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Abstract
Extracellular vesicles (EVs) are membrane-enclosed structures secreted by cells. In the past decade, EVs have attracted
substantial attention as carriers of complex intercellular information. They have been implicated in a wide variety of
biological processes in health and disease. They are also considered to hold promise for future diagnostics and therapy.
EVs are characterized by a previously underappreciated heterogeneity. The heterogeneity and molecular complexity of
EVs necessitates high-throughput analytical platforms for detailed analysis. Recently, mass spectrometry, next-
generation sequencing and bioinformatics tools have enabled detailed proteomic, transcriptomic, glycomic, lipidomic,
metabolomic, and genomic analyses of EVs. Here, we provide an overview of systems biology experiments performed
in the field of EVs. Furthermore, we provide examples of how in silico systems biology approaches can be used to
identify correlations between genes involved in EV biogenesis and human diseases. Using a knowledge fusion system,
we investigated whether certain groups of proteins implicated in the biogenesis/release of EVs were associated with
diseases and phenotypes. Furthermore, we investigated whether these proteins were enriched in publicly available
transcriptomic datasets using gene set enrichment analysis methods. We found associations between key EV biogenesis
proteins and numerous diseases, which further emphasizes the key role of EVs in human health and disease.

Introduction
The rapidly emerging field of extracellular vesicles (EVs)

has led to paradigm shifts in many different areas of
biology and biomedicine. The release of EVs, originally
thought to only act to remove harmful substances from
cells, has been shown to have many more functional
consequences and a wide range of implications for bio-
medicine. To understand the structure and function of
EVs, the initial biochemical targeted approaches rapidly
progressed to bias-free large-scale analyses using systems
biology and bioinformatics. In 2009, the first manually
curated database of EV proteins, RNA and lipids, Exo-
Carta1 (http://www.exocarta.org/), was launched. It was

followed by two additional databases including Vesicle-
pedia2,3 (http://www.microvesicles.org/) and EVpedia4,5

(http://student4.postech.ac.kr/evpedia2_xe/xe/). These
are repositories of RNA, protein, lipid, and metabolite
datasets. Given that preanalytical parameters may play
important roles in the quality of EV preparations, data-
base entries should be interpreted with caution, and
special attention has to be paid to preanalytical condi-
tions. Recently, gene ontology has been extended to the
context of EV communication, owing to increased
recognition of the importance of the EV field6. Further-
more, bioinformatic tools that can be used to analyze EV
datasets have become available7,8. Future directions may
include the following: (i) systems biology analyses after
more standardized EV preanalytics, (ii) multiomics ana-
lyses of EV samples (combinations of different -omic
groups used for the analysis), and (iii) the determination
of disease-specific EV molecular patterns/networks com-
posed of different molecule types. Additionally, systems
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biology approaches may be extended to novel fields such
as image-based systems biology.
Advancements in the analysis of complex biological

systems such as EVs will help to reveal the biological
significance of these recently discovered structures and
exploit their diagnostic and/or therapeutic potential.

EV proteomics
To date, the best characterized EV cargo is EV-

associated protein molecules. Proteomics analysis of EVs
has been made available on MS-based technological
platforms. Proteomic analyses of EVs have been reviewed
extensively elsewhere9,10 and are not the focus of the
present article. Of note, thousands of proteins have been
identified in various EV subtypes, and disease-specific
proteome alterations have also been identified11–14. The
potential for EV proteins to be used as monitoring tools
for disease progression has also been successfully stu-
died15. In addition, unconventional membrane protein
orientation has been described in EVs16. The topology of
various EV-associated proteins remains a very important
hot topic because it influences target cell recognition by
different EV subtypes and the signal transduction path-
ways induced by EVs.

EV transcriptomics
A plethora of studies confirmed the feasibility of using

high-throughput transcriptomic methods for EVs (such as
microarrays and next-generation sequencing; see
Table 1)17–19, and these approaches have been used suc-
cessfully to characterize the healthy circulating20,21,
urine20,22, cerebrospinal fluid23, or saliva24,25 EV RNA cargo.
The first study exploring the physiological miRNA pattern
of circulating EVs was published in 200826. In the following
years, the heterogeneity of circulating EV transcriptional
landscapes was analyzed and revealed the presence of many
different RNA types, including tRNA, miRNA, Y-RNA,
mRNA, SRP-RNA, rRNA, lncRNA, piRNA, snRNA,
snoRNA, and scaRNA17,20,21. In vitro studies further sug-
gested that various types of RNA molecules identified in
EVs were specifically shuttled into EV subsets27. A reference
dataset for miRNA profiling in whole blood, peripheral
blood cells, serum, and EVs was also published28. EV
transcriptomics is particularly useful in the study of com-
plex diseases because it assists in the identification of novel
biomarkers (Table 1). The biomarker potential of EVs has
been highlighted by high-throughput studies; however, the
analysis of a single subtype of EVs29 instead of bulk EV
‘omics’ analyses may yield more targeted results and suggest
novel therapeutic strategies.

EV metabolomics
Metabolomics involves the simultaneous detection and

analysis of a large number of small molecules (<2000 Da)

from biological samples30. The relatively low sensitivity of
NMR to detect metabolites in EV samples (which are
usually available in low amounts) does not allow detailed
analysis of the EV metabolome. However, with advances
in the available methodological platforms (e.g., Ultra-
Performance Liquid Chromatography-Mass Spectro-
metry, UPLC MS), numerous studies have performed
detailed analyses of the EV metabolome31–34. Interest-
ingly, EVs have been shown to function as independent
metabolic units35 and to modify the metabolome of their
body fluid environment36,37 or to induce metabolic
changes in recipient cells38.

EV lipidomics
EV lipidomics (see Table 2) is a relatively new field

mainly because the amount of an EV sample is usually
very limited, and novel techniques with increased sen-
sitivity have only recently become available to EV
researchers. In the twentieth century and in the first
decade of the twenty-first century, thin layer chroma-
tography (TLC) was widely used, and it was essentially
the only technique available that enabled the study of
the lipid composition of EV membranes. TLC is an easy
and straightforward method and does not require
expensive equipment. However, the data collected in
TLC experiments are very limited. Only a few lipid
forms (main classes) can be separated with the help of
external lipid standards. Since 2004, the application of
different liquid chromatography technologies have
been reported. The sensitivity and reproducibility of
these experiments were significantly improved com-
pared to those of the TLC methods, but the number of
detectable lipid species was still very limited. Revolu-
tionary development began in the early 2010s with MS-
based methods, when real EV lipidomics began. The
different MS-based techniques made it possible to
determine the different acyl chains of membrane lipids
(not just the major lipid types based on the head
groups). The number of complex lipidomic studies
started to increase significantly in 2016, and an expo-
nential growth of the field is expected to come in the
next few years.

EV glycomics
Glycomics in general show a relative backlog compared

to other omic fields, such as genomics or proteomics (see
Table 3). This is possibly due to the complexity of car-
bohydrate structures and the lack of sensitive and simple
high-throughput methods for glycan analysis that caused
a significant delay in the development of glycomics. For
glycosylation analyses of EVs, lectin-based microarrays,
and high resolution MS analyses have been used, and
these approaches provide evidence of EV-specific glyco-
sylation patterns.
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EV genomics
Some of the EVs carry DNA that may range in size from

100 base pairs to several kilobase pairs39 or even frag-
ments up to 2 million base pairs long40. EV-associated
DNA may be single-stranded DNA, mitochondrial DNA,
or double-stranded DNA39,41,42. The DNA content asso-
ciated with EVs (termed EV-DNA) may be transported
within the lumen of EVs39,40; however, recent studies have
shown that, depending on the biological context, EV-
DNA can also be found attached to the outer surface of
EVs43–46.
Several studies have shown that EV-DNA spans

sequences across all chromosomes of genomic DNA
(gDNA)39,40,47. Sequences of mitochondrial DNA
(mtDNA) may or may not be present depending on the
context and/or cell line39. Other studies have shown that
selective sorting of specific DNA sequences may occur.
For example, a study investigating different prostate
cancer cell-derived EV subpopulations showed that dif-
ferent EVs carried different gDNA contents48. Another
study that investigated the EVs of healthy individuals
provided evidence of an uneven representation of the
human genome and even detected EV-DNA of bacterial
origin46. Nevertheless, very little is currently known about
the mechanisms of DNA packaging or selective sorting of
DNA into EVs.
At present, the functional significance of EV-DNA is

largely unknown. A recent study has shown that surface-
bound EV-DNA plays a significant role in the binding of
EVs to fibronectin45, an extracellular matrix glycoprotein
that is of vital importance in processes associated with
tumor progression49. Generally, surface-bound molecules

are responsible for the binding of EVs to target cells or to
the extracellular matrix50. Therefore, it is likely that
exofacial EV-DNA may have some physiological sig-
nificance for the recipient cells. Additionally, it has been
shown that oncogenes can be transferred from donor to
recipient cells; however, contradictory results have been
reported regarding whether cancer cell-derived EV-DNA
is functional in the recipient cells. In a study, the EV-
mediated spread of oncogenes was shown to promote
disease progression in mice51. Another study showed that
EVs containing oncogenic H-ras failed to produce a per-
manent tumorigenic conversion of primary and immor-
talized fibroblasts52.
Several studies have shown that EV-DNA reflects the

parental cell gDNA both qualitatively39,47,53–58 and
quantitatively40,42. Therefore, the analysis of circulating
EV-DNA may have substantial diagnostic potential.
Moreover, the analysis of genomic mutations may prove
to be superior to the analysis of the RNA transported by
EVs, as DNA is intrinsically more stable than RNA.

Systems biology approaches show relationships
between genes involved in EV biogenesis and
diseases
Finally, it is possible to gain information about the role

of EVs through a systems biology analysis of public
transcriptomic and genomic data, as well as different
types of biomedical data. Our goal was to determine the
relationships between key genes involved in EV biogenesis
and diseases using systems biology approaches. We
investigated whether a selected group of the proteins from
among those reported to play a role in the biogenesis or

Table 2 Lipidomic analyses of EVs

Technique for lipidomic analysis Year of publication EV types in the study

Thin layer chromatography (TLC) 198794; 198995; 199596; 200297; 200498; 200999; 2010100;

2015101,102; 2017103
sEV94–96,98–103, mEV96,98

Liquid chromatography (HPLC, GLC, LC-CAD) 2004;98,104 2010;100 2011;105 2013;106 2015;102 2017107 sEV98,100,102,104–106, mixed EV107

MS-based techniques (ESI MS/MS; GC MS; LC

MS/MS)

2010100, 2012108; 2013106,109–111; 2015112,113; 2016114–116;

2017117–119; 2018120–123
sEV100,106,108–111,113,114,116,117,119–124,

mEV117,118

Table 3 Glycomic technologies used for EV analysis

Technique for glycomic analysis Publications Pros and cons

Lectin-based microarrays 125–129 Unbiased glycan analysis of carbohydrates on the surfaces of intact EVs

High resolution MS 130–134 Requires expensive equipment. Data analysis may be time consuming
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secretion of EVs were associated with phenotypes and
were enriched in publicly available transcriptomic
databases.
Based on the literature, without a claim of completeness,

we have compiled lists of proteins that have been reported
to play roles in the biogenesis (see Tables S1 and S3) and
secretion of EVs (see Table S2). We defined five partly
overlapping gene sets from among these lists, namely,
genes involved in EV biogenesis and secretion, EV bio-
genesis, exosome biogenesis, microvesicle biogenesis, and
exosome secretion. We used these sets as inputs for the
different analyses. Of note, the term “exosomes” refers
here to small (50–150 nm in diameter) EVs that originate
from the multivesicular body, whereas the designation
“microvesicles” is used for EVs shed from the plasma
membrane that are usually of medium size (100–1000 nm
in diameter).
The Quantitative Semantic Fusion (QSF) System59 is

an extensible framework that incorporates distinct
annotated semantic types (also called entities) and links
between them by integrating different data sources from
the Linked Open Data world. The QSF System then
enables the users to quantitatively prioritize a freely
chosen entity based on evidence propagated from any
other entity or possibly multiple entities through the
connecting links (see Figure S1). Currently, the system
contains genes, taxa, diseases, phenotypes, disease
categories (UMLS semantic types and MeSH disease
classes), pathways, substances, assays, cell lines, and the
targets of the compounds. Links define associations
between entities. For example, genes and pathways are
connected with a link that represents gene-pathway
associations. To enable cross-species information
fusion, we also added gene orthologue links.
The most important gene-disease associations identified

in this research are from the DisGeNet60 database. This
database integrates many other sources of information

(e.g., OMIM, GWAS Catalog, OrphaNet, Mouse Genome
Database, and Rat Genome Database).
We constructed three different computation graphs that

were used to detect known and predicted disease and
phenotype associations (see Fig. 1). All three models can
be used to answer the question of whether the genes
involved in the biogenesis or secretion of EVs are func-
tionally altered (for example, due to significant poly-
morphisms, mutations, or changes in the gene expression
or the amount of protein produced), and, if so, which
diseases are associated with these changes. This can also
elucidate the pathomechanisms underlying the associa-
tion between diseases or phenotypes and EVs.
The first model, based on gene-disease associations

known in the literature (based on the data sources in the
DisGeNet database), prioritizes the diseases and related
phenotypes that can be linked to important genes relevant
to EVs. In the second model, molecular pathway asso-
ciations were used to expand the range of genes to include
disease-associated genes that are in the same molecular
pathways as the genes that are important for EVs. In the
third model, we used the molecular pathway information
from different species to predict the diseases associated
with human genes the orthologues of which in other
species are in the same molecular pathways as the
orthologues of the human genes important for EVs.
We used the QSF System to quantitatively prioritize

diseases and phenotypes that are associated with the five
gene sets of genes known to be involved in the biogenesis
and/or secretion of different types of EVs. First, we used a
model that exploited the gene-disease associations already
known in the literature. The top 20 diseases that are
associated with genes that are involved either in the bio-
genesis or the secretion of EVs are shown in Table 4. The
top 20 phenotypes are shown in Table S4. EV biogenesis
genes are significantly associated with several diseases,
including several tumors, such as mammary neoplasms

Gene Disease Pheno-
type

Gene Pathway Gene Disease Pheno-
type

Gene Pathway
(Other species)

Gene Disease Pheno-
type

Gene
(Other species)

Gene
(Other species)

Ortholog Ortholog

Fig. 1 Three different models used for prioritizing the associations of key EV genes with diseases. Top: A model that prioritizes diseases and
phenotypes based on gene-disease associations known in the literature. Middle: This model predicts the associated diseases and phenotypes using
molecular pathway associations. Bottom: This model predicts the associated diseases and phenotypes using orthologue molecular pathway
associations in other species
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(microvesicle biogenesis: p= 0.03; Exosome secretion: p <
0.01) and melanoma (microvesicle biogenesis: p= 0.02);
pathologic functions, such as neoplasm invasiveness (EV
biogenesis and secretion: p < 0.01) and neoplasm metas-
tasis (EV biogenesis: p= 0.03); and cardiovascular dis-
eases, such as myocardial reperfusion injury (microvesicle
biogenesis: p < 0.01). The most relevant phenotypes
include frontotemporal dementia (exosome biogenesis: p
< 0.01), lack of insight (exosome biogenesis: p < 0.01), and
autoimmune neutropenia (exosome secretion: p= 0.01).

Pathway-mediated analysis (i.e., determining which
diseases are associated with genes that participate in the
same pathway as EV biogenesis genes) indicated possible
associations of EVs with many common diseases (see
Table S5 and Table S6), such as diabetes (microvesicle
biogenesis: p < 0.01), Alzheimer’s disease (EV biogenesis
and secretion: p < 0.01), and obesity (microvesicle bio-
genesis: p= 0.02). Cross-species pathway-mediated ana-
lysis indicated the possible association of EVs with several
tumors (see Tables S7 and S8), such as mouth neoplasms

Table 4 Diseases associated with different sets of key EV genes based on gene-disease associations known in the
literature

Disease Extracellular vesicle

biogenesis and

secretion

Extracellular vesicle

biogenesis

Exosome biogenesis Microvesicle

biogenesis

Exosome secretion

Relevance

score

P-value Relevance

score

P-value Relevance

score

P-value Relevance

score

P-value Relevance

score

P-value

Mammary neoplasms 1.00 0.00 0.94 0.05 0.36 0.35 1.00 0.03 1.00 0.00

Degenerative

polyarthritis

0.72 0.00 0.55 0.00 0.34 0.04 0.41 0.03 1.00 0.00

Neoplasm invasiveness 0.71 0.00 0.82 0.00 0.33 0.18 0.83 0.00 0.60 0.00

Squamous cell

carcinoma

0.66 0.00 0.37 0.02 0.04 0.27 0.52 0.00 0.84 0.00

Esophageal neoplasms 0.60 0.00 0.56 0.02 0.01 0.22 0.83 0.00 0.60 0.00

Diabetes mellitus,

experimental

0.59 0.00 0.64 0.09 0.97 0.01 0.53 0.00

Neoplasm metastasis 0.53 0.00 0.82 0.03 0.53 0.03 0.62 0.03 0.29 0.07

Liver carcinoma 0.52 0.02 0.10 0.39 0.04 0.43 0.10 0.15 0.81 0.00

Non-small cell lung

carcinoma

0.49 0.00 0.29 0.12 0.00 0.91 0.45 0.03 0.61 0.00

Mouth neoplasms 0.48 0.00 0.80 0.00

Melanoma 0.47 0.02 0.68 0.02 0.39 0.10 0.55 0.02 0.30 0.05

Animal mammary

neoplasms

0.47 0.00 0.79 0.00

Juvenile-onset dystonia 0.47 0.01 0.79 0.00

IGA glomerulonephritis 0.44 0.07 1.00 0.00 1.00 0.05 0.28 0.32 0.20 0.12

Mammary neoplasms,

experimental

0.43 0.01 0.18 0.28 0.28 0.19 0.60 0.00

Alzheimer’s disease 0.43 0.06 0.32 0.15 0.01 0.74 0.48 0.06 0.49 0.02

Prostatic neoplasms 0.42 0.11 0.07 0.65 0.01 0.77 0.10 0.30 0.65 0.00

Stomach neoplasms 0.41 0.05 0.07 0.49 0.02 0.46 0.07 0.20 0.63 0.00

Adenocarcinoma 0.40 0.01 0.33 0.08 0.00 0.75 0.48 0.02 0.43 0.01

Myocardial reperfusion

injury

0.39 0.02 0.64 0.00 0.22 0.17 0.97 0.00 0.20 0.11

For each gene list (columns), the relevance score is the normalized relevance score computed by the first model (see Fig. 1). P-values were computed by permutation
tests. The top 20 most relevant diseases are reported based on the gene list of EV biogenesis and secretion

Gézsi et al. Experimental & Molecular Medicine (2019) 51:33 Page 6 of 11

Official journal of the Korean Society for Biochemistry and Molecular Biology



Ta
b
le

5
En

ri
ch

m
en

t
of

d
if
fe
re
n
t
se
ts

of
ke

y
EV

g
en

es
in

va
ri
ou

s
g
en

e
ex

p
re
ss
io
n
ex

p
er
im

en
ts

G
EO

ac
ce
ss
io
n

St
ud

y
C
on

tr
as
t

Ex
tr
ac
el
lu
la
r
ve

si
cl
e

b
io
g
en

es
is

an
d
se
cr
et
io
n

Ex
tr
ac
el
lu
la
r
ve

si
cl
e

b
io
g
en

es
is

Ex
os
om

e

b
io
g
en

es
is

M
ic
ro
ve

si
cl
e

b
io
g
en

es
is

Ex
os
om

e

se
cr
et
io
n

G
SE
13
57
6

Xe
no

gr
af
te
d
le
uk
em

ia
sa
m
pl
es

w
ith

di
ffe
re
nt

tim
e
to

le
uk
em

ia

ph
en

ot
yp
es

N
o
re
la
ps
e
vs
.e
ar
ly

re
la
ps
e

1.
16

E-
11

1.
24

E-
05

3.
27

E-
04

1.
14

E-
02

2.
66

E-
06

N
o
re
la
ps
e
vs
.l
at
e

re
la
ps
e

3.
46

E-
03

1.
56
E-
01

2.
53
E-
01

7.
43
E-
01

9.
51
E-
02

N
o
re
la
ps
e
vs
.r
el
ap
se

7.
85

E-
15

5.
25

E-
07

2.
30

E-
05

3.
78

E-
03

6.
53

E-
08

Ea
rly

re
la
ps
e
vs
.l
at
e

re
la
ps
e

5.
11

E-
03

1.
71
E-
01

3.
24
E-
01

7.
79
E-
01

1.
37
E-
01

G
SE
69
19

N
or
m
al
an
d
pr
os
ta
te

tu
m
or

tis
su
es

H
ea
lth

y
vs
.t
um

or
1.
59

E-
03

3.
45

E-
02

4.
29
E-
01

9.
54
E-
02

8.
41

E-
04

Tu
m
or

vs
.a
dj
ac
en

t
4.
70

E-
03

6.
29
E-
01

9.
88
E-
01

8.
70
E-
01

1.
34

E-
03

Tu
m
or

vs
.m

et
as
ta
tic

1.
58

E-
09

9.
75

E-
04

1.
87

E-
02

8.
04

E-
06

4.
55

E-
11

G
SE
41
15

Sm
ok
er
s
w
ith

su
sp
ec
te
d
lu
ng

ca
nc
er

N
o
ca
nc
er

vs
.c
an
ce
r

5.
53

E-
25

3.
48

E-
08

3.
37

E-
04

8.
37

E-
06

2.
40

E-
21

G
SE
54
51
4

Su
rv
iv
or
s
an
d
no

ns
ur
vi
vo
rs
of

se
ps
is

H
ea
lth

y
vs
.s
ur
vi
vo
r

1.
32

E-
16

1.
99

E-
03

2.
81

E-
02

9.
59
E-
02

1.
51

E-
15

H
ea
lth

y
vs
.n

on
su
rv
iv
or

7.
00

E-
09

1.
79

E-
05

1.
67

E-
03

4.
87

E-
05

1.
26

E-
07

H
ea
lth

y
vs
.s
ep

si
s

(s
ur
vi
vo
r+

no
ns
ur
vi
vo
r)

1.
92

E-
25

2.
11

E-
05

2.
00

E-
03

5.
41
E-
01

3.
42

E-
23

N
on

su
rv
iv
or

vs
.s
ur
vi
vo
r

3.
79

E-
25

9.
98

E-
05

1.
28

E-
03

3.
64

E-
09

3.
99

E-
24

G
SE
43
69
6

N
or
m
al
co
nt
ro
ls
,m

ild
-m

od
er
at
e

as
th
m
at
ic
pa
tie
nt
s
an
d
se
ve
re

as
th
m
at
ic
pa
tie
nt
s

C
on

tr
ol

vs
.m

od
er
at
e

as
th
m
a

9.
78
E-
01

9.
21
E-
01

9.
94
E-
01

9.
21
E-
01

1.
00
E
+
00

C
on

tr
ol
vs
.s
ev
er
e
as
th
m
a

5.
62
E-
02

1.
96
E-
01

3.
43
E-
01

3.
34
E-
01

5.
62
E-
02

C
on

tr
ol

vs
.a
st
hm

a

(m
od

er
at
e
+
se
ve
re
)

4.
40
E-
01

6.
16
E-
01

8.
09
E-
01

7.
70
E-
01

3.
96
E-
01

M
od

er
at
e
vs
.s
ev
er
e

as
th
m
a

2.
54
E-
01

3.
53
E-
01

4.
23
E-
01

5.
08
E-
01

3.
74
E-
01

Va
lu
es

in
th
e
ta
bl
e
re
pr
es
en

t
Be

nj
am

in
i-H

oc
hb

er
g
ad

ju
st
ed

p-
va
lu
es

fo
r
en

ric
hm

en
t
co
m
bi
ni
ng

th
e
re
su
lts

of
10

di
ff
er
en

t
en

ric
hm

en
t
al
go

rit
hm

s.
St
at
is
tic
al
ly

si
gn

ifi
ca
nt

p-
va
lu
es

(<
0.
05

)
ar
e
in

bo
ld

Gézsi et al. Experimental & Molecular Medicine (2019) 51:33 Page 7 of 11

Official journal of the Korean Society for Biochemistry and Molecular Biology



(exosome secretion: p < 0.01) and tongue neoplasms
(exosome secretion: p < 0.01) and several other diseases
and conditions.
Next, we downloaded and reanalyzed five large publicly

available microarray data sets from the Gene Expression
Omnibus (GEO) that represent various diseases (acces-
sions: GSE13576, GSE6919, GSE4115, GSE54514, and
GSE43696). Then, we computed the enrichment of the
five key EV gene sets and all KEGG pathways in the
various contrasts of the differential expression analyses.
The statistical analyses were performed in R statistical
language61. We used the limma62 and EGSEA63 packages
for the microarray and enrichment analysis, respectively.
The Ensemble of Gene Set Enrichment Analysis

(EGSEA) utilizes and combines the analysis results of
many prominent gene set enrichment algorithms to cal-
culate the collective significance score for a given gene set
in the generally long lists of genes that arise from a dif-
ferential expression analysis.
We reanalyzed five publicly available gene expression

experiments using contrasts defined by the authors of
these experiments, and then we computed the enrichment
of the five key EV gene lists using the EGSEA method
based on these contrasts (i.e., gene expression signatures
relevant for a specific biological process).
The key EV gene sets were statistically significantly

enriched in many of the analyzed contrasts (see Table 5).
Meyer et al. investigated the engraftment properties and

impact on outcomes of 50 pediatric acute lymphoblastic
leukemia samples transplanted into NOD/SCID mice64.
They found that the time to the development of leukemia
(i.e., weeks from transplant to overt leukemia) was
strongly associated with the risk of early relapse. We
found that the differentially expressed genes between the
no relapse and the early relapse groups were significantly
enriched for key EV genes as well.
Yu et al. performed a comprehensive gene expression

analysis on 152 human samples, including prostate cancer
tissues, prostate tissues adjacent to tumor, and organ donor
prostate tissues, obtained from men of various ages65. The
differentially expressed genes between the nonmetastatic
tumor samples and the metastatic tumor samples were
significantly enriched for all key EV gene sets.
Spira et al. compared gene expression data from smo-

kers with lung cancer with samples from smokers without
lung cancer66. This allowed them to generate a diagnostic
gene expression profile that could distinguish between the
two classes. We found that all EV gene sets were sig-
nificantly enriched in the gene expression profile com-
paring smokers with and without lung cancer.
Parnell et al. performed gene expression profiling of

whole blood to monitor immune dysfunction in critically
ill septic patients67. We found that all gene expression
signatures comparing healthy controls with sepsis

survivors, healthy controls with nonsurvivors, and non-
survivors with survivors were significantly enriched for EV
genes.
Voraphani et al. compared the gene expression profiles of

airway epithelial and bronchoalveolar lavage cells of healthy
controls, mild-moderate asthmatic patients, and severe
refractory asthmatic patients, respectively68. We found no
enrichment in the different gene expression signatures.
Genes that have been reported to participate in the

biogenesis or secretion of EVs are significantly associated
with numerous common diseases, including different
types of tumors and cardiovascular diseases, which further
emphasizes the key role of EVs in human health and
disease.
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