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Abstract

Background: Brucea javanica (B. javanica) seeds, also known as “Melada pahit” in Indo-Malay region are traditionally
used to treat diabetes. The objective of this study was to determine antidiabetic, antioxidant and anti-inflammatory
effects of B. javanica seeds on nicotinamide (NA)-streptozotocin (STZ) induced type 2 diabetic (T2D) rats and to
analyze its chemical composition that correlate with their pharmacological activities.

Methods: A hydroethanolic extract of B. javanica seeds was fractionated with n-hexane, chloroform and ethyl
acetate. An active fraction was selected after screening for its ability to inhibit a-glucosidase and glycogen
phosphorylase a (GP-q). Isolation and characterization were carried out by using column chromatography, NMR and
LCMS/MS. All isolates were assayed for inhibition of GP-a and a-glucosidase. Antidiabetic effect of active fraction
was further evaluated in T2D rat model. Blood glucose and body weight were measured weekly. Serum insulin,
lipid profile, renal function, liver glycogen and biomarkers of oxidative stress and inflammation were analyzed after
4-week treatment and compared with standard drug glibenclamide.

Results: Ethyl acetate fraction (EAF) exerted good inhibitory potential for a-glucosidase and GP-a compared with
other fractions. Chromatographic isolation of the EAF led to the identification of seven compounds: vanillic acid (1),
bruceine D (2), bruceine E (3), parahydroxybenzoic acid (4), luteolin (5), protocatechuic acid (6), and gallic acid (7).
Among them, Compound (5) was identified as the most potent inhibitor of GP-a and a-glucosidase and its GP-a
inhibitory activity (ICsq=45.08 uM) was 10-fold higher than that of caffeine (ICso =457.34 uM), and a-glucosidase
inhibitory activity (ICsq=26.41 uM) was 5.5-fold higher than that of acarbose (ICsy = 145.83 uM), respectively.
Compounds (4), (6), and (7) inhibited GP-a activity in a concentration-dependent manner with ICsy values of 357.88,
297.37,and 21438 uM, and their inhibitory effect was higher than that of caffeine. These compounds exhibited
weak potency on a-glucosidase compared with acarbose. Compounds (1), (2), and (3) showed no inhibition on
both GP-a and a-glucosidase. In vivo study showed that EAF treatment significantly reduced blood glucose level,
increased insulin and glycogen contents, decreased markers of oxidative stress and inflammation, and lipid levels in
T2D rats compared with untreated group.

Conclusions: The EAF has potential therapeutic value for the treatment of T2D via acting as GP-a and a-glucosidase
inhibitors by improving hepatic glucose and carbohydrate metabolism, suppressing oxidative stress, and preventing
inflammation in T2D rats. According to the results, the efficacy of EAF could be due to the presence of luteolin along
with synergistic effect of multiple compounds such as parahydroxybenzoic acid, protocatechuic acid, and gallic acid in
B. javanica seeds.
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Background

Type 2 diabetes (T2D) is a metabolic dysfunction char-
acterized by hyperglycemia resulting from insulin resist-
ant and (-cell dysfunction. T2D affected 382 million
people globally in 2013, and it is estimated to rise up to
592 million by 2035 [1]. The current therapy of T2D
aims to control hyperglycemia within normal level (be-
tween 4.4 to 7.2 mmol/L) and prevent the progression of
its related complications [2]. Strategies to control T2D
can be achieved by use of oral agents that acts with dif-
ferent mechanisms such as insulin secretagogues and
sensitizers [3], inhibitors of dipeptidyl peptidase IV
(DPP-1V) [4], a-glucosidase [5], SGLT2 [6], and glycogen
phosphorylase o (GP-a). Monotherapy or combination
treatments with oral agents improve management of
hyperglycemia in the early stage of therapy, but fail to
reach target glycemic control in long-term [7-9]. Other
ways of controlling T2D is pancreas and islet transplant-
ation. The evidence showed that the function of B-cell is
progressively declined after a few years of islet trans-
plantation. As a result, most diabetic patients have to re-
vert to oral anti-diabetic agents and insulin treatment,
or a combination of both within a few years [10].

Several studies reported that oxidative stress has a direct
link to the pathogens of diabetes that lead to insulin resist-
ant, B-cell dysfunction, and impaired glucose tolerance in
hyperglycemic subjects [11, 12]. It is also directly linked to
protein damage and diabetic vascular complications such
as cardiomyopathy, retinopathy, nephropathy, and neur-
opathy [13, 14]. Among them, diabetic cardiomyopathy
was found to be associated with increased accumulation
of ROS in T2D [15]. It was also reported that oxidative
stress is involved in cytokine-mediated inflammation in
T2D [16]. Therefore, potential therapeutic agents that im-
prove the efficiency in controlling T2D and retard its re-
lated complications are urgently needed.

The genus Brucea consisting of six species is a member
of the Simaroubaceae family and believed to have origi-
nated in tropical Africa and tropical Asia. It is a dominant
species in this genus, and most commonly found in Ma-
laya Peninsula [17]. The compounds isolated from this
species showed wide spectrum of biological effects [18]
and gained increasing interest for further study. Bruceine
D and E, isolated from B. javanica seeds, exhibited blood
glucose lowering effect in both nondiabetic mice and
STZ-induced diabetic rats at lower dose (1 mg/kg b.w.)
during 0-8 h screening [19]. However, chemical entities re-
sponsible for potential inhibitory effect of this plant
against GP-a and a-glucosidase enzymes are yet to be
identified. Therefore, this study reports the effect of frac-
tions from B. javanica seed extracts for GP-a and o-
glucosidase inhibition to select the most potent inhibitor
and evaluates antihyperglycemic, anti-inflammatory, and
antioxidant activities of active fraction in T2D rats.
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Methods

Chemicals

Nicotinamide (NA), streptozotocin (STZ), p-nitrophenyl
a-D-glucopyranoside (pNPG), and a-glucosidase were
purchased from Sigma-Aldrich®, St. Louis, MO, USA.
Rat TNF-q, rat IL-6, and rat IL-13 ELISA kits were pur-
chased from eBioscience (San Diego, CA USA). Rat insu-
lin ELISA kit was purchased from Mercodia AB
(Uppsala, Sweden). TBARS, Glutathione, and Glycogen
assay kits were purchased from Cayman chemical com-
pany (Ann Arbor, MI, USA). All of the other chemicals
are analytical grade purchased from Sigma and Merck
Chemical Co.

Sample collection, extraction and fractionation

The seeds of wild grown B. javanica were collected from
Bukit Tampin Reserved Forest (2.495 N, 102.201E), Tam-
pin, Negeri Sembilan, Malaysia, during the month of
November. Botanical identification of the sample was
performed by comparing with a voucher specimen avail-
able in the University of Malaya botanical garden and it
was further confirmed by Teo Leong Eng from Depart-
ment of Chemistry, Faculty of Science, University of Ma-
laya. A voucher specimen (KL5794) was kept at the
herbarium, faculty of Science, University of Malaya. The
seeds were dried in an oven and grinded. The powdered
B. javanica seed was extracted with 95% ethanol and
partitioned with solvents of different polarities as de-
scribed previously [20].

GP-a and a-glucosidase inhibition assay

The fractions from B. javanica seeds were evaluated as
GP-«a inhibitors [20] and were further tested for their a-
glucosidase inhibitory activity as described previously
[21]. Briefly, 50 pL of samples or standard were mixed
with 100 pL of a-glucosidase (0.1 U/mL) in phosphate
buffer (0.1 M, pH 6.9) and incubated at 37 °C for
10 min. The reactions were initiated by addition of p-Ni-
trophenyl a-D-Glucoside (p-NPG, 50 pL) in phosphate
buffer (0.1 M, pH 6.9) and incubated again at 37 °C for
30 min. The reactions were terminated using NaCOj3
(1 M, 50 pL). The p-nitrophenol released from p-NPG in
the presence of a-glucosidase was detected at 405 nm
using microplate reader (Sunrise, Austria). Phosphate
buffer (50 pL) was used as control. Blank readings (with-
out substrate) were subtracted from specific sample
wells and the percentage of a-Glucosidase inhibition
(aGI) was calculated as following formula: oGI (%)
= [(Acontrol - Asample)/Acontrol] x 100 [22]'

Isolation and structure determination

Column chromatography

The EAF (7.6 g) was loaded onto a column packed with
silica gel (0.40-0.63 uM, Merck Germany). Gradient
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elution was performed using n-hexane and DCM
(90:10-0:100) followed by DCM and MeOH (100:0—
70:30) as mobile phase. All fractions were concentrated,
monitored by TLC, and visualized under UV light. Total
91 fractions were collected and the fractions with similar
R¢ values were pooled together to afford twelve fractions
(F1-F12). F1 appeared as white crystals which showed a
single spot on TLC and yield compound 1 (12 mg). F7
and F9 identified as light yellow powder to yield com-
pound 2 (45 mg) and 3 (56 mg). F3 was subjected to
Sephadex LH20 column, eluted with DCM and MeOH
(65:35 — 55:45) to get 40 fractions. Fractions 29-35 were
combined and dried to get compound 4 (199 mg).
Sephadex LH20 column of F5, eluted with DCM and
MeOH (65:35 — 45:55), yielded 35 fractions. Fractions
22-27 were combined to get compound 5 (9 mg). F6
was fractionated in the same fashion as above to afford
36 fractions. Fraction 27 showed a single spot on TLC
and dried to yield compound 6 (53.8 mg). Sephadex
LH20 column of F8 using DCM and MeOH (60:40 —
20:80) vyielded 50 fractions. Upon drying, fraction 20
gave rise to crystals showing single spot on TLC and
designated as compound 7 (7.6 mg).

Nuclear magnetic resonance (NMR)

1D- (*H, ¥C & DEPT) and 2D-NMR (COSY, HSQC,
HMBC, NOESY) spectra were recorded in deuterated
pyridine (CsDsN) and deuterated methanol (CD3;OD)
using Bruker Avance III 400 NMR spectrometer. Chem-
ical shifts (8) were expressed in ppm and coupling con-
stants (/) were given in Hz.

HPLC-MS analysis

The HPLC-MS system consisted of an Agilent 6530
Q-TOF MS equipped with Dual AJS ESI as the ion
source and coupled to an Agilent 1200 HPLC system.
The HPLC system was equipped with a binary pump,
an auto plate-sampler, and a thermostatically con-
trolled column compartment. Chromatographic separ-
ation was carried out using an Agilent Zorbax Eclipse
Plus C18 column Rapid Resolution HT (2.1 x1 mm,
1.8 pm). The mobile phase (solvent A, 0.1% formic
acid in water; solvent B, 0.1% formic acid in ACN)
was eluted at a flow rate of 0.5 mL/min. The elution
was gradient (0 min, 90% A, 1 min, 90% A, 20 min,
50% A, 24 min, 50% A, 25 min, 90% A, 30 min, 90%
A). The total run time was 30 min, and the injection
volume was 10 pL.

Determination of GP-a and a-glucosidase inhibition
activities of isolated compounds

a-glucosidase inhibition activity of isolated compounds
were determined according to the method described in
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section 2.3 and GP-a inhibition activity was measured
according to our previously reported method [20].

In vivo anti-diabetic activity

Experimental animals

Sprague Dawley (SD) rats of both sexes were obtained
from Animal Experimental Unit of the University of
Malaya where they were bred and housed according to
Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health (USA). The animal protocol
performed in this study was approved by the Institutional
Animal Care and Use Committee at the University of
Malaya. Ethic No: ISB/23/05/2013/AA (R).

Total 30 SD rats (eight-week-old, 200-230 g) were dived
into 5 groups (n =6, 3 male and 3 female in each group)
and were housed in cages under standard laboratory con-
ditions with al2-h dark-light cycle and humidity-
controlled environment with a room temperature of 22 +
3 °C and relative humidity of 65+5%. The rats were
allowed access to Laboratory Rodent Chow and drinking
water ad libitum and were received human care according
to the guidelines.

Induction of type 2 diabetes (T2D)

The experimental rats were fasted overnight (16 h) and
diabetes was induced by single intraperitoneal (i.p) injec-
tion of STZ (60 mg/kg b.w.) freshly prepared in 0.1 M
citrate buffer (pH 4.5) 15 min after i.p injection of NA
(100 mg/kg b.w.) dissolved in normal saline. Diabetes
was confirmed 3 weeks after NA-STZ induction by
measuring tail vein blood glucose levels using glucose
meter (Accu-check Performa, Rochi diagnostic, USA).
The rats having blood glucose levels higher than
11 mmol/L were considered as diabetic and selected for
study [23].

Treatment protocol

The experimental rats were divided into 5 groups (n
=6; 3 M/3 F) as following. Group I: non-diabetic
control (NDC) and Group II: diabetic control (DC)
consisted of rats were allowed to free access of water;
Group III and IV were treated orally with EAF (25
and 50 mg/kg/day b.w.) diluted in distilled water,
Group V was treated orally with Glibenclamide
(10 mg/kg/day b.w.) and served as standard drug. All
groups except group 1 are diabetic. The selected
doses (25 and 50 mg/kg/day b.w) were based on prior
acute oral toxicity study [20].

Determination of fasting blood glucose levels and body
weights

After diabetes was confirmed, rats were divided into
specific groups which were mentioned in the section
of treatment protocol above. Fasting blood glucose
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(FBG) levels and body weight of rats were measured
and it was considered as 0 day. The extracts and
standard drug were administered orally on a daily
base in single dose for 28 days. At the end of each
week, animals were fasted overnight and body weights
were recorded using electronic balance. Blood samples
were obtained from the tail vein of the rats by Accu-
Chek FastClix lancing device and blood glucose levels
were analysed using glucose meter (Accu-check,
Roche Diagnostics, USA).

Oral glucose tolerance test (OGTT) in experimental rats

On the 25" day of treatment, the OGTT was carried
out according to the previously reported method [20].
All animals were fasted overnight (16 h) before com-
mencing the experiments. Group I (non-diabetic con-
trol) and Group II (diabetic control) weretreated with
distilled water, Group III and Group IV were given
EAF (25 and 50 mg/kg b.w), and Group V was given
glibenclamide (10 mg/kg b.w.) using oral gavage, re-
spectively. After 30 min, a-D-glucose (2 g/kg b.w.)
was administered orally into all groups of rats. Blood
samples were collected from the tail vein at 0 (imme-
diately after glucose load), 30, 60, 90, and 120 min,
and blood glucose levels were determined by glucose
oxidase method using a commercial glucose meter
(Roche, USA). Total glycemic responses to OGTT
were calculated from respective areas under the curve
for glucose (AUCgycose) by trapezoid rule for the
120 min.

C + G

AUCglucose = 9

X (tz— tl)

Where, C; and C, are concentrations of glucose at dif-
ferent time points; t; and t, are different tested time
points.

Collection of serum and tissue samples

At the end of study period, rats were fasted overnight,
anesthetized, and the blood sample was collected by car-
diac puncture. At the end, the rats were sacrificed by
cervical dislocation. The blood sample was centrifuged
2000 x g for 15 minute at 4 °C, serum was collected and
stored at —80 °C until analyses. The liver was carefully
removed, washed in ice-cold phosphate buffered saline
(PBS, pH 7.4) to remove the blood. A piece of liver sam-
ple was rinsed in liquid nitrogen, stored at —80 °C for
glycogen assay.

Determination of serum insulin levels

The serum insulin levels were quantified by using rat in-
sulin ELISA kit (Mercodia AB, Uppsala, Sweden) accord-
ing to the manufacturer’s instructions. Insulin resistance
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(IR) was calculated according to the homeostasis model
assessment by using the following equation [24]

HOMA-IR = [glucose(mmol/L) X insulin(pU/mL)]/22.5

Measurement of serum lipid profiles, renal, and liver
functions

The levels of serum total cholesterol (TC), triglycerides
(TG), low density lipoprotein cholesterol (LDL-C), and
high density lipoprotein cholesterol (HDL-C), total pro-
tein, alkaline phosphatase (ALP), alanine aminotransfer-
ase (ALT), aspartate aminotransferase (AST), urea,
creatinine were analyzed using automatic biochemical
analyzer (Beckman-700, Fullerton, CA, USA)

Determination of MDA and GSH levels in the serum

The malondialdehyde (MDA), a byproduct of lipid per-
oxidation, and glutathione (GSH), a marker of antioxi-
dant defense, were quantified by commercial kit
(Cayman chemical company, Ann Arbor, MI, USA) ac-
cording to the manufacturer’s instructions.

Determination of serum cytokine levels

The quantification of cytokine in the serum was assessed
by enzyme-linked immunosorbent assay (ELISA) using
commercial kits for rat TNF-«, rat IL-6, and rat IL-1p
(eBioscience, San Diego, CA USA) according to the
manufacturer’s instructions.

Measurement of liver glycogen contents

The glycogen contents in the liver were measured using
a glycogen assay kit (Ann Arbor, MI, USA) according to
the manufacturer’s instructions.

Statistical analysis

The results are expressed as mean + standard error (M +
SE) for six rats in each group. Statistical analysis was
performed using SPSS (16.0) software. The differences
between treated and untreated groups were assessed by
analysis of variance (ANOVA), followed by Tukey’s mul-
tiple comparison test. Statistical significance was defined
as p <0.05.

Results

GP-a and a-glucosidase inhibition activity

GP-a inhibitory EAF fraction [20] showed the best in-
hibition of a-glucosidase compared to other fractions.
As shown in Fig. 1, the EAF had the strongest o-
glucosidase inhibition effect with ICsy value of
483.93 pg/ml, whereas HF, ChF, and WF showed max-
imal inhibition of 17.07%, 9.89%, and 2.53% at the high-
est concentration tested, respectively. In comparison,
standard drug acarbose inhibited a-glucosidase activity



Ablat et al. BMC Complementary and Alternative Medicine (2017) 17:94

Page 5 of 14

—o— Acarbose —#—HF

80 -

70 -

50 A

30 A

a-glucosidase inhibition (%)

20 -

e

ChF —«EAF ——WF

0 T :

0 100 200

fraction. The values are shown in mean =+ SE (n=3)

Concentrations (pg/ml)

Fig. 1 a-glucosidase inhibition by B. javanica seed fractions. HF: hexane fraction; CHF: chloroform fraction; EAF: ethyl acetate fraction; WF, water
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(IC50 =118.73 pg/ml) and its potency was 4-fold higher
than that of EAF, respectively.

Characterization of isolated compounds from EAF by
LCMS and NMR

Phytochemical investigation of the bioactive fraction
(EAF) led to the isolation of seven compounds namely,
vanillic acid, bruceine D, bruceine E, para-hydroxybenzoic
acid, luteolin, protocatechuic acid and gallic acid (Fig. 2).
Among them, bruceine D, bruceine E, and para-
hydroxybenzoic acid were identified as the major constitu-
ents of EAF. The structures of the isolated compounds

were identified by a combination of mass spectrometry
and extensive 1D and 2D NMR experiments. It was fur-
ther confirmed by comparison of their spectroscopic data
with those reported in the literature.

Vanillic acid (1)

Compound 1 was isolated as colorless needle. Its mo-
lecular formula of CgHgO,4 was determined by HRESIMS
ion peak at m/z 167.09 [M-H] (caled for CgH,O,,
167.03). '"H NMR (400 MHz, CDs;OD): § 3.91 (3H, s,
OCH3-8), 4.90 (1H, brs, H-4), 6.85 (1H, d, H-5), 7.57
(1H, brs, H-2), 7.57 (1H, brs, H-6). *C NMR (100 MHz,

OH
? Ho
O OH

4 5
Fig. 2 The structure of isolated compounds from EAF of B. javanica seeds
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CDs;OD): § 55.0 (C-8), 1124 (C-2), 1144 (C-5), 121.7
(C-1), 123.9 (C-6), 147.3 (C-3), 151.3 (C-4), 168.8 (C-7).

Bruceine D (2)

Compound 2 was isolated as white amorphous powder.
Its molecular formula was determined to be CyyH550¢
on the base of its HRESIMS ion peak at m/z 411.3018
[M + H]" (caled for CygH,,Qg, 411.1655). See Table 1 for
'H NMR (400 MHz, CD;0D) and **C NMR (100 MHz,
CD;0D).

Bruceine E (3)

Compound 3, a white, amorphous powder, gave a mo-
lecular of CyyH»309 as determined by HRESIMS ion
peak at m/z 435.3028 [M + Na]" (caled for CyoH,509Na,
435.1631). See Table 1 for *H NMR (400 MHz, CD;0D)
and *C NMR (100 MHz, CD;0OD).

Para-hydroxybenzoic acid (4)

Compound 4, a white, amorphous powder, gave a mo-
lecular of C;HgO3 as determined by HRESIMS ion peak
at m/z 137.00 [M-H]~ (caled for C;H50s, 137.02). 'H
NMR (400 MHz, CD30D): § 7.90 (2H, d, J = 14 Hz, H-2,
H-6), 6.83 (2H, d, /=14 Hz, H-3, H-5). *C NMR
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(100 MHz, CD3;0OD): § 114.6 (C-3, C-5), 121.3 (C-1),
131.6 (C-2, C-6), 162.0 (C-4), 168.7 (C-7).

Luteolin (5)

Compound 5 was isolated as a yellow, amorphous pow-
der. Its molecular formula was determined to be
Ci5H1006 on the base of its HRESIMS ion peak at m/z
285.10 [M-H]™ (caled for C;5sHoOg, 285.04). 'H NMR
(400 MHz, CD5;0OD): 6 6.23 (1H, s, H-6), 6.46 (1H, s, H-
8), 6.56 (1H, s, H-3), 6.92 (1H, d, ] = 8.4 Hz, H-5"), 7.39
(1H, s, H-2"), 7.40 (1H, d, /= 8.4 Hz, H-6"). *C NMR
(100 MHz, CD30OD): § 93.6 (C-8), 98.7 (C-6), 102.5 (C-
3), 103.9 (C-10), 112.8 (C-2"), 115.4 (C-5"), 118.9 (C-6"),
122.3 (C-1'), 145.6 (C-3'), 149.6 (C-4'), 158.0 (C-5),
161.8 (C-9), 164.4 (C-2), 165.0 (C-7), 182.5 (C-4).

Protocatechuic acid (6)

Compound 6, a white, amorphous powder, gave a mo-
lecular of C;HgO, as determined by HRESIMS ion peak
at m/z 153.00 [M-H]™ (calcd for C;H50,, 153.01). 'H
NMR (400 MHz, CD;OD): § 6.82 (1H, d, J= 8.2 Hz, H-
5), 7.45 (1H, dd, ] = 14 Hz, 2.0 Hz, H-6).7.46 (1H, d, ] =
2.0 Hz, H-2), "*C NMR (100 MHz, CD3;0D): § 114.4 (C-
5), 116.3 (C-2), 121.7 (C-1), 122.5 (C-6), 144.7 (C-),
150.1 (C-, 168.9 (C-7).

Table 1 'H (400 MHz) and ">C (100 MHz) NMR data of bruceine D in CD;0D

Position Bruceine D Bruceine E
o Oc o Oc

1 426 (1H, s) 81.6 354 (1H,d 7.3) 814
2 1985 401 (1H, dd 13,723) 728
3 6.05 (1H, s) 1238 541 (1H,d 1.3) 1238
4 164.3 1353
5 296 (1H, d) 430 242 (1H,d 12.8) 424
6 2.38 (1H, dt), 1.85 (1H, td) 27.3 2.17 (1H, dt 2.8), 1.70 (1H, td) 27.2
7 512 (1H, O 79.8 508 (1H,t 2.7) 80.6
8 493 496
9 242 (1H, d) 448 208 (1H, d 4.2) 459
10 448 44.0
" 4.60 (1H, d) 74.1 460 (1H, d 44) 744
12 3.78 (1H, brs) 80.0 3.76 (1H, brs) 79.8
13 83.6 834
14 81.0 81.0
15 524 (1H, s) 69.3 515 (1H, s) 69.2
16 1749 175.0
18 1.99 (3H, s) 212 167 3H, s) 19.7
19 119 (3H, s) 10.1 1.24 3H, s) 10.8
20 4.54 (1H, ), 3.84 (1H, d) 69.0 463 (1H,d 7.3),383 (1H,d 7.3) 69.4
21 144 (3H, s) 17.1 143 (3H, s) 17.0

Chemical shifts are in ppm. Coupling constants in the parentheses are in Hz
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Gallic acid (7)

Compound 7 was isolated as colorless needle. Its molecu-
lar formula of C;HgO5 was determined by HRESIMS ion
peak at m/z 169.07 [M-H]™ (calcd for C;H50s, 169.01). 'H
NMR (400 MHz, CsDsN): & 8.08 (2H, s, H-2, H-6), °C
NMR (100 MHz, C5D;N): 6 110.3 (C-2, C-6), 122.7 (C-1),
140.3 (C-4), 147.4 (C-3, C-5), 169.4 (C-7).

GP-a and a-glucosidase inhibition activity of isolated
compounds

The isolated compounds from B. javanica seeds were
tested for a-glucosidase and GP-a inhibition activity in
vitro and results are summarized in Table 2. Compound
5 was found to be the most potent inhibitor of GP-a
and a-glucosidase, and its GP-a activity (ICso=
45.08 uM) was 10 times more potent than that of stand-
ard GP-a inhibitor caffeine (IC5q=457.34 pM), and its
a-glucosidase inhibitory activity (ICs50=26.41 uM) was
5.5 times more potent than that of acarbose (ICso=
145.83 pM). Compounds 4, 6, and 7 are phenolic deriva-
tives of benzoic acid. Interestingly, it can be observed
that the increased number of hydroxyl substituent on
the skeleton of benzoic acid significantly increased po-
tency of those compounds against GP-a and «-
glucosidase. Compound 1, which is a direct structural
analogue of para-hydroxybenzoic acid (4) without the
methoxy group, showed little to no inhibition (22.91%)
of GP-a at 12 mM, and did not inhibit a-glucosidase at
the concentrations tested up to 6 mM, suggested that
the methoxy functionality in compound 1 was influential
on its biological activity. Compounds 2 and 3 exhibited
very weak inhibitory activity against both GP-a (19.88%
and 32.74%) at 5 mM and «-glucosidase (14.74% and
16.14%) at 2.5 mM.

Effect of EAF in type 2 diabetic rats

Effect of EAF on fasting blood glucose levels
Antihyperglycemic activity of EA fraction from B.
javanica seeds was evaluated on T2D rat model. As
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Table 3 show, FBG levels was significantly (p <0.05)
elevated in DC group compared to non-diabetic con-
trol group. Treatment with EAF (25 and 50 mg/kg
b.w.) and GLI (10 mg/kg b.w.) in T2D rats, once a
day for 28 days, caused significant reductions in FBG
levels compared to initial day. The reduction of FBG
levels for EAF (25 and 50 mg/kg b.w.) and GLI
(10 mg/kg b.w.) treated T2D rats were 29.78, 44.77,
and 45.44%, respectively, compared to initial day of
the respective groups. There was no significant dif-
ference for FBG levels in NDC rats throughout the
experimental period.

Effect of EAF on body weights

The effect of EAF from B. javanica seeds and GLI on
body weight in experimental rats was summarized in
Table 4. During the four-week study period, rats in NDC
group continued to gain weight by 33.26%, whereas DC
group continuously loss weight (18.91%) due to STZ
toxicity compared to the initial day. Treatment with
EAF and GLI prevented weight loss in diabetic rats and
there was no significant decrease in the body weight of
animals after four weeks of treatment when compared
with 0 day.

Effects of EAF on OGTT

Results in Fig. 3 (a and b) show the effect of EAF on
T2D rat during OGTT. Blood glucose in all groups were
elevated at 30 min time point post glucose load, and
then gradually declined following hours. At 120 min,
blood glucose levels were significantly (p <0.05) reduced
to 30.26%, 32.46%, and 29.97% after treated with EAF
(25 and 50 mg/kg) and GLI when compared to the
values at 30 min (Fig. 3a). Further estimation of AUC for
glucose at 0 to 120 min showed that degrease of glucose
concentration was 32.82%, 43.54%, and 57.42% for EAF
(25 and 50 mg/kg) and GLI groups, respectively when
compared to DC group (Fig. 3b).

Table 2 GP-a and a-glucosidase inhibition activities of isolated compounds from B. javanica seeds

Compounds Glycogen phosphorylase a (ICso = uM) a-glucosidase(ICsp = uM)
Vanillic Acid ND' ND'

Bruceine D ND? ND?

Bruceine E ND? ND?
Para-hydroxybenzoic acid 357.88+0.07 649.07 £0.29

Luteolin 4508 +0.04 2641 +0.04
Protocatechuic acid 29737+0.13 368.74+0.13

Gallic acid 21438+0.12 277.04+0.12

Acarbose 145.83 £0.03

Caffeine 45734 +0.05

'ND: ICs, values were not determined at the concentrations below 6 mM (a-glucosidase) and 12 mM (GP-a)
2ND ICs values were not determined at the concentrations below 2.5 mM (a-glucosidase) and 5 mM (GP-a)
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Table 3 Effects of EAF from B. javanica seeds on fasting blood glucose levels in T2D rats

Groups Fasting blood glucose level (mmol/L)

0 Day Day 7 Day 14 Day 21 Day 28
NDC 438+0.28 447 +038 4.28+0.23 423+0.10 4.17+0.12
DC 12.83+0.95 1395+0.77 1622+1.19 1933+ 145 22.25+197°
D+ EAF25 1343 +1.01 1325+ 1.09 1213171 10.98 £ 1.56 943+1.12°
D +EAF50 1425+ 093 12.65+067 11.02+ 059 8.82+£0.67 7.87+1.15°
D+aGL 1690+ 1.63 1763+213 1297 +0.72 11.83+1.27 922 +065°

The results are expressed as mean + SE (n = 6). NDC non-diabetic control, DC diabetic control, D + EAF25 diabetic rats treated with ethyl acetate fraction 25 mg/kg
b.w., D + EAF50 diabetic rats treated with ethyl acetate fraction 50 mg/kg b.w., D + GL/ diabetic rats treated with glibenclamide 10 mg/kg b.w. The results are con-

sidered significant when p < 0.05
2Compared with 0 day

Effects of EAF on serum insulin levels

As shown in Fig. 4, serum insulin level was decreased
significantly (p < 0.05) in the diabetic control group com-
pared to non-diabetic control group. Treatment with
EAF at 50 mg/kg dose exhibited significant (p < 0.05) in-
crease of serum insulin by 23.7% compared to diabetic
control group. Treatment with EAF at 25 mg/kg dose
and GLI increased serum insulin levels by 10% and
16.5% respectively, and no significant (p > 0.05) changes
in the serum insulin levels were observed in these
groups compared to diabetic control group. Finally, EAF
treatment at 50 mg/kg dose exhibited slight higher activ-
ity than that of glibenclamide. In addition, HOMA-IR
levels in EAF treated groups were significantly improved
by 53.0% and 57.1% compared to the diabetic control
group (Fig. 5).

Effects of EAF on serum lipid profiles

As shown in Table 5, diabetic rats have shown a sig-
nificant elevation in TG (51.6%), TC (22.6%), and
LDL (40.2%), with a significant decrease in HDL
(65.7%) when compared with NDC group. Treatment
with EAF to diabetic rats at the dose of 25 mg/kg for
4 weeks significantly reduced serum TG, TC, and
LDL levels by 47.31%, 48.39%, and 49.43%, while
treated with EAF at the dose of 50 mg/kg, there was
significant reduction of serum TG (48.39%), TC
(47.10%), and LDL (55.17%) levels respectively as

compared with DC group. However, EAF (25 and
50 mg/kg) exhibited significant low TC levels, where
values of TC was 33.33% and 31.67% lower than
NDC group, respectively. Additionally, serum HDL
level was attenuated significantly (p <0.05) in DC rats,
and it was restored near to normal levels (NDC) after
treated with EAF (50 mg/kg). Treatment with EAF at
the dose of 25 mg/kg increased HDL level, but unable
to normalize it (p>0.05) when compared with NDC
group. By comparison, GLI improved serum lipid pro-
files in diabetic rats, and there was no significant (p >
0.05) changes in serum TG, TC, HDL, and LDL levels
when compared with NDC group.

Effects of EAF on renal and liver functions

As Table 6 shows, liver enzymes (ALP, ALT, and
AST) and urea were increased significantly (p < 0.05)
in DC group compared to the NDC group. Treatment
with EAF (50 mg/kg) and GLI significantly reversed
these alterations and there were no significant differ-
ence in the levels of liver enzymes and urea when
compared with NDC group. Treatment with EAF
(25 mg/kg) did not reduce ALT level to normal when
compared with NDC group. The creatinine levels
were not significantly (p >0.05) altered in STZ (DC),
EAF, and as well as GLI treated groups in comparison
with NDC group.

Table 4 Effects of EAF from B. javanica seeds on body weights in T2D rats

Groups Body Weight (g)

0 Day Day 7 Day 14 Day 21 Day 28
NDC 21400+ 10.78 236.83 744 25950+ 7.67 27217 £ 868 285.17 £881°
DC 23267 +7.37 22083 +7.64 21533+7.21 197.17+9.70 18867 + 7.54°
D+ EAF25 215.00+9.86 207.00£10.17 20367 £1043 198.17 +10.80 201.00 £ 9.86
D+ EAF50 222.83+10.88 21883 +1236 21683 +12.73 21667 £1248 21783 +£12.00
D+GL 211.00+£6.19 203.50£8.90 20583731 206.00 £ 6.64 20933791

The results are expressed as mean + SE (n = 6). NDC non-diabetic control, DC diabetic control, D + EAF25 diabetic rats treated with ethyl acetate fraction 25 mg/kg
b.w., D + EAF50 diabetic rats treated with ethyl acetate fraction 50 mg/kg b.w., D + GL/ diabetic rats treated with glibenclamide 10 mg/kg b.w. The results are

considered significant when p < 0.05
®Compared with 0 day
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Fig. 3 a Effects of EAF and GLI on oral glucose tolerance in experimental

b.w. The results represent the mean + SE for 6 rats in each group

treated with ethyl acetate fraction 25 mg/kg baw.; D + EAF50: diabetic rats treated with ethyl acetate fraction 50 mg/kg b.w.; D + GLI: diabetic rats
treated with glibenclamide 10 mg/kg b.w. The results represent the mean + SE for 6 rats in each group. b Area under curve for glucose (AUCyicose)
values for 0120 min after glucose load. NDC: non-diabetic control; DC: diabetic control, D + EAF25: diabetic rats treated with ethyl acetate fraction
25 mg/kg bw,; D + EAF50: diabetic rats treated with ethyl acetate fraction 50 mg/kg bw.; D + GLI: diabetic rats treated with glibenclamide 10 mg/kg

D+ EAF25 D+ EAF50 D+ GLI
rats. NDC: non-diabetic control; DC: diabetic control, D + EAF25: diabetic rats

Effects of EAF on MDA and GSH levels

Diabetic rats (DC) showed significant increase in
serum MDA level compared to NDC group (Fig. 6).
Treatment with EAF (25 and 50 mg/kg) resulted in
significant (p <0.05) reduction of serum MDA levels
by 42.94% and 51.56% respectively as compared to
the DC group, and the values of MDA in these
groups were reversed to nearly normal as compared
to the NDC group (p>0.05). The GSH level was sig-
nificantly decreased in the serum of DC group com-
pared to NDC group (Fig. 7). Significant increase in
serum GSH level was observed in EAF group treated
with higher dose (50 mg/kg) and increase of GSH
level was 38.70% compared with DC group. The
lower dose (EAF at 25 mg/kg) increased serum GSH
level by 13.80% compared to DC group, respectively.

Treatment with GLI exhibited a significant reduction
of about 36.45% of MDA level, but did not signifi-
cantly increase GSH level and there was about
18.94% increase of serum GSH level when compared
with DC group. By comparison, more effective
changes in both MDA and GSH activity were
observed with EAF treatment than with that of
glibenclamide.

Effects of EAF on serum cytokine levels

The serum pro-inflammatory cytokine (TNFa, IL-6,
and IL-1P) levels were significantly increased in DC
rats compared with NDC (Table 7). However, these
values were significantly (p <0.05) reduced and re-
stored near to normal level in diabetic rats treated
with EAF (25 and 50 mg/kg), indicating that EAF
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Fig. 4 Effects of EAF on serum insulin in T2D rats. NDC: non-diabetic control; DC: diabetic control, D + EAF25: diabetic rats treated with ethyl acetate
fraction 25 mg/kg b.w.; D + EAF50: diabetic rats treated with ethyl acetate fraction 50 mg/kg b.w,; D + GLI: diabetic rats treated with glibenclamide

10 mg/kg b.w. The results represent the mean =+ SE for 6 rats in each group. Conversion factor: insulin (1 ug =174 pmol). * compared with NDC group.

D + EAF50 D+ GLI

effectively reduced the levels of proinflammatory cyto-
kines in NA-STZ induced T2D rats

Effect of EAF on liver glycogen contents

Glycogen levels in the liver were exhausted significantly
(p <0.05) in NA-STZ treated rats (DC) and almost 60%
of glycogen was lost when compared with NDC. Treat-
ment with EAF and GLI increased hepatic glycogen ac-
cumulation, exhibiting values of glycogen similar to
those of NDC group (Table 7).

Discussion

Brucea javanica (L.) Merr is a well-known medicinal
plant originated from tropical Asia. It is extensively used
for the treatment of various diseases including diabetes
in traditional medicine system among indigenous people
in Malaya peninsula [19]. However, chemical entities re-
sponsible for potential inhibitory effect of this plant
against GP-a and a-glucosidase enzymes are yet to be

recognized. Results from the present study demonstrated
that EAF of B. javanica seeds exhibited significant
concentration-dependent inhibition on both GP-a and
a-glucosidase enzymes activity in vitro compared to n-
hexane, chloroform, and water fractions indicating that
compounds in EAF could be involved in activities of
carbohydrate and glycogen metabolism. Hence, based on
in vitro assay, EAF was selected for further study.

In this study, T2D was developed in SD rats after NA-
STZ treatment, as characterized by hyperglycemia com-
pared to untreated rats (NDC). Treatment with EAF to
diabetic rats significantly reduced blood glucose levels,
increased glucose tolerance during OGTT, and increased
insulin levels compared to untreated rats (DC). These
results indicated that EAF exert antihyperglycemic effect
by inhibiting GP-«a and a-glucosidase activity to enhance
glycogen synthesis and slowdown digestion of carbohy-
drates, thereby improve regulation of glucose in diabetic
condition.

12.00 +
10.00 - T
) 8.00 -
=
S 600 - . . *
=] T T -
= 4.00 - 1
% e
2.00 - 0
0.00 ] ‘ ‘ - ‘
NDC DC D+ EAF25 D+ EAF50 D+ GLI
Fig. 5 Effects of EAF on HOMA-IR index. NDC: non-diabetic control; DC: diabetic control, D + EAF25: diabetic rats treated with ethyl acetate fraction
25 mg/kg bw,; D+ EAF50: diabetic rats treated with ethyl acetate fraction 50 mg/kg b.w.; D + GLI: diabetic rats treated with glibenclamide 10 mg/kg
b.w. The results represent the mean + SE (n = 6). *Compared with DC
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Table 5 Effects of EAF from B. javanica seeds on serum lipid profiles in T2D rats

Groups Serum lipid profiles (mmol/L)

TG TC HDL LDL
Nondiabetic Control 045 +0.07 1.20+0.08 1.37+0.02 0.52+0.03
Diabetic Control 093+0.21° 1.55+0.08° 047 +006" 0.87+0.15°
Diabetic + EAF (25 mg/kg) 049 +001° 0.80 + 0.09° 1124005 044 + 0.04°
Diabetic + EAF (50 mg/kg) 048+ 004° 0.82+0.06° 1.22 +£0.04° 039+003°
Diabetic + Glibenclamide (10 mg/kg) 0.52 +0.09° 1.12+0.05° 1.31+0.08" 0.59 + 0.04°

TG triglyceride, TC total cholesterol, HDL high-density lipoprotein, LDL low-density lipoprotein. The results are presented the mean + SE for 6 rats in each group

2Compared with NDC, ® Compared with DC, © Compared with DC and NDC

The body weight lowering effect is often found to be
associated with diabetic conditions. It was observed that
during the experimental period, body weight of EAF
treated rats were slightly decreased compared to initial
date. To evaluate the decrease in body weight either
caused by diabetes or EAF, markers for liver (ALP, ALT,
and AST) and kidney (urea and creatinine) toxicity were
measured. In T2D rats, serum ALP, ALT, AST, and urea
contents were significantly elevated after NA-STZ treat-
ment, but significantly decreased in EAF treated rats
without alteration of creatinine levels, indicating that
EAF did not cause any damage to the liver and kidney
when treated up to 50 mg/kg b.w. Hyperlipidemia is one
of the major factors linked with hyperglycemia due to
insulin deficiency during diabetes and correlated with
carbohydrate metabolism. Elevation of cholesterol and
triglyceride levels in T2D demonstrates abnormal lipo-
protein metabolism associated with hyperglycemia [25,
26]. As shown in Table 5, serum TG, TC, and LDL con-
tents were significantly increased, HDL content was de-
creased when experimental rats were made relatively
insulin deficiency by NA-STZ treatment, but this entire
abnormal lipid metabolism was restored to normal after
EAF treatment. Interestingly, the T2D rats treated with
EAF have significantly reduced TC and LDL contents
and bring it to significantly lower level than that of NDC
suggesting that a-glucosidase and GP-a inhibitors,
mainly due to the presence of luteolin in EAF, may
inhibit protein synthesis causing a decrease in the syn-
thesis of the LDL protein and prevent cholesterol

accumulation in T2D rats. Therefore, this phenomenon
implies that decrease in body weight in EAF treated rats
was not directly related to STZ toxicity or toxic effect
accumulated during experimental period, and the weight
lost in EAF treated rats were most probably due to the
hypolipidimic effect of EAF.

As shown in Table 7, The EAF caused a significant re-
duction of serum TNF-qa, IL-6, and IL-1p levels elevated
in NA-STZ treated rats. TNF-a was a pro-inflammatory
cytokine to be associated with insulin resistance due to
reduced tyrosine kinase activity [27]. TNF-a and IL-6
can cause insulin resistance by suppressing expression of
the insulin receptor substrate -1 (IRS-1) and GLUT-4
though activation of NF- B pathway [27, 28]. The IL-1p
inhibit IRS-1 signaling to promote insulin resistance
[29]. Therefore, the significant reduction of TNF-q, IL-6,
and IL-1B by EAF treatment can be explained as an out-
come of its beneficial anti-inflammatory effect.

It has been reported that hyperglycemia and/or reduced
antioxidant capacity of the body in diabetic condition re-
sult in elevation of ROS and RNS and consequently in-
creased oxidative stress [30, 31]. To evaluate the effect of
EAF to suppress oxidative stress, serum GSH and MDA
levels were measured. Significant decrease of GSH and
elevation of MDA contents were observed in NA-STZ
treated rats. Treatment with EAF had reserved activity of
GSH approaching control level resulted in significant de-
crease in lipid peroxidation product MDA indicated that
EAF abrogate oxidative stress by improving antioxidant
mechanism in T2D rats.

Table 6 Effects of EAF from B. javanica seeds on liver and renal function markers in T2D rats

Groups ALP(U/L) ALT (U/L) AST (U/L) Urea (mmol/L) Creatinine (umol/L)
NDC 14133 £16.11 4550+ 245 129.17£893 6.23 +£0.64 2917 £1.01
DC 319.33+10.99° 172,67 +15.09° 290.00 + 11.55° 1898 +2.73° 35.00+2.11
D+ EAF25 179.83 +£19.83 81.17 £ 7.06° 15950+ 15.72 1122+127 30.50 £3.56
D + EAF50 159.17 +£24.03 60.67 +3.35 14533 £ 1564 952+ 152 2750+ 1.12
D+aGLl 146.67 £10.50 5817 +£452 13883 £833 1037 +1.80 29.00+0.93

ALP alkaline phosphatase, ALT alanine aminotransferase, AST aspartate aminotransferase. The results are presented the mean * SE for 6 rats in each group. NDC
non-diabetic control, DC diabetic control, D + EAF25 diabetic rats treated with ethyl acetate fraction 25 mg/kg b.w., D + EAF50 diabetic rats treated with ethyl
acetate fraction 50 mg/kg b.w., D + GLI diabetic rats treated with glibenclamide 10 mg/kg b.w. The results are considered significant when p < 0.05

#Compared with NDC
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Fig. 6 Effects of EAF on MDA levels in T2D rats. NDC: non-diabetic control; DC: diabetic control, D + EAF25: diabetic rats treated with ethyl acetate
fraction 25 mg/kg b.w.,; D + EAF50: diabetic rats treated with ethyl acetate fraction 50 mg/kg b.w.; D + GLI: diabetic rats treated with glibenclamide
10 mg/kg bw. The results are considered significant when p < 0.05. *Compared with NDC, *Compared with DC
A

The ability of liver to store glycogen is impaired due to
lack of insulin or insulin resistance. It is often linked
with enhanced activity of glycogen phosphorylase to im-
prove glycolysis, ultimately, causes hyperglycemia [32, 33].
To evaluate effect of EAF on hepatic glycogen metabol-
ism, glycogen contents in liver of treated and untreated
rats were measured. As shown in table 7, hepatic glycogen
content was decreased with the decreased insulin content
in NA-STZ treated rats (DC), and It was further restored
due to EAF treatment indicating that antihyperglycemic
effect of EAF may be due to the enhanced hepatic glyco-
gen metabolism and improved insulin secretion from pan-
creatic B-cell in T2D rats.

In normal condition, starch was broken down to glu-
cose by a-glucosidase after meals and utilized by cells as
an energy source [34]. Glucose was also generated by
glycolysis between meals to maintain blood glucose
homeostasis, and or stored as glycogen in the liver after

meals by glycogenesis in response to elevated glucose
concentration and neuroendocrine signals. Both glycoly-
sis and glycogenesis are mediated by activities of GP-a
activated by insulin [35]. Hence, the inhibitors of these
enzymes are vital molecular therapeutic targets for con-
trolling hyperglycemia associated with T2D and its re-
lated complications. In present study, bioactivity-guided
separation using various column chromatography
methods have been adapted and led to isolated seven
compounds from EAF of B. javanica seeds and all of the
isolated compounds were tested for GP-a and «-
glucosidase inhibition activity. As shown in table 2,
luteolin (5) was identified as the most potent inhibitor of
GP-a and a-glucosidase enzymes followed by para-
hydroxybenzoic acid (4), protocatechuic acid (6), and
gallic acid (7). The vanillic acid (1) is ineffective to both
GP-a and a-glucosidase due to the presence of methoxy
group in its skeleton. Bruceine D (2) and bruceine E (3)

-
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Total GSH (uM)

NDC DC D + EAF25 D + EAF50 D+ GLI

Fig. 7 Effects of EAF on GSH levels in T2D rats. NDC: non-diabetic control; DC: diabetic control, D + EAF25: diabetic rats treated with ethyl acetate
fraction 25 mg/kg b.w.,; D + EAF50: diabetic rats treated with ethyl acetate fraction 50 mg/kg b.w.; D + GLI: diabetic rats treated with glibenclamide
10 mg/kg b.w. The results are considered significant when p < 0.05. *Compared with NDC, *Compared with DC
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Table 7 Effects of EAF on serum cytokines and liver glycogen contents in T2D rats

Groups TNF-a (pg/ml) IL-6 (pg/ml) IL-1B (pg/ml) LG (mg/q tissue)
NDC 2893 +648 89.17 +3.60 47597 + 20,64 1557 +2.63
DC 12260+ 11.93° 17167 +833° 1041.73 +43.71° 6.26+067°
D +EAF25 7677 +12.65° 11694 +7.34° 839.76 + 25.63° 1011+ 1.50
D + EAF50 59.10+10.71° 97.78 +559° 590.97 + 30.80° 12,67 +1.83
D+GLl 70.10 £ 4.00° 12306+ 10.18° 57067 +31.71° 11.55+1.82

TNFa tumor necrosis factor-alpha, IL-6 interleukin-6, IL-18 interleukin-1p, LG liver glycogen, NDC non-diabetic control, DC diabetic control, D + EAF25 diabetic rats
treated with ethyl acetate fraction 25 mg/kg b.w., D + EAF50 diabetic rats treated with ethyl acetate fraction 50 mg/kg b.w., D + GL/ diabetic rats treated with

glibenclamide 10 mg/kg b.w. Results are considered significant when p < 0.05
2Compared with NDC, PCompared with DC

did not show any GP-a and a-glucosidase inhibition ac-
tivity indicating that the antidiabetic effect reported on
these compounds [19] may involve other mechanistic
pathway. The literature revealed that luteolin inhibit a-
glucosidase activity in vitro [36], para-hydroxybenzoic
acid increased hepatic glycogen content [37], protocate-
chuic acid prevented inflammation and improved lipid
metabolism by enhancing antioxidant mechanism in dia-
betic mice [38], gallic acid exhibited antidiabetic effect
by increasing insulin secretion from pancreatic p-cell
[39, 40], prevented oxidative stress by reducing MDA
content through enhancing antioxidant enzyme activity
[41], prevented proinflammatory cytokine generation
[42] in diabetic rats. All these reports further support on
the findings on the compounds found in EAF from B.
javanica seeds.

Conclusion

The EAF showed antihyperglycemic and antioxidant po-
tential, and reduced the levels of pro-inflammatory cyto-
kines in T2D rats. Our results indicated that the effects
of EAF in T2D rats may be due to the presence of luteo-
lin acted as potential a-glucosidase and GP-a inhibitors.
Furthermore, it could also be a result of synergistic effect
of para-hydroxybenzoic acid, protocatechuic acid, and
gallic acid existed in B. javanica seeds acting on several
processes. However, possible synergistic effects of these
compounds are yet to be evaluated in vivo.
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