://www.ncbi.nlm.nih.gov/pubmed/17443334
http://dx.doi.org/10.1007/s00401-009-0589-x
http://www.ncbi.nlm.nih.gov/pubmed/19727777
http://dx.doi.org/10.1182/blood-2006-12-065433
http://www.ncbi.nlm.nih.gov/pubmed/17379741
http://dx.doi.org/10.1136/jnnp-2015-312665
http://www.ncbi.nlm.nih.gov/pubmed/27010617
http://dx.doi.org/10.1016/j.gene.2013.02.049
http://www.ncbi.nlm.nih.gov/pubmed/23542074
http://dx.doi.org/10.1523/JNEUROSCI.4549-03.2004
http://www.ncbi.nlm.nih.gov/pubmed/14985441


Int. J. Mol. Sci. 2018, 19, 1989 29 of 36

95. Al-Mahdawi, S.; Pinto, R.M.; Varshney, D.; Lawrence, L.; Lowrie, M.B.; Hughes, S.; Webster, Z.; Blake, J.;
Cooper, J.M.; King, R.; et al. GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit
oxidative stress leading to progressive neuronal and cardiac pathology. Genomics 2006, 88, 580–590.
[CrossRef] [PubMed]

96. Chen, K.; Ho, T.S.-Y.; Lin, G.; Tan, K.L.; Rasband, M.N.; Bellen, H.J. Loss of Frataxin activates the
iron/sphingolipid/PDK1/Mef2 pathway in mammals. eLife 2016, 5, e20732. [CrossRef] [PubMed]

97. Wong, A.; Yang, J.; Cavadini, P.; Gellera, C.; Lonnerdal, B.; Taroni, F.; Cortopassi, G. The Friedreich’s ataxia
mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and
inhibitors of apoptosis. Hum. Mol. Genet. 1999, 8, 425–430. [CrossRef] [PubMed]

98. Chantrel-Groussard, K.; Geromel, V.; Puccio, H.; Koenig, M.; Munnich, A.; Rötig, A.; Rustin, P. Disabled early
recruitment of antioxidant defenses in Friedreich’s ataxia. Hum. Mol. Genet. 2001, 10, 2061–2067. [CrossRef]
[PubMed]

99. Whitnall, M.; Suryo Rahmanto, Y.; Huang, M.L.-H.; Saletta, F.; Lok, H.C.; Gutiérrez, L.; Lázaro, F.J.;
Fleming, A.J.; St Pierre, T.G.; Mikhael, M.R.; et al. Identification of nonferritin mitochondrial iron deposits in
a mouse model of Friedreich ataxia. Proc. Natl. Acad. Sci. USA 2012, 109, 20590–20595. [CrossRef] [PubMed]

100. Mandilaras, K.; Pathmanathan, T.; Missirlis, F. Iron absorption in Drosophila melanogaster. Nutrients 2013, 5,
1622–1647. [CrossRef] [PubMed]

101. Calap-Quintana, P.; González-Fernández, J.; Sebastiá-Ortega, N.; Llorens, J.V.; Moltó, M.D. Drosophila
melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. Int. J. Mol. Sci. 2017, 18, 1456.
[CrossRef] [PubMed]

102. Martelli, A.; Schmucker, S.; Reutenauer, L.; Mathieu, J.R.R.; Peyssonnaux, C.; Karim, Z.; Puy, H.; Galy, B.;
Hentze, M.W.; Puccio, H. Iron regulatory protein 1 sustains mitochondrial iron loading and function in
frataxin deficiency. Cell Metab. 2015, 21, 311–323. [CrossRef] [PubMed]

103. Schiavi, A.; Maglioni, S.; Palikaras, K.; Shaik, A.; Strappazzon, F.; Brinkmann, V.; Torgovnick, A.; Castelein, N.;
Henau, S. de; Braeckman, B.P.; et al. Iron-Starvation-Induced Mitophagy Mediates Lifespan Extension upon
Mitochondrial Stress in C. elegans. Curr. Biol. CB 2015, 25, 1810–1822. [CrossRef] [PubMed]

104. Huang, M.L.-H.; Becker, E.M.; Whitnall, M.; Suryo Rahmanto, Y.; Ponka, P.; des Richardson, R. Elucidation of
the mechanism of mitochondrial iron loading in Friedreich’s ataxia by analysis of a mouse mutant. Proc. Natl.
Acad. Sci. USA 2009, 106, 16381–16386. [CrossRef] [PubMed]

105. Ramirez, R.L.; Qian, J.; Santambrogio, P.; Levi, S.; Koeppen, A.H. Relation of cytosolic iron excess to
cardiomyopathy of Friedreich’s ataxia. Am. J. Cardiol. 2012, 110, 1820–1827. [CrossRef] [PubMed]

106. Koeppen, A.H.; Ramirez, R.L.; Becker, A.B.; Bjork, S.T.; Levi, S.; Santambrogio, P.; Parsons, P.J.; Kruger, P.C.;
Yang, K.X.; Feustel, P.J.; et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS ONE 2015, 10,
e0116396. [CrossRef] [PubMed]

107. Missirlis, F.; Hu, J.; Kirby, K.; Hilliker, A.J.; Rouault, T.A.; Phillips, J.P. Compartment-specific protection of
iron-sulfur proteins by superoxide dismutase. J. Biol. Chem. 2003, 278, 47365–47369. [CrossRef] [PubMed]

108. Irazusta, V.; Obis, E.; Moreno-Cermeño, A.; Cabiscol, E.; Ros, J.; Tamarit, J. Yeast frataxin mutants display
decreased superoxide dismutase activity crucial to promote protein oxidative damage. Free Radic. Biol. Med.
2010, 48, 411–420. [CrossRef] [PubMed]

109. Barzilai, A.; Yamamoto, K.-I. DNA damage responses to oxidative stress. DNA Repair 2004, 3, 1109–1115.
[CrossRef] [PubMed]

110. Berlett, B.S.; Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 1997, 272,
20313–20316. [CrossRef] [PubMed]

111. Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms
of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [CrossRef]
[PubMed]

112. González-Cabo, P.; Palau, F. Mitochondrial pathophysiology in Friedreich’s ataxia. J. Neurochem. 2013,
126 (Suppl. 1), 53–64. [CrossRef] [PubMed]

113. Vaubel, R.A.; Isaya, G. Iron-sulfur cluster synthesis, iron homeostasis and oxidative stress in Friedreich
ataxia. Mol. Cell. Neurosci. 2013, 55, 50–61. [CrossRef] [PubMed]

114. Isaya, G.; O’Neill, H.A.; Gakh, O.; Park, S.; Mantcheva, R.; Mooney, S.M. Functional studies of frataxin.
Acta Paediatr. 2004, 93, 68–71. [CrossRef]

http://dx.doi.org/10.1016/j.ygeno.2006.06.015
http://www.ncbi.nlm.nih.gov/pubmed/16919418
http://dx.doi.org/10.7554/eLife.20732
http://www.ncbi.nlm.nih.gov/pubmed/27901468
http://dx.doi.org/10.1093/hmg/8.3.425
http://www.ncbi.nlm.nih.gov/pubmed/9949201
http://dx.doi.org/10.1093/hmg/10.19.2061
http://www.ncbi.nlm.nih.gov/pubmed/11590123
http://dx.doi.org/10.1073/pnas.1215349109
http://www.ncbi.nlm.nih.gov/pubmed/23169664
http://dx.doi.org/10.3390/nu5051622
http://www.ncbi.nlm.nih.gov/pubmed/23686013
http://dx.doi.org/10.3390/ijms18071456
http://www.ncbi.nlm.nih.gov/pubmed/28684721
http://dx.doi.org/10.1016/j.cmet.2015.01.010
http://www.ncbi.nlm.nih.gov/pubmed/25651183
http://dx.doi.org/10.1016/j.cub.2015.05.059
http://www.ncbi.nlm.nih.gov/pubmed/26144971
http://dx.doi.org/10.1073/pnas.0906784106
http://www.ncbi.nlm.nih.gov/pubmed/19805308
http://dx.doi.org/10.1016/j.amjcard.2012.08.018
http://www.ncbi.nlm.nih.gov/pubmed/23000103
http://dx.doi.org/10.1371/journal.pone.0116396
http://www.ncbi.nlm.nih.gov/pubmed/25738292
http://dx.doi.org/10.1074/jbc.M307700200
http://www.ncbi.nlm.nih.gov/pubmed/12972424
http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.010
http://www.ncbi.nlm.nih.gov/pubmed/19932164
http://dx.doi.org/10.1016/j.dnarep.2004.03.002
http://www.ncbi.nlm.nih.gov/pubmed/15279799
http://dx.doi.org/10.1074/jbc.272.33.20313
http://www.ncbi.nlm.nih.gov/pubmed/9252331
http://dx.doi.org/10.1155/2014/360438
http://www.ncbi.nlm.nih.gov/pubmed/24999379
http://dx.doi.org/10.1111/jnc.12303
http://www.ncbi.nlm.nih.gov/pubmed/23859341
http://dx.doi.org/10.1016/j.mcn.2012.08.003
http://www.ncbi.nlm.nih.gov/pubmed/22917739
http://dx.doi.org/10.1111/j.1651-2227.2004.tb03061.x


Int. J. Mol. Sci. 2018, 19, 1989 30 of 36

115. Paupe, V.; Dassa, E.P.; Goncalves, S.; Auchère, F.; Lönn, M.; Holmgren, A.; Rustin, P. Impaired nuclear
Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia. PLoS ONE 2009, 4, e4253.
[CrossRef] [PubMed]

116. Floyd, R.A.; Kotake, Y.; Hensley, K.; Nakae, D.; Konishi, Y. Reactive oxygen species in choline deficiency
induced carcinogenesis and nitrone inhibition. Mol. Cell. Biochem. 2002, 234–235, 195–203. [CrossRef]
[PubMed]

117. Lupoli, F.; Vannocci, T.; Longo, G.; Niccolai, N.; Pastore, A. The role of oxidative stress in Friedreich’s ataxia.
FEBS Lett. 2018, 592, 718–727. [CrossRef] [PubMed]

118. Irazusta, V.; Moreno-Cermeño, A.; Cabiscol, E.; Ros, J.; Tamarit, J. Major targets of iron-induced protein
oxidative damage in frataxin-deficient yeasts are magnesium-binding proteins. Free Radic. Biol. Med. 2008,
44, 1712–1723. [CrossRef] [PubMed]

119. Babcock, M.; de Silva, D.; Oaks, R.; Davis-Kaplan, S.; Jiralerspong, S.; Montermini, L.; Pandolfo, M.; Kaplan, J.
Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 1997, 276,
1709–1712. [CrossRef] [PubMed]

120. Auchère, F.; Santos, R.; Planamente, S.; Lesuisse, E.; Camadro, J.-M. Glutathione-dependent redox status
of frataxin-deficient cells in a yeast model of Friedreich’s ataxia. Hum. Mol. Genet. 2008, 17, 2790–2802.
[CrossRef] [PubMed]

121. Radisky, D.C.; Babcock, M.C.; Kaplan, J. The yeast frataxin homologue mediates mitochondrial iron efflux.
Evidence for a mitochondrial iron cycle. J. Biol. Chem. 1999, 274, 4497–4499. [CrossRef] [PubMed]

122. Bulteau, A.L.; Planamente, S.; Jornea, L.; Dur, A.; Lesuisse, E.; Camadro, J.M.; Auchère, F. Changes in
mitochondrial glutathione levels and protein thiol oxidation in ∆yfh1 yeast cells and the lymphoblasts of
patients with Friedreich’s ataxia. Biochim. Biophys. Acta 2012, 1822, 212–225. [CrossRef] [PubMed]

123. Vázquez-Manrique, R.P.; González-Cabo, P.; Ros, S.; Aziz, H.; Baylis, H.A.; Palau, F. Reduction of
Caenorhabditis elegans frataxin increases sensitivity to oxidative stress, reduces lifespan, and causes lethality
in a mitochondrial complex II mutant. FASEB J. 2006, 20, 172–174. [CrossRef] [PubMed]

124. Tan, G.; Chen, L.S.; Lonnerdal, B.; Gellera, C.; Taroni, F.A.; Cortopassi, G.A. Frataxin expression rescues
mitochondrial dysfunctions in FRDA cells. Hum. Mol. Genet. 2001, 10, 2099–2107. [CrossRef] [PubMed]

125. Piemonte, F.; Pastore, A.; Tozzi, G.; Tagliacozzi, D.; Santorelli, F.M.; Carrozzo, R.; Casali, C.; Damiano, M.;
Federici, G.; Bertini, E. Glutathione in blood of patients with Friedreich’s ataxia. Eur. J. Clin. Investig. 2001,
31, 1007–1011. [CrossRef]

126. Schulz, J.B.; Dehmer, T.; Schöls, L.; Mende, H.; Hardt, C.; Vorgerd, M.; Bürk, K.; Matson, W.; Dichgans, J.;
Beal, M.F.; et al. Oxidative stress in patients with Friedreich ataxia. Neurol. 2000, 55, 1719–1721. [CrossRef]

127. Haugen, A.C.; Di Prospero, N.A.; Parker, J.S.; Fannin, R.D.; Chou, J.; Meyer, J.N.; Halweg, C.; Collins, J.B.;
Durr, A.; Fischbeck, K.; et al. Altered gene expression and DNA damage in peripheral blood cells from
Friedreich’s ataxia patients: Cellular model of pathology. PLoS Genet. 2010, 6, e1000812. [CrossRef] [PubMed]

128. Johnson, W.M.; Wilson-Delfosse, A.L.; Mieyal, J.J. Dysregulation of glutathione homeostasis in
neurodegenerative diseases. Nutrients 2012, 4, 1399–1440. [CrossRef] [PubMed]

129. Swarup, V.; Srivastava, A.K.; Padma, M.V.; Rajeswari, M.R. Quantitative profiling and identification of
differentially expressed plasma proteins in Friedreich’s ataxia. J. Neurosci. Res. 2013, 91, 1483–1491.
[CrossRef] [PubMed]

130. Seznec, H.; Simon, D.; Bouton, C.; Reutenauer, L.; Hertzog, A.; Golik, P.; Procaccio, V.; Patel, M.; Drapier, J.-C.;
Koenig, M.; et al. Friedreich ataxia: The oxidative stress paradox. Hum. Mol. Genet. 2005, 14, 463–474.
[CrossRef] [PubMed]

131. Macevilly, C.J.; Muller, D.P. Oxidative stress does not appear to be involved in the aetiology of Friedreich’s
ataxia. Restor. Neurol. Neurosci. 1997, 11, 131–137. [PubMed]

132. Lynch, D.R.; Perlman, S.L.; Meier, T. A phase 3, double-blind, placebo-controlled trial of idebenone in
friedreich ataxia. Arch. Neurol. 2010, 67, 941–947. [CrossRef] [PubMed]

133. Parkinson, M.H.; Schulz, J.B.; Giunti, P. Co-enzyme Q10 and idebenone use in Friedreich’s ataxia.
J. Neurochem. 2013, 126 (Suppl. 1), 125–141. [CrossRef] [PubMed]

134. Pryde, K.R.; Taanman, J.W.; Schapira, A.H. A LON-ClpP Proteolytic Axis Degrades Complex I to Extinguish
ROS Production in Depolarized Mitochondria. Cell Rep. 2016, 17, 2522–2531. [CrossRef] [PubMed]

135. Turrens, J.F.; Boveris, A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart
mitochondria. Biochem. J. 1980, 191, 421–427. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0004253
http://www.ncbi.nlm.nih.gov/pubmed/19158945
http://dx.doi.org/10.1023/A:1015910306026
http://www.ncbi.nlm.nih.gov/pubmed/12162434
http://dx.doi.org/10.1002/1873-3468.12928
http://www.ncbi.nlm.nih.gov/pubmed/29197070
http://dx.doi.org/10.1016/j.freeradbiomed.2008.01.014
http://www.ncbi.nlm.nih.gov/pubmed/18280258
http://dx.doi.org/10.1126/science.276.5319.1709
http://www.ncbi.nlm.nih.gov/pubmed/9180083
http://dx.doi.org/10.1093/hmg/ddn178
http://www.ncbi.nlm.nih.gov/pubmed/18562474
http://dx.doi.org/10.1074/jbc.274.8.4497
http://www.ncbi.nlm.nih.gov/pubmed/9988680
http://dx.doi.org/10.1016/j.bbadis.2011.11.003
http://www.ncbi.nlm.nih.gov/pubmed/22200491
http://dx.doi.org/10.1096/fj.05-4212fje
http://www.ncbi.nlm.nih.gov/pubmed/16293572
http://dx.doi.org/10.1093/hmg/10.19.2099
http://www.ncbi.nlm.nih.gov/pubmed/11590127
http://dx.doi.org/10.1046/j.1365-2362.2001.00922.x
http://dx.doi.org/10.1212/WNL.55.11.1719
http://dx.doi.org/10.1371/journal.pgen.1000812
http://www.ncbi.nlm.nih.gov/pubmed/20090835
http://dx.doi.org/10.3390/nu4101399
http://www.ncbi.nlm.nih.gov/pubmed/23201762
http://dx.doi.org/10.1002/jnr.23262
http://www.ncbi.nlm.nih.gov/pubmed/23996585
http://dx.doi.org/10.1093/hmg/ddi042
http://www.ncbi.nlm.nih.gov/pubmed/15615771
http://www.ncbi.nlm.nih.gov/pubmed/21551537
http://dx.doi.org/10.1001/archneurol.2010.168
http://www.ncbi.nlm.nih.gov/pubmed/20697044
http://dx.doi.org/10.1111/jnc.12322
http://www.ncbi.nlm.nih.gov/pubmed/23859348
http://dx.doi.org/10.1016/j.celrep.2016.11.027
http://www.ncbi.nlm.nih.gov/pubmed/27926857
http://dx.doi.org/10.1042/bj1910421
http://www.ncbi.nlm.nih.gov/pubmed/6263247


Int. J. Mol. Sci. 2018, 19, 1989 31 of 36

136. Sugioka, K.; Nakano, M.; Totsune-Nakano, H.; Minakami, H.; Tero-Kubota, S.; Ikegami, Y. Mechanism
of O−2 generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron
transport systems. Biochim. Biophys. Acta Bioenerget. 1988, 936, 377–385. [CrossRef]

137. Detienne, G.; de Haes, W.; Mergan, L.; Edwards, S.L.; Temmerman, L.; van Bael, S. Beyond ROS clearance:
Peroxiredoxins in stress signaling and aging. Ageing Res. Rev. 2018, 44, 33–48. [CrossRef] [PubMed]

138. Cotticelli, M.G.; Xia, S.; Kaur, A.; Lin, D.; Wang, Y.; Ruff, E.; Tobias, J.W.; Wilson, R.B. Identification of p38
MAPK as a novel therapeutic target for Friedreich’s ataxia. Sci. Rep. 2018, 8, 5007. [CrossRef] [PubMed]

139. Hanson, G.T.; Aggeler, R.; Oglesbee, D.; Cannon, M.; Capaldi, R.A.; Tsien, R.Y.; Remington, S.J. Investigating
mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 2004,
279, 13044–13053. [CrossRef] [PubMed]

140. Albrecht, S.C.; Barata, A.G.; Grosshans, J.; Teleman, A.A.; Dick, T.P. In vivo mapping of hydrogen peroxide
and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab. 2011,
14, 819–829. [CrossRef] [PubMed]

141. Kaplowitz, N. The importance and regulation of hepatic glutathione. Yale J. Biol. Med. 1981, 54, 497–502.
[PubMed]

142. Calatrava-Ferreras, L.; Gonzalo-Gobernado, R.; Reimers, D.; Herranz, A.S.; Casarejos, M.J.; Jiménez-Escrig, A.;
Regadera, J.; Velasco-Martín, J.; Vallejo-Muñoz, M.; Díaz-Gil, J.J.; et al. Liver Growth Factor (LGF)
Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich’s Ataxia Transgenic
Mice. Int. J. Mol. Sci. 2016, 17, 2066. [CrossRef] [PubMed]

143. Piermarini, E.; Cartelli, D.; Pastore, A.; Tozzi, G.; Compagnucci, C.; Giorda, E.; D’Amico, J.; Petrini, S.;
Bertini, E.; Cappelletti, G.; et al. Frataxin silencing alters microtubule stability in motor neurons: Implications
for Friedreich’s ataxia. Hum. Mol. Genet. 2016, 25, 4288–4301. [CrossRef] [PubMed]

144. Tan, G.; Napoli, E.; Taroni, F.; Cortopassi, G. Decreased expression of genes involved in sulfur amino acid
metabolism in frataxin-deficient cells. Hum. Mol. Genet. 2003, 12, 1699–1711. [CrossRef] [PubMed]

145. Shan, Y.; Schoenfeld, R.A.; Hayashi, G.; Napoli, E.; Akiyama, T.; Iodi Carstens, M.; Carstens, E.E.; Pook, M.A.;
Cortopassi, G.A. Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in
dorsal root ganglia of the Friedreich’s ataxia YG8R mouse model. Antioxid. Redox Signal. 2013, 19, 1481–1493.
[CrossRef] [PubMed]

146. Runko, A.P.; Griswold, A.J.; Min, K.-T. Overexpression of frataxin in the mitochondria increases resistance to
oxidative stress and extends lifespan in Drosophila. FEBS Lett. 2008, 582, 715–719. [CrossRef] [PubMed]

147. Koeppen, A.H.; Kuntzsch, E.C.; Bjork, S.T.; Ramirez, R.L.; Mazurkiewicz, J.E.; Feustel, P.J. Friedreich ataxia:
Metal dysmetabolism in dorsal root ganglia. Acta Neuropathol. Commun. 2013, 1, 26. [CrossRef] [PubMed]

148. Koeppen, A.H.; Ramirez, R.L.; Yu, D.; Collins, S.E.; Qian, J.; Parsons, P.J.; Yang, K.X.; Chen, Z.;
Mazurkiewicz, J.E.; Feustel, P.J. Friedreich’s ataxia causes redistribution of iron, copper, and zinc in the
dentate nucleus. Cerebellum 2012, 11, 845–860. [CrossRef] [PubMed]

149. Kruger, P.C.; Yang, K.X.; Parsons, P.J.; Becker, A.B.; Feustel, P.J.; Koeppen, A.H. Abundance and Significance
of Iron, Zinc, Copper, and Calcium in the Hearts of Patients with Friedreich Ataxia. Am. J. Cardiol. 2016, 118,
127–131. [CrossRef] [PubMed]

150. Wu, Z.; Du, Y.; Xue, H.; Wu, Y.; Zhou, B. Aluminum induces neurodegeneration and its toxicity arises
from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiol. Aging 2012, 33,
199.e1–199.e12. [CrossRef] [PubMed]

151. Han, T.H.L.; Camadro, J.M.; Santos, R.; Lesuisse, E.; El Hage Chahine, J.M.; Ha-Duong, N.T. Mechanisms of
iron and copper-frataxin interactions. Metall. Integr. Biomet. Sci. 2017, 9, 1073–1085. [CrossRef] [PubMed]

152. Sánchez, M.; Palacios, Ò.; Buchensky, C.; Sabio, L.; Gomez-Casati, D.F.; Pagani, M.A.; Capdevila, M.;
Atrian, S.; Dominguez-Vera, J.M. Copper redox chemistry of plant frataxins. J. Inorg. Biochem. 2018, 180,
135–140. [CrossRef] [PubMed]

153. Hua, H.; Günther, V.; Georgiev, O.; Schaffner, W. Distorted copper homeostasis with decreased sensitivity to
cisplatin upon chaperone Atox1 deletion in Drosophila. Biometals 2011, 24, 445–453. [CrossRef] [PubMed]

154. Xiao, G.; Wan, Z.; Fan, Q.; Tang, X.; Zhou, B. The metal transporter ZIP13 supplies iron into the secretory
pathway in Drosophila melanogaster. eLife 2014, 3, e03191. [CrossRef] [PubMed]

155. Wang, C.-Y.; Jenkitkasemwong, S.; Duarte, S.; Sparkman, B.K.; Shawki, A.; Mackenzie, B.; Knutson, M.D.
ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading.
J. Biol. Chem. 2012, 287, 34032–34043. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/0005-2728(88)90014-X
http://dx.doi.org/10.1016/j.arr.2018.03.005
http://www.ncbi.nlm.nih.gov/pubmed/29580920
http://dx.doi.org/10.1038/s41598-018-23168-x
http://www.ncbi.nlm.nih.gov/pubmed/29568068
http://dx.doi.org/10.1074/jbc.M312846200
http://www.ncbi.nlm.nih.gov/pubmed/14722062
http://dx.doi.org/10.1016/j.cmet.2011.10.010
http://www.ncbi.nlm.nih.gov/pubmed/22100409
http://www.ncbi.nlm.nih.gov/pubmed/7342494
http://dx.doi.org/10.3390/ijms17122066
http://www.ncbi.nlm.nih.gov/pubmed/27941692
http://dx.doi.org/10.1093/hmg/ddw260
http://www.ncbi.nlm.nih.gov/pubmed/27516386
http://dx.doi.org/10.1093/hmg/ddg187
http://www.ncbi.nlm.nih.gov/pubmed/12837693
http://dx.doi.org/10.1089/ars.2012.4537
http://www.ncbi.nlm.nih.gov/pubmed/23350650
http://dx.doi.org/10.1016/j.febslet.2008.01.046
http://www.ncbi.nlm.nih.gov/pubmed/18258192
http://dx.doi.org/10.1186/2051-5960-1-26
http://www.ncbi.nlm.nih.gov/pubmed/24252376
http://dx.doi.org/10.1007/s12311-012-0383-5
http://www.ncbi.nlm.nih.gov/pubmed/22562713
http://dx.doi.org/10.1016/j.amjcard.2016.04.024
http://www.ncbi.nlm.nih.gov/pubmed/27189813
http://dx.doi.org/10.1016/j.neurobiolaging.2010.06.018
http://www.ncbi.nlm.nih.gov/pubmed/20674094
http://dx.doi.org/10.1039/C7MT00031F
http://www.ncbi.nlm.nih.gov/pubmed/28573291
http://dx.doi.org/10.1016/j.jinorgbio.2017.11.020
http://www.ncbi.nlm.nih.gov/pubmed/29277024
http://dx.doi.org/10.1007/s10534-011-9438-1
http://www.ncbi.nlm.nih.gov/pubmed/21465178
http://dx.doi.org/10.7554/eLife.03191
http://www.ncbi.nlm.nih.gov/pubmed/25006035
http://dx.doi.org/10.1074/jbc.M112.367284
http://www.ncbi.nlm.nih.gov/pubmed/22898811


Int. J. Mol. Sci. 2018, 19, 1989 32 of 36

156. Jung, W.-H.; Liu, C.-C.; Yu, Y.-L.; Chang, Y.-C.; Lien, W.-Y.; Chao, H.-C.; Huang, S.-Y.; Kuo, C.-H.;
Ho, H.-C.; Chan, C.-C. Lipophagy prevents activity-dependent neurodegeneration due to dihydroceramide
accumulation in vivo. EMBO Rep. 2017, 18, 1150–1165. [CrossRef] [PubMed]

157. Cabirol-Pol, M.-J.; Khalil, B.; Rival, T.; Faivre-Sarrailh, C.; Besson, M.T. Glial lipid droplets and
neurodegeneration in a Drosophila model of complex I deficiency. Glia 2018, 66, 874–888. [CrossRef]
[PubMed]

158. Abeti, R.; Uzun, E.; Renganathan, I.; Honda, T.; Pook, M.A.; Giunti, P. Targeting lipid peroxidation and
mitochondrial imbalance in Friedreich’s ataxia. Pharmacol. Res. 2015, 99, 344–350. [CrossRef] [PubMed]

159. Abeti, R.; Parkinson, M.H.; Hargreaves, I.P.; Angelova, P.R.; Sandi, C.; Pook, M.A.; Giunti, P.; Abramov, A.Y.
Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich’s ataxia. Cell Death Dis.
2016, 7, e2237. [CrossRef] [PubMed]

160. Coppola, G.; Burnett, R.; Perlman, S.; Versano, R.; Gao, F.; Plasterer, H.; Rai, M.; Saccá, F.; Filla, A.; Lynch, D.R.;
et al. A gene expression phenotype in lymphocytes from Friedreich ataxia patients. Ann. Neurol. 2011, 70,
790–804. [CrossRef] [PubMed]

161. Coppola, G.; Marmolino, D.; Lu, D.; Wang, Q.; Cnop, M.; Rai, M.; Acquaviva, F.; Cocozza, S.; Pandolfo, M.;
Geschwind, D.H. Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and
identifies the PPARgamma pathway as a therapeutic target in Friedreich’s ataxia. Hum. Mol. Genet. 2009, 18,
2452–2461. [CrossRef] [PubMed]

162. Yin, D.; Huang, P.; Wu, J.; Song, H. Drosophila protein phosphatase V regulates lipid homeostasis via the
AMPK pathway. J. Mol. Cell Biol. 2014, 6, 100–102. [CrossRef] [PubMed]

163. Walker, J.L.; Chamberlain, S.; Robinson, N. Lipids and lipoproteins in Friedreich’s ataxia. J. Neurol.
Neurosurg. Psychiatry 1980, 43, 111–117. [CrossRef] [PubMed]

164. Raman, S.V.; Phatak, K.; Hoyle, J.C.; Pennell, M.L.; McCarthy, B.; Tran, T.; Prior, T.W.; Olesik, J.W.; Lutton, A.;
Rankin, C.; et al. Impaired myocardial perfusion reserve and fibrosis in Friedreich ataxia: A mitochondrial
cardiomyopathy with metabolic syndrome. Eur. Heart J. 2011, 32, 561–567. [CrossRef] [PubMed]

165. Huang, Y.S.; Nestruck, A.C.; Barbeau, A.; Bouchard, J.P.; Davignon, J. Plasma lipids and lipoproteins in
Friedreich’s ataxia and familial spastic ataxia—Evidence for an abnormal composition of high density
lipoproteins. Can. J. Neurol. Sci. 1978, 5, 149–156. [PubMed]

166. Filla, A.; Postiglione, A.; Rubba, P.; Patti, L.; de Michele, G.; Palma, V.; Brescia Morra, V.; Campanella, G.
Plasma lipoprotein concentration and erythrocyte membrane lipids in patients with Friedreich’s ataxia.
Acta Neurol. 1980, 2, 382–389.

167. Draper, P.; Huang, Y.S.; Shapcott, D.; Lemieux, B.; Brennan, M.; Barbeau, A.; Davignon, J. Erythrocyte
membrane lipids in Friedreich’s ataxia. Can. J. Neurol. Sci. 1979, 6, 291–294. [CrossRef] [PubMed]

168. Worth, A.J.; Basu, S.S.; Deutsch, E.C.; Hwang, W.-T.; Snyder, N.W.; Lynch, D.R.; Blair, I.A. Stable isotopes and
LC-MS for monitoring metabolic disturbances in Friedreich’s ataxia platelets. Bioanalysis 2015, 7, 1843–1855.
[CrossRef] [PubMed]

169. Obis, È.; Irazusta, V.; Sanchís, D.; Ros, J.; Tamarit, J. Frataxin deficiency in neonatal rat ventricular myocytes
targets mitochondria and lipid metabolism. Free Radic. Biol. Med. 2014, 73, 21–33. [CrossRef] [PubMed]

170. Martelli, A.; Friedman, L.S.; Reutenauer, L.; Messaddeq, N.; Perlman, S.L.; Lynch, D.R.; Fedosov, K.;
Schulz, J.B.; Pandolfo, M.; Puccio, H. Clinical data and characterization of the liver conditional mouse model
exclude neoplasia as a non-neurological manifestation associated with Friedreich’s ataxia. Dis. Models Mech.
2012, 5, 860–869. [CrossRef] [PubMed]

171. Liu, P.; Lin, H.; Xu, Y.; Zhou, F.; Wang, J.; Liu, J.; Zhu, X.; Guo, X.; Tang, Y.; Yao, P. Frataxin-Mediated
PINK1-Parkin-Dependent Mitophagy in Hepatic Steatosis: The Protective Effects of Quercetin. Mol. Nutr.
Food Res. 2018, e1800164. [CrossRef] [PubMed]

172. Schiavi, A.; Torgovnick, A.; Kell, A.; Megalou, E.; Castelein, N.; Guccini, I.; Marzocchella, L.; Gelino, S.;
Hansen, M.; Malisan, F.; et al. Autophagy induction extends lifespan and reduces lipid content in response
to frataxin silencing in C. elegans. Exp. Gerontol. 2013, 48, 191–201. [CrossRef] [PubMed]

173. Walls, S.M.; Cammarato, A.; Chatfield, D.A.; Ocorr, K.; Harris, G.L.; Bodmer, R. Ceramide-Protein Interactions
Modulate Ceramide-Associated Lipotoxic Cardiomyopathy. Cell Rep. 2018, 22, 2702–2715. [CrossRef]
[PubMed]

174. Schulz, J.G.; Laranjeira, A.; van Huffel, L.; Gärtner, A.; Vilain, S.; Bastianen, J.; van Veldhoven, P.P.; Dotti, C.G.
Glial β-oxidation regulates Drosophila energy metabolism. Sci. Rep. 2015, 5, 7805. [CrossRef] [PubMed]

http://dx.doi.org/10.15252/embr.201643480
http://www.ncbi.nlm.nih.gov/pubmed/28507162
http://dx.doi.org/10.1002/glia.23290
http://www.ncbi.nlm.nih.gov/pubmed/29285794
http://dx.doi.org/10.1016/j.phrs.2015.05.015
http://www.ncbi.nlm.nih.gov/pubmed/26141703
http://dx.doi.org/10.1038/cddis.2016.111
http://www.ncbi.nlm.nih.gov/pubmed/27228352
http://dx.doi.org/10.1002/ana.22526
http://www.ncbi.nlm.nih.gov/pubmed/22162061
http://dx.doi.org/10.1093/hmg/ddp183
http://www.ncbi.nlm.nih.gov/pubmed/19376812
http://dx.doi.org/10.1093/jmcb/mjt050
http://www.ncbi.nlm.nih.gov/pubmed/24334257
http://dx.doi.org/10.1136/jnnp.43.2.111
http://www.ncbi.nlm.nih.gov/pubmed/7359148
http://dx.doi.org/10.1093/eurheartj/ehq443
http://www.ncbi.nlm.nih.gov/pubmed/21156720
http://www.ncbi.nlm.nih.gov/pubmed/206332
http://dx.doi.org/10.1017/S0317167100119791
http://www.ncbi.nlm.nih.gov/pubmed/487322
http://dx.doi.org/10.4155/bio.15.118
http://www.ncbi.nlm.nih.gov/pubmed/26295986
http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.016
http://www.ncbi.nlm.nih.gov/pubmed/24751525
http://dx.doi.org/10.1242/dmm.009829
http://www.ncbi.nlm.nih.gov/pubmed/22736457
http://dx.doi.org/10.1002/mnfr.201800164
http://www.ncbi.nlm.nih.gov/pubmed/29935106
http://dx.doi.org/10.1016/j.exger.2012.12.002
http://www.ncbi.nlm.nih.gov/pubmed/23247094
http://dx.doi.org/10.1016/j.celrep.2018.02.034
http://www.ncbi.nlm.nih.gov/pubmed/29514098
http://dx.doi.org/10.1038/srep07805
http://www.ncbi.nlm.nih.gov/pubmed/25588812


Int. J. Mol. Sci. 2018, 19, 1989 33 of 36

175. Liu, L.; Zhang, K.; Sandoval, H.; Yamamoto, S.; Jaiswal, M.; Sanz, E.; Li, Z.; Hui, J.; Graham, B.H.;
Quintana, A.; et al. Glial lipid droplets and ROS induced by mitochondrial defects promote
neurodegeneration. Cell 2015, 160, 177–190. [CrossRef] [PubMed]
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