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Abstract

Background: The blood-feeding hookworm Necator americanus infects hundreds of millions of people worldwide. In order
to elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of the adult stage of Necator
americanus was explored using next-generation sequencing and bioinformatic analyses.

Methodology/Principal Findings: A total of 19,997 contigs were assembled from the sequence data; 6,771 of these contigs
had known orthologues in the free-living nematode Caenorhabditis elegans, and most of them encoded proteins with WD40
repeats (10.6%), proteinase inhibitors (7.8%) or calcium-binding EF-hand proteins (6.7%). Bioinformatic analyses inferred
that the C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%), oxidative
phosphorylation (63%) and/or proteases (60%); most of these molecules were predicted to be involved in more than one
biological pathway. Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma
caninum, revealed qualitative and quantitative differences. For instance, proteinase inhibitors were inferred to be highly
represented in the former species, whereas SCP/Tpx-1/Ag5/PR-1/Sc7 proteins ( = SCP/TAPS or Ancylostoma-secreted
proteins) were predominant in the latter. In N. americanus, essential molecules were predicted using a combination of
orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted
drug targets which did not have homologues in the human host. These candidate targets were inferred to be linked to
mitochondrial (e.g., processing proteins) or amino acid metabolism (e.g., asparagine t-RNA synthetase).

Conclusions: This study has provided detailed insights into the transcriptome of the adult stage of N. americanus and
examines similarities and differences between this species and A. caninum. Future efforts should focus on comparative
transcriptomic and proteomic investigations of the other predominant human hookworm, A. duodenale, for both
fundamental and applied purposes, including the prevalidation of anti-hookworm drug targets.
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Introduction

Soil-transmitted helminths ( = geohelminths) are responsible for

neglected tropical diseases (NTDs) mostly in developing countries

[1]. In particular, the blood-feeding hookworms Necator americanus

and Ancylostoma duodenale (Nematoda) infect ,740 million people in

rural areas of the tropics and subtropics [2], causing an estimated

disease burden of 22 million disability-adjusted life years (DALYs)

[3]. Geographically, N. americanus is the most widely distributed

hookworm of humans globally [4]. The life cycle is direct, with

thin-shelled eggs passed in the faeces from the infected host. Under

suitable environmental conditions (e.g., 26uC and 100% humidity;

[5]), the eggs hatch and develop through two free-living larval

stages to the infective, third-stage (L3; filariform) larvae. The latter

larvae penetrate human skin and migrate via the circulatory system

and lung to finally reside as adults usually in the duodenum. The

adult stages attach by their buccal capsule to the intestinal mucosa,

rupture capillaries and feed on blood. The pathogenesis of

hookworm disease is mainly a consequence of the blood loss,

which occurs during attachment and feeding. The disease

( = necatoriasis) is commonly characterized by iron-deficiency

anaemia, which can cause physical and mental retardation and

sometimes deaths in children, adverse maternal-foetal outcomes

[6–7] and, in chronically infected individuals, can result in a
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significant alteration of their immune response to helminths

[8].

Traditionally, the control of hookworm disease has relied mostly

on the treatment of infected individuals with anthelmintics, such as

albendazole, mebendazole, pyrantel pamoate and/or levamisole.

With mass treatment strategies now in place in a number of

countries [9–10], there is an increased potential for hookworms to

develop genetic resistance against the compounds administered, if

they are used excessively and at suboptimal dosages. Thus, given

the experience with drug resistance in parasitic nematodes of

livestock [11], it is prudent to maintain a continual focus on the

discovery of novel drugs against hookworms of humans. Such a

discovery effort could be underpinned by an integrated genomic-

bioinformatic approach, using functional genomic and phenomic

information available for the free-living nematode Caenorhabditis

elegans (see WormBase; www.wormbase.org). This nematode,

which is the best characterized metazoan organism [12–13], is

considered to be relatively closely related to nematodes of the

order Strongylida (to which hookworms belong) [14]. Current

evidence indicates that ,60% of genes in strongylids (or

hookworms) have orthologues/homologues in C. elegans [15–16],

and that a range of biological pathways is conserved between

strongylid nematodes/hookworms and this free-living nematode

[17–20]. Therefore, conducting comparative explorations of

molecular data sets between these nematodes should identify

nematode-specific biological pathways, which, if essential for the

development and survival, could provide new targets for

nematocidal drugs.

Next generation sequencing technologies, such as ABI-SOLiD,

Illumina/Solexa (www.illumina.com; [21]), Helicos (www.helicosbio.

com; [22]) and 454/Roche (www.454.com; [23]), together with

the recent progress in bioinformatics, are providing unique

opportunities for the high-throughput transcriptomic and genomic

explorations of nematodes in far more detail than previously

possible [24] and at a substantially lower cost than using

conventional (Sanger) sequencing. To date, genomic and molecular

studies of hookworms have mainly involved the canine hookworm,

Ancylostoma caninum [19,25–27], because of its use as a model for

human hookworms [27–28]. In contrast, genomic datasets for N.

americanus are scant, representing a major constraint to progress in

molecular research of this nematode [4]. In the present study, we (i)

conducted a detailed exploration and functional annotation of the

transcriptome of the adult stage of N. americanus by 454 sequencing

coupled to semi-automated bioinformatic analyses, (ii) compared

the transcriptome of N. americanus to currently available transcrip-

tomic data for A. caninum, and (iii) inferred the essentiality of

key genes and gene products in order to predict putative drug

targets.

Materials and Methods

Accession numbers
The nucleotide sequence data produced for this study are

available in the GenBank database under accession SRA012052.

The contigs assembled from these data can be requested from the

primary author or are available at www.nematode.net.

Parasite material
The ‘‘Shanghai strain’’ of N. americanus (kindly provided by Drs

Bin Zhan and Peter Hotez) was produced in golden hamsters

(Mesocricetus auratus; infected for 94 days) at the Universidade

Federal de Minas Gerais, Brazil. The infection experiment was

conducted according the animal ethics guidelines of the Uni-

versidade Federal de Minas Gerais.

RNA isolation, cDNA synthesis and 454 sequencing
Total RNA from 30 adult worms was prepared using TRIzol

Reagent (GibcoBRL, Life Technologies, USA) following the

manufacturer’s instructions and then treated with Ambion Turbo

DNase (Ambion/Applied Biosystems, Austin, TX). The integrity

of the RNA was verified using the Bioanalyzer 2100 (Agilent

Technologies, USA), and the yield determined using the

NanoDrop ND-1000 UV-VIS spectrophotometer v.3.2.1 (Nano-

Drop Technologies, Wilmington, DE). The cDNA library was

constructed using the SMARTTM kit (Clontech/Takara Bio, CA)

from ,100ng of total RNA. An optimized PCR cycling protocol

(over 20 cycles) was used to amplify full-length cDNAs, employing

primers complementary to the SMART IIA-Probe and custom

oligo(dT), and the Advantage-HF 2 polymerase mix (Clontech/

Takara). The cDNA was normalized by denaturation-reassocia-

tion, treated with duplex-specific nuclease (Trimmer kit, Evrogen,

CA) and amplified over 11 cycles. Subsequently, the 59- and 39-

adaptors were removed by digestion with the exonuclease Mme1

and streptavidin-coated paramagnetic beads [29]. The normalized

cDNA (500–700 bases) was then amplified using 9 cycles of Long

and Accurate (LA)-PCR [30] and then sequenced in a Genome

SequencerTM (GS) Titanium FLX instrument (Roche Diagnostics)

employing a standard protocol [23].

Bioinformatic analyses
Expressed sequence tags (ESTs) generated from the normalised

cDNA library for N. americanus were assembled and annotated

using a standard bioinformatic pipeline [31]. Briefly, sequences

were aligned and assembled using the Contig Assembly Program

v.3 (CAP3; [32], employing a minimum sequence overlap length

of 50 nucleotides and an identity threshold of 95%. ESTs

(n = 2,200; www.ncbi.nlm.nih.gov) from adult N. americanus

available from previous studies [4,16,33,34] were included for

comparative analysis. Following the pre-processing of the ESTs,

contigs and singletons from the present dataset were subjected to

analysis by BLASTx (NCBI, www.ncbi.nlm.nih.gov) and BLASTn

Author Summary

The blood-feeding hookworm Necator americanus infects
hundreds of millions of people. To elucidate fundamental
molecular biological aspects of this hookworm, the
transcriptome of adult Necator americanus was studied
using next-generation sequencing and in silico analyses.
Contigs (n = 19,997) were assembled from the sequence
data; 6,771 of them had known orthologues in the free-
living nematode Caenorhabditis elegans, and most encod-
ed proteins with WD40 repeats (10.6%), proteinase
inhibitors (7.8%) or calcium-binding EF-hand proteins
(6.7%). Bioinformatic analyses inferred that C. elegans
homologues are involved mainly in biological pathways
linked to ribosome biogenesis (70%), oxidative phosphor-
ylation (63%) and/or proteases (60%). Comparative anal-
yses of the transcriptomes of N. americanus and the canine
hookworm, Ancylostoma caninum, revealed qualitative and
quantitative differences. Essential molecules were predict-
ed using a combination of orthology mapping and
functional data available for C. elegans. Further analyses
allowed the prioritization of 18 predicted drug targets
which did not have human homologues. These candidate
targets were inferred to be linked to mitochondrial
metabolism or amino acid synthesis. This investigation
provides detailed insights into the transcriptome of the
adult stage of N. americanus.
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(EMBL-EBI Parasite Genome Blast Server, www.ebi.ac.uk) to

identify putative homologues in C. elegans, other nematodes, and

organisms other than nematodes (e-value of #1e-05). WormBase

Release WS200 (www.wormbase.org) was interrogated extensively

for relevant information on C. elegans orthologues/homologues,

including transcriptomic, proteomic, RNAi phenotypic and

interactomic data. Gene ontology (GO) annotations were

conducted using BLAST2GO [35]. Peptides were mapped by

InterProScan [36] and linked to respective pathways in C. elegans

using the KEGG Orthology-Based Annotation System (KOBAS,

[37]). The protein sequences inferred from open reading frames

(ORFs) of the ESTs with orthologues in C. elegans were also

subjected to ‘‘secretome analysis’’ using the program SignalP v.2.0

(available at www.cbs.dtu.dk/services/SignalP/), employing both

the neural network and hidden Markov models to predict signal

peptides and/or anchors [38–40]. Also, transmembrane domains

were inferred using the program TMHMM (www.cbs.dtu.dk/

services/TMHMM/; [41–43]). Protein sequences inferred from

contigs for N. americanus were compared with those predicted for C.

elegans and from a similar-sized, publicly available EST dataset for

adult A. caninum produced by 454 sequencing (GenBank accession

numbers EW741128-EW744730; EX534506-EX567272); protein

similarities were displayed using SimiTri [44].

Prediction of essentiality and drug targets
All protein sequences predicted from contigs for N. americanus

were compared with protein sequences available in the

OrthoMCL 2.0 database (www.OrthoMCL.org) by BLASTp

(e-value cut off of ,1e-05). A subset of C. elegans protein

homologues was then selected based on: (i) an association with a

lethal RNAi phenotype; (ii) the presence/absence of gene

paralogues (based on OrthoMCL orthology grouping); and (iii)

GO annotation to terms linked to enzyme or G protein-coupled

receptor (GPCR) activity (i.e., GO:0003824 or GO:0004930, or a

sub-term thereof). The following information was obtained: (i)

network connectivity score (cf. http://www.functionalnet.org/

wormnet/Wormnet_v1_index.html; see [45]); (ii) presence of

mammalian orthologues (based on OrthoMCL orthology group-

ing (iii) essentiality information (i.e. association with non-wildtype

RNAi phenotypes) in other model organisms (including Saccharo-

myces cerevisiae, Mus musculus and Drosophila melanogaster) based on

OrthoMCL groups. Each predicted drug target was selected based

on (i) the presence of orthologues linked to non-wildtype RNAi or

mutant phenotypes in S. cerevisiae, M. musculus and D. melanogaster,

(ii) the absence of orthologues/homologues from the human host

and (iii) its network connectivity score [45].

To predict the potential of selected C. elegans orthologues of N.

americanus contigs as drug targets ( = ‘‘druggability’’), the InterPro

domains inferred from the predicted proteins were compared with

those linked to known small molecular drugs which follow the

‘Lipinsky rule of 5’ regarding bioavailability [46,47]. Similarly,

GO terms inferred from the predicted proteins were mapped to

Enzyme Commission (EC) numbers, and a list of enzyme-targeting

drugs was compiled based on data available in the BRENDA

database (www.brenda-enzymes.info; [48,49]). The C. elegans

orthologues included in the list were ranked according to the

‘severity’ of the non-wild-type RNAi phenotypes (i.e. adult lethal,

embryonic and/or larval lethal, sterile and other defects) in C.

elegans (cf. www.wormbase.org) defined in previous studies [50,51].

Results

A total of 116,839 ESTs (2876235 bases in length) was

generated by 454 sequencing. After removing the ESTs of ,100

bases, 63,523 ESTs were assembled into 19,997 contigs (369

bases6215.31). Of these, 6,771 (33.9%) had known C. elegans

orthologues, and 2,287 (11.4%) matched known nucleotide

sequences from various nematodes, including Brugia malayi,

Haemonchus contortus, Pristionchus pacificus, N. americanus, A. caninum,

A. duodenale and Nippostrongylus braziliensis (73.2%), other inverte-

brates (21.3%) and some vertebrates (5.5%) available in current

databases. All of the previously published ESTs for N. americanus

(www.ncbi.nlm.nih.gov; [4,16,33,34]) represented a subset (12.4%)

of the present dataset (not shown). The number of ORFs in the N.

americanus EST data, predicted peptides and their signal,

transmembrane and/or InterPro domains as well as the results

of GO and KOBAS (pathway mapping) searches are given in

Table 1. A total of 12,799 proteins were predicted from the 19,997

contigs, of which 7,214 mapped to known proteins defined by

2,381 different domains (Tables 1 and S1), the most abundant

being ‘WD40’ (IPR0011680; 10.6%), ‘proteinase inhibitors’

(IPR000215; 7.8%) and ‘EF-hand’ molecules (IPR018248; 6.7%)

(Table 2). The subsequent annotation of the inferred proteins

revealed 887 different GO terms, of which 314 were ‘biological

process’, 117 ‘cellular component’ and 456 ‘molecular function’

(Tables 3 and S2). The predominant terms were ‘translation’

(GO:0006412, 20.3%) and ‘metabolic process’ (GO:0008152,

14.9%) for ‘biological process’; ‘intracellular’ (GO:0005622,

25.1%) and ‘ribosome’ (GO:0005840, 17%) for ‘cellular compo-

nent’, and, ‘ATP binding’ (GO:0005524, 18.9%) and ‘structural

constituent of ribosome’ (GO:0003735, 17.9%) for ‘molecular

function’ (Tables 3 and S2). Proteins inferred from the N.

americanus contigs were predicted to be involved in 235 different

biological pathways, of which the vast majority represented

‘ribosome biogenesis’ (n = 163, 70%), ‘oxidative phosphorylation’

(n = 148, 63%) and ‘proteases’ (n = 140, 60%) (see Table S3).

For comparative analyses, publicly available EST data for the

adult stage of A. caninum was included. For this dataset, the same

bioinformatic analyses described in the Methods section were

conducted. From 15,755 contigs of A. caninum, a total of 12,622

proteins were inferred, of which 4,534 matched those encoded by

N. americanus ORFs (Figure 1); 8,650 of these predicted proteins

could be mapped to known molecules with 2,546 different motifs

(Tables 1 and S1). The protein motifs ‘SCP-like extracellular’

(IPR014044, 9.5%), ‘ankyrin’ (IPR002110, 7%) and ‘allergen V5/

Tpx-1 related’ (IPR0011283, 6%) were most commonly recorded

in the A. caninum dataset (Table 2). Differences in the numbers of

Table 1. Summary of the expressed sequence tag (EST) data
for the adult stage of Necator americanus determined
following 454 sequencing and detailed bioinformatics
annotation and analyses.

No. of EST clusters 19,997

Average length (6standard deviation) 369 bp6215.31

Containing an Open Reading Frame 12,799

Signal peptides 274

Returning InterProScan results 7,214 (2,381 domains)

Gene Ontology 2,950 (887 terms)

Biological process 4,830 (314 terms)

Cellular component 3,087 (117 terms)

Molecular function 8,671 (456 terms)

Prediction of biological pathways (KOBAS) 235

doi:10.1371/journal.pntd.0000684.t001
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IPR domains identified in the N. americanus and A. caninum

predicted peptides were calculated using a Chi-square test

(p,0.05) and are indicated in Table 2. GO annotation of the A.

caninum predicted peptides revealed 323 different terms for

‘biological process’, 119 for ‘cellular component’ and 500 for

‘molecular function’ (Tables 3 and S2). The terms ‘metabolic

process’ (GO:0008152, 7.4%) and ‘proteolysis’ (GO:0006508,

6.6%) had the highest representation for ‘biological process’, as

did ‘intracellular’ (GO:0005622, 7.5%) and ‘membrane’

(GO:0016020, 6.6%) for ‘cellular component’; and, ‘ATP binding’

(GO:0005524, 13.4%) and ‘catalytic activity’ (GO:0003824, 9%)

for ‘molecular function’ (Tables 3 and S2). Using the protein data,

a total of 235 different biological pathways were predicted, of

which ‘proteases’ (n = 219, 93%), ‘other enzymes’ (n = 164, 70%)

and ‘protein kinases’ (n = 151, 54%) were the most predominant

(see Table S3).

From the N. americanus dataset, 5,498 proteins matched known

proteins encoded by orthologues available in the OrthoMCL 2.0

database (www.OrthoMCL.org); 372 of these proteins had

homologues in C. elegans, and 278 (277 enzymes and one G-

PCR) of them were linked to adult lethal, embryonic and/or larval

lethal and sterile RNAi phenotypes (Table S4). A subset of 18

molecules in N. americanus with homologues in C. elegans but not in

humans were defined, also considering RNAi phenotype/s [i.e.

adult lethal (n = 2), larval and/or embryonic lethal (n = 16), sterile

(n = 4) and other defects (n = 12); cf. Table 4], as drug target

candidates. These proteins could be mapped to 54 ‘druggable’

InterPro domains, and 212 EC numbers were linked to

‘druggable’ enzymes; a total of 3,320 effective drugs were

predicted (Table S4).

Discussion

Next-generation sequencing and integrated bioinformatic

analyses have provided detailed and biologically relevant insights

into the transcriptome of the adult stage of N. americanus. A total of

12,799 ORFs were inferred from the present EST dataset, thus

increasing the number of predicted proteins currently available

(for this stage/species) in public databases by approximately 27-

fold [4]. Amongst the InterPro domains identified, ‘WD40’,

‘proteinase inhibitors’ and ‘EF-hand’ motifs were the most

abundant, followed by ‘proteases’ and ‘protein kinases’. WD40

repeats (also known as WD or beta-transducin repeats) are short

(,40 amino acid) motifs found in the proteomes of all eukaryotes

and implicated in a variety of functions, ranging from signal

transduction and transcription regulation to cell-cycle control and

apoptosis [52,53]. WD40 motifs act as sites for protein-protein

interactions; proteins containing WD40 repeats are known to serve

as platforms for the assembly of protein complexes or mediators of

a transient interplay with other proteins, such as the ubiquitin

ligases, involved in the onset of the anaphase during cell mitosis

[54]. Similarly, proteins containing ‘EF-hand’ domains are

involved in a number of protein-protein interactions regulated

by various specialized systems (e.g., Golgi system, voltage-

dependent calcium channels and calcium transporters) for the

uptake and release of calcium, which acts as a secondary

messenger for their activation [55]. In C. elegans, both EF-hand

and WD40 proteins are known to be required for the maturation

of the nervous system and the formation of ciliated sensory

neurons, in particular of the chemoreceptors located in the

amphids [8,56]. The amphids of parasitic nematodes are, besides

having the chemoreceptive activity, also known to play a role as

secretory organs, primarily to provide an appropriate substrate for

the transmission of neuronal potentials [57]. However, in N.

americanus, a group of specialized amphidial neuronal cells

( = amphidial glands; [57]) expresses a group of aspartic proteases

(i.e. cathepsin D-like Na-APR-1 and Na-APR-2) which are

proposed to degrade host haemoglobin and serum proteins in

the buccal capsule of adult worms [58]. In the dog hookworm, A.

caninum, the amphidial glands have also been shown to produce a

proteinase inhibitor (called ‘ancylostomatin’) that acts as an

anticoagulant to promote the flow of host blood and tissue fluids

into the buccal capsule and the intestine of the parasite [59].

Although proteinase inhibitors, such as the ‘kunitz-type’ molecules,

were significantly more abundant in the transcriptome of adult N.

americanus [4,33] than Ancylostoma spp., they have been better

characterized in the latter parasites [60–63] for which both single

and multiple kunitz-domain proteins have been described [61].

Table 2. The thirty most abundant protein domains inferred
using the InterProScan software from peptides inferred for
Necator americanus and Ancylostoma caninum.

InterProScan domain
No. of Na EST
clusters (%)

No. of Ac EST
clusters (%)

WD40 315 (10.6) . 553 (14.5) m

EF-HAND 196 (6.7) 187 (2.6)

Proteinase inhibitors 230 (7.8) m 126 (3.3) .

Proteases 179 (6.1) 177 (4.6)

Protein kinases 131 (4.4) . 388 (10.1) m

NAD(P)-binding domain 114 (3.9) . 160 (4.2) m

Transthyretin-like 97 (3.3) m 19 (0.5) .

Galectin, carbohydrate recognition domain 95 (3.2) m 66 (1.7) .

SCP-like extracellular 94 (3.2) . 362 (9.5) m

Peptidyl-prolyl cis-trans isomerase 91 (3.1) m 25 (0.6) .

RNA recognition motif, RNP-1 83 (2.8) . 198 (6.2) m

Mitochondrial substrate/solute carrier 88 (3) 88 (2.3)

Thioredoxin fold 81 (2.7) 70 (1.8)

Allergen V5/Tpx-1 related 64 (2.2) . 232 (6) m

Zinc finger, C2H2-type 64 (2.2) . 185 (4.8) m

Aldo/keto reductase 60 (2) m 9 (0.2) .

Scr homology-3 domain 57 (2) 98 (2.6)

Actin/actin like 56 (2) 49 (1.3)

Short-chain dehydrogenase/reductase SDR 51 (1.7) 51 (6.2)

Metridin-like ShK toxin 47 (1.6) m 6 (0.1) .

Histone-fold 44 (1.5) m 19 (0.5) .

Nucleotide binding, alpha beta plait 43 (1.4) . 80 (2.1) m

Heat shock protein Hsp20 41 (1.4) m 14 (0.4) .

Chaperonin Cpn60/TCP-1 39 (1.3) 50 (1.3)

Cytochrome P450 39 (1.3) m 4 (0.1) .

Ankyrin 38 (1.2) . 271 (7) m

Annexin repeat 37 (1.2) 53 (1.4)

Ubiquitin-conjugating enzyme, E2 37 (1.2) m 15 (0.4) .

Tetratricopeptide repeat 36 (1.2) 20 (0.5)

Protein-tyrosine phosphatase, receptor/non-
receptor type

35 (1.2) . 76 (2) m

The arrows infer statistically significant (p,0.05; chi-square) higher (m) or lower
(.) number of genes encoding proteins (with particular InterPro domains)
common to N. americanus and A. caninum.
doi:10.1371/journal.pntd.0000684.t002

Transcriptome of Adult Necator americanus

www.plosntds.org 4 May 2010 | Volume 4 | Issue 5 | e684



Table 3. The twenty most abundant Gene Ontology (GO) terms (according to the categories ‘biological process’, ‘cellular
component’ and ‘molecular function’) for peptides inferred for Necator americanus and Ancylostoma caninum.

GO term GO code No. of Na EST clusters (%) No. of Ac EST clusters (%)

Biological process

Translation GO:0006412 599 (20.3) 146 (3.8)

Metabolic process GO:0008152 438 (14.9) 284 (7.4)

Proteolysis GO:0006508 329 (11.2) 254 (6.6)

Oxidation reduction GO:0055114 197 (6.7) 85 (2.2)

Protein amino acid phosphorylation GO:0006468 147 (5) 159 (4.2)

Regulation of transcription, DNA-dependent GO:0006355 137 (4.6) 53 (1.4)

Transport GO:0006810 134 (4.5) 114 (3)

ATP synthesis coupled proton transport 111 (3.7) 34 (0.9)

Protein folding GO:0006457 104 (3.5) 48 (1.3)

Carbohydrate metabolic process GO:0005975 101 (3.4) 100 (2.6)

Small GTPase mediated signal transduction GO:0007264 62 (2.1) 38 (1)

Ubiquitin-dependent protein catabolic process GO:0006511 62 (2.1) 30 (0.8)

Intracellular protein transport GO:0006886 59 (2) 52 (1.4)

Vesicle-mediated transport GO:0016192 54 (1.8) 39 (1)

Nucleosome assembly GO:0006334 53 (1.8) 21 (0.5)

Protein transport GO:0015031 50 (1.7) 40 (1)

Response to oxidative stress GO:0006979 48 (1.6) 9 (0.2)

Protein amino acid dephosphorylation GO:0006470 47 (1.6) 45 (1.2)

Protein polymerization GO:0051258 46 (1.6) 15 (0.4)

Cellular component

Intracellular GO:0005622 798 (25.1) 297 (7.5)

Ribosome GO:0005840 499 (17) 88 (2.3)

Membrane GO:0016020 296 (9.7) 251 (6.6)

Nucleus GO:0005634 280 (9.5) 174 (4.6)

Integral to membrane GO:0016021 185 (6.3) 143 (3.7)

Cytoplasm GO:0005737 141 (4.8) 122 (3.2)

Extracellular region GO:0005576 86 (2.9) 156 (4)

Nucleosome GO:0000786 51 (1.7) 18 (0.5)

Protein complex GO:0043234 46 (1.6) 15 (0.4)

Endoplasmic reticulum GO:0005783 38 (1.3) 35 (0.9)

Mitochondrion GO:0005739 36 (1.2) 5 (0.1)

Cytoskeleton GO:0005856 33 (1.1) 14 (0.4)

Microtubule GO:0005874 31 (1) 15 (0.4)

Proton-transporting two-sector ATPase complex, catalytic domain GO:0033178 29 (1) 19 (0.5)

Proton-transporting two-sector ATPase complex,
proton-transporting domain

GO:0033177 27 (0.9) 8 (0.2)

Mitochondrial inner membrane GO:0005743 22 (0.7) 7 (0.2)

Proton-transporting ATP synthase complex, catalytic core F(1) GO:0045261 18 (0.6) 9 (0.2)

Clathrin adaptor complex GO:0030131 15 (0.5) 9 (0.2)

Proteasome core complex GO:0005839 15 (0.5) 15 (0.4)

Eukaryotic translation elongation factor 1 complex GO:0005853 15 (0.5) 8 (0.2)

Molecular function

ATP binding GO:0005524 558 (18.9) 514 (13.4)

Structural constituent of ribosome GO:0003735 527 (17.9) 91 (2.4)

Catalytic activity GO:0003824 429 (14.5) 346 (9)

Oxidoreductase activity GO:0016491 317 (10.8) 185 (4.8)

Protein binding GO:0005515 311 (10.5) 212 (5.6)

Binding GO:0005488 287 (9.3) 237 (6.2)
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For instance, a cDNA coding a single kunitz-domain proteinase

inhibitor (named AceKI-1) was isolated from A. ceylanicum. The

corresponding recombinant protein has been shown to act as a

tight-binding inhibitor of the serine proteases chymotrypsin,

pancreatic elastase, neutrophil elastase and trypsin [60] and

confers partial protection against hookworm-associated growth

delay in hamsters [62]. Recently, a kunitz-type cDNA was shown

to be enriched in the adult male of A. braziliense [63]. Although

their precise biological function remains to be determined, kunitz-

type proteinase inhibitors of hookworms appear to play pivotal

roles in preventing homeostasis and inhibiting host proteases (e.g.,

pancreatic and intestinal enzymes; [60,64]).

Proteases were also highly represented in the transcriptome of

N. americanus (6.1%) as well as that of A. caninum (4.6%) (see

Table 2). These proteases included cysteine, aspartic and metallo-

proteases, which are known to function in multi-enzyme cascades

GO term GO code No. of Na EST clusters (%) No. of Ac EST clusters (%)

Zinc ion binding GO:0008270 287 (9.3) 214 (5.6)

DNA binding GO:0003677 242 (8.2) 121 (3.2)

Serine-type endopeptidase inhibitor activity GO:0004252 230 (7.8) 25 (0.7)

Nucleic acid binding GO:0003676 204 (6.9) 192 (5)

GTP binding GO:0005525 202 (6.8) 95 (2.5)

Calcium ion binding GO:0005509 169 (5.8) 79 (2)

Electron carrier activity GO:0009055 140 (4.7) 59 (1.5)

Heme binding GO:0020037 134 (4.5) 17 (0.4)

RNA binding GO:0003723 124 (4.2) 90 (2.3)

Iron ion binding GO:0008270 123 (4.2) 18 (0.5)

Nucleotide binding GO:0000166 113 (3.8) 138 (3.6)

Aspartic-type endopeptidase activity GO:0004190 101 (3.4) 27 (0.7)

Sugar binding GO:0005529 99 (3.4) 18 (0.5)

Transcription factor activity GO:0003700 98 (3.3) 47 (1.2)

doi:10.1371/journal.pntd.0000684.t003

Table 3. Cont.

Figure 1. Simitri analysis. Relationships of proteins predicted for Necator americanus with homologues from Ancylostoma caninum and
Caenorhabditis elegans, displayed in a SimiTri plot [44]. The description of proteins with most abundant InterPro domains identified in each similarity
group is given in the boxes.
doi:10.1371/journal.pntd.0000684.g001
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to digest haemoglobin and other serum proteins [65,66]. In N.

americanus, cysteine proteases with high sequence homology to the

protein cathepsin B were localized to the gut of adult worms and

the corresponding mRNAs shown to be upregulated in the adult

stage compared with the infective L3 stage, thus strongly

suggesting that these enzymes are involved in blood-feeding

[67]. In A. caninum, a cysteine protease (Ac-CP-1) with 86% amino

acid sequence identity to those characterized in N. americanus, was

shown to be expressed in the cephalic and excretory glands [68]

and was detected in the excretory/secretory products (ES) [69] of

adult worms; thus, it has been proposed that Ac-CP-1 functions as

an extracorporeal digestive enzyme at the site of attachment [67].

Another cysteine protease (Ac-CP-2) was localized to the brush

border membrane of the intestine and demonstrated to be

involved in the digestion of haemoglobin [65]. The N. americanus

homologue of Ac-CP-2 (i.e. Na-CP-2) digests haemoglobin [66]

and, expressed as a recombinant protein in Escherichia coli and

injected subcutaneously into experimental hamsters, has been

shown to induce a significant reduction in adult worm burden

following challenge infection with L3s of N. americanus [28],

suggesting that the immunogenic response directed against this

protein severely impairs the digestion of host proteins by the adult

worms. However, recently, a cathepsin-like cysteine protease has

been isolated and characterized in the human filarial nematode

Brugia malayi and shown by double-stranded RNAi to play an

essential role in the early development and maturation of embryos

of this nematode [70]. Therefore, it is possible that the abundant

transcripts encoding proteases in both adult N. americanus and A.

caninum also reflect a key role of these enzymes in embryogenesis.

Proteases have also been isolated from larval stages of both A.

caninum and N. americanus [71,72]. For instance, a metalloprotease

in ES of the activated third-stage larvae (L3) of A. caninum has been

characterized and demonstrated to be released specifically in

response to stimuli that induce feeding [73]. The corresponding

cDNA, isolated from an L3 expression library, encoded a zinc-

metalloprotease (Ac-MTP-1) of the astacin family, that has been

proposed to (i) regulate developmental changes associated with the

transition from the free-living to the parasitic L3 and the

subsequent moult to the fourth-stage larva (L4) [72]; (ii) activate

host TGF-ß during the infection, which, in turn, could stimulate

parasite development directly, determine tissue predilection sites

[74] and/or inhibit neutrophil infiltration at the site of penetration

[75]; and, (iii) facilitate skin penetration or tissue migration by the

invading L3 [72,76] and/or degrade the cuticular proteins of the

sheath surrounding the infective, free-living L3 [77]. In N.

americanus, serine proteases have been isolated from ES of the L3

stage and proposed to play a central role in the evasion of the host

immune response [71]. Interestingly, a significant number

(n = 135, 30%) of N. americanus proteases and protease inhibitors

of N. americanus were not predicted to possess signal peptides

indicative of secretion (cf. Tables 1 and 2). The likely explanation

for this result is technical and would appear to relate to a 39-bias in

sequence reads [78], thus affecting the prediction of ORFs as well

as the identification of signal peptide sequences at the 59-ends.

Other groups of molecules, such as Ancylostoma-secreted proteins

(ASPs), have been proposed to have an immunomodulatory

function during the invasion of the host, the migration through

tissues, attachment to the intestinal wall and blood-feeding [79]. In

the present study, ASPs were amongst the ten most abundant

groups of molecules in the N. americanus dataset, and are most

abundant in A. caninum (cf. Table 2). ASPs belong to a large group

of proteins, the ‘sperm-coating protein (SCP)-like extracellular

proteins’, also called SCP/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS;

Pfam accession number no. PF00188), characterized by the

presence of a single or double ‘SCP-like extracellular domain’

(InterPro: IPR014044). In A. caninum, double and a single SCP-

domain ASPs, called Ac-ASP-1 and Ac-ASP-2, respectively, were

identified as major components of ES from serum-activated,

infective L3s and proposed to be secreted in response to one or

more host-specific signals during the infection process [80,81], as

also hypothesized in a transcriptomic analysis of serum-activated

L3s [19]. In N. americanus, homologues of Ac-ASP-1 and Ac-ASP-2

(i.e Na-ASP-1 and Na-ASP-2, respectively) have been identified in

the L3 stage [82–84]. Results from crystallography [85], combined

with the observation that Na-ASP-2 induces neutrophil and

monocyte migration [86], suggest that this molecule has a role

as an antagonistic ligand of complement receptor 3 (CR3) and

alters the immune cascade by preventing the binding of

chemotaxin [85]. Because of its immunogenic properties, Na-

ASP-2 is under investigation as a vaccine candidate against

necatoriasis [7,28,81,87]. In adult A. caninum, at least four other

ASPs have been identified to date and named Ac-ASP-3, Ac-ASP-

4, Ac-ASP-5 and Ac-ASP-6 [72]. Another SCP/TAPS molecule,

designated neutrophil inhibitor factor (NIF), has been isolated and

shown to play an immunomodulatory role by blocking the

adhesion of activated neutrophils to vascular endothelial cells

and the subsequent release of H2O2 from activated neutrophils

[88] and by interfering with the function of integrin receptors

located on the cell surface, which results in the inhibition of

platelet aggregation and adhesion [89]. Subsequently, NIF was

shown to be transcribed abundantly in the intestines of both A.

caninum and N. americanus [34]. The present study revealed that,

although highly represented in the transcriptome of adult N.

americanus, ASPs were much more abundant in A. caninum (cf.

Results section). One of the possible explanations for this finding is

that, although the A. caninum dataset was generated from adult

worms recovered from their natural host (i.e. dog), the specimens

of N. americanus were recovered from a Chinese strain of the golden

hamster (M. auratus), which is not a natural host for this parasite

[90,91]. Indeed, adults of N. americanus recovered from hamsters

with patent infections are smaller and less fecund than from the

human host [91]. These phenetic differences in this parasite might

be associated with variation in transcriptional profiles. However,

the difference in prevalence of particular transcripts, such as those

of asps, between A. caninum and N. americanus might reflect their

distinct roles in the modulation of the host immune response

between the two hookworms, an hypothesis that requires testing.

A benefit of investigating the transcriptome of parasitic

nematodes using predictive algorithms is that potential drug

targets can be inferred and/or prioritized. The present study

identified a subset of 278 ‘druggable’ proteins, of which 18 did not

match any human homologues (cf. Results section). Of these 18

molecules, mitochondrial-associated proteins were significantly

represented (i.e. encoded by the C. elegans orthologues W01a8.4,

ucr-1, F26E4.6 and Y71H2aM.4; cf. Table 4). Mitochondria are

essential organelles with central roles in diverse cellular processes,

such as apoptosis, energy production via oxidative phosphoryla-

tion, ion homeostasis, and the synthesis of haeme, lipid, amino

acids, and iron-sulfur ions [92]. In C. elegans, defects in the

mitochondrial respiratory chain lead to or are associated with a

wide variety of abnormalities, including embryonic, larval and

adult lethality, sterility and embryonic defects [92]. Despite their

essential roles in numerous fundamental biological processes,

knowledge of mitochondrial genes and proteins in parasitic

nematodes has been utilized mainly to study their systematics,

population genetics and ecology [93–95]. However, that some

mitochondrial-associated proteins are predicted to be essential in

N. americanus and significantly different from human homologues
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provides a context for the discovery of new drug targets in

mitochondrial pathways and chemical compounds that disrupt

these pathways [95,96]. Amongst the other N. americanus

orthologues of essential C. elegans genes, nrs-2 encodes an

asparaginyl-tRNA synthetase (AsnRS), which is a class II

aminoacyl-tRNA synthetase that catalyzes the attachment of

asparagine to its cognate tRNA and is required for protein

biosynthesis [97]; loss of nrs-2 function via RNAi has been shown

to result in a number of phenotypes, including adult and larval

lethality and/or larval arrest [97]. In parasitic nematodes,

information on amino acid biosynthesis is limited [98]. Although

a number of parasitic helminths, including the nematode

Heligmosomoides polygyrus [sic. H. bakeri] and the trematode Fasciola

hepatica, have been reported to excrete asparagine during in vitro

incubation [99,100], the role of asparagine synthetases in essential

biological processes is currently unknown. However, in a study

investigating the molecular mechanisms of induced cell differen-

tiation in human pro-myelocytic leukemia, asparagine synthetase

transcription was reported to be significantly reduced in maturing

monocytes/macrophages [101]; therefore, an active role of

asparagine synthetases in the development and growth of cancer

cells has been suggested, which led to the hypothesis that the

induction of a down-regulation of asparagine synthetases might be

a new strategy for the treatment of blast cell leukaemia [102]. This

finding raises questions about the role(s) of asparagine synthetases

in cell differentiation and maturation in parasitic nematodes and

the potential of inhibitors of these enzymes as anti-hookworm

drugs.

The present study has provided new insights into the

transcriptome of N. americanus, elucidated similarities and differ-

ences between the transcriptomes of N. americanus and the related

canine hookworm, A. caninum, and predicted a panel of novel drug

targets and nematocides. All except one of the essential ‘druggable’

proteins (n = 18) inferred for N. americanus were present in the A.

caninum (and C. elegans) but not in the mammalian hosts, suggesting

relative sequence conservation for these targets among nematodes.

The prediction of such targets is particularly important, consid-

ering the risk of emerging drug resistance in parasitic nematodes

[102,103]. Clearly, transcriptomic and genomic studies, such as

that carried out here can facilitate and expedite the prevalidation

of targets for nematocidal drugs, although the lack of genomic and

transcriptomic data for many nematodes, including the human

hookworm A. duodenale, impairs the comparative exploration of

essential biological pathways in parasitic nematodes of major

public health significance [6]. Furthermore, the present analysis

has inferred qualitative and quantitative differences in the

transcriptome between N. americanus and A. caninum, raising

questions as to the suitability of the latter species as a model for

the former. Although these differences require experimental

validation, there is a need to define the transcriptome of A.

duodenale as a foundation for comparative investigations with a

perspective on the identification of new and hookworm-specific

drug targets.
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35. Conesa A, Götz S, Garcı́a-Gómez JM, Terol J, Talón M, et al. (2005)

Blast2GO: a universal tool for annotation, visualization and analysis in

functional genomics research. Bioinformatics 21: 3674–3676.

36. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, et al. (2009)

InterPro: the integrative protein signature database. Nucleic Acids Res 37:

D211–D215.

37. Wu J, Mao X, Cai T, Luo J, Wei L (2006) KOBAS server: a web-based

platform for automated annotation and pathway identification. Nucleic Acids

Res 34: W720–W724.

38. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of

prokaryotic and eukaryotic signal peptides and prediction of their cleavage

sites. Prot Eng 10: 1–6.

39. Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by

a hidden Markov model. Proceedings of the Sixth International Conference on

Intelligent Systems for Molecular Biology (ISMB 6), AAAI Press, Menlo Park,

California. pp 122–130.

40. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction

of signal peptides: SignalP 3.0. J Mol Biol 340: 783–795.

41. Sonnhammer ELL, von Heijne G, Krogh A (1998) A hidden Markov model for

predicting transmembrane helices in protein sequences. Proceedings of the

Sixth International Conference on Intelligent Systems for Molecular Biology,

Menlo Park, CA, AAAI; pp 175–182.

42. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting

transmembrane protein topology with a hidden Markov model: application to

complete genomes. J Mol Biol 305: 567–580.

43. Moller S, Croning MDR, Apweiler R (2001) Evaluation of methods for the

prediction of membrane spanning regions. Bioinformatics 17: 646–653.

44. Parkinson J, Blaxter M (2003) SimiTri–visualizing similarity relationships for

groups of sequences. Bioinformatics 19: 390–395.

45. Lee I, Lehner B, Crombie C, Wong W, Fraser AG, et al. (2008) A single gene

network accurately predicts phenotypic effects of gene perturbation in

Caenorhabditis elegans. Nat Genet 40: 181–188.

46. Lipinski C, Lombardo F, Dominy B, Feeney P (1997) Experimental and

computational approaches to estimate solubility and permeability in drug

discovery and development settings. Adv Drug Deliv Rev 23: 3–25.

47. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov

1: 727–730.

48. Robertson JG (2005) Mechanistic basis of enzyme-targeted drugs. Biochemistry

44: 5561–5571.

49. Chang A, Scheer M, Grote A, Schomburg I, Schomburg D (2009) BRENDA,

AMENDA and FRENDA the enzyme information system: new content and

tools in 2009. Nucleic Acids Res 37: D588–D592.

50. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, et al. (2003) Systemic

functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:

231–237.
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