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Bayesian analysis of cytokines 
and chemokine identifies 
immune pathways of HBsAg 
loss during chronic hepatitis B 
treatment
Sriram Narayanan1, Veonice Bijin Au1, Atefeh Khakpoor5, Cheng Yan5, Patricia J. Ahl1, 
Nivashini Kaliaperumal1, Bernett Lee2, Wen Wei Xiang3, Juling Wang5, Chris Lee5, Amy Tay5, 
Seng Gee Lim1,5,7 & John E. Connolly1,4,6,7* 

Our objective was to examine differences in cytokine/chemokine response in chronic hepatitis B(CHB) 
patients to understand the immune mechanism of HBsAg loss (functional cure) during antiviral 
therapy. We used an unbiased machine learning strategy to unravel the immune pathways in CHB 
nucleo(t)side analogue-treated patients who achieved HBsAg loss with peg-interferon-α(peg-IFN-α) 
add-on or switch treatment in a randomised clinical trial. Cytokines/chemokines from plasma were 
compared between those with/without HBsAg loss, at baseline, before and after HBsAg loss. Peg-
IFN-α treatment resulted in higher levels of IL-27, IL-12p70, IL-18, IL-13, IL-4, IL-22 and GM-CSF prior 
to HBsAg loss. Probabilistic network analysis of cytokines, chemokines and soluble factors suggested 
a dynamic dendritic cell driven NK and T cell immune response associated with HBsAg loss. Bayesian 
network analysis showed a dominant myeloid-driven type 1 inflammatory response with a MIG and 
I-TAC central module contributing to HBsAg loss in the add-on arm. In the switch arm, HBsAg loss 
was associated with a T cell activation module exemplified by high levels of CD40L suggesting T cell 
activation. Our findings show that more than one immune pathway to HBsAg loss was found with peg-
IFN-α therapy; by myeloid-driven Type 1 response in one instance, and T cell activation in the other.

Abbreviations
CHB  Chronic hepatitis B
HCC  Hepatocellular carcinoma
NA  Nucleos(t)ide analogue
IFN-α  Interferon-α
peg-IFN-α  Pegylated interferon-α
ALT  Alanine transaminase
DC  Dendritic cells

Chronic hepatitis B (CHB) affects over 250 million people  globally1, and is a major risk factor for development 
of liver cirrhosis and hepatocellular carcinoma (HCC). HBsAg loss or functional cure of CHB is associated with 
significant clinical benefits such as reduced HCC and liver  complications2. The frequency of CHB patients who 

OPEN

1Translational Immunology Programme, Institute of Molecular and Cell Biology (IMCB), Agency for 
Science, Technology, and Research, Singapore (A*STAR) Research Entities (RE), 61 Biopolis Drive, Proteos, 
Singapore 138673, Singapore. 2Singapore Immunology Network, A*STAR REs, Singapore, Singapore. 3IMCB, 
Tessa Therapeutics Pvt Ltd, Singapore, Singapore. 4Department of Microbiology and Immunology, Yong Loo 
Lin School of Medicine, National University of Singapore, Singapore, Singapore. 5Division of Gastroenterology 
and Hepatology, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 
Singapore, Singapore. 6Institute of Biomedical Studies, Baylor University, Waco, TX, USA. 7These authors jointly 
supervised this work: Seng Gee Lim and John E. Connolly. *email: jeconnolly@imcb.a-star.edu.sg

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-86836-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7455  | https://doi.org/10.1038/s41598-021-86836-5

www.nature.com/scientificreports/

develop spontaneous HBsAg loss without treatment is very low (1% per year)3. A meta-analysis has shown that 
peg-interferon ± NA is superior to nucleoside analogues (NA) in achieving HBsAg  loss4.

The immune mechanism(s) related to HBsAg loss are not well established. In acute HBV, resolution of infec-
tion is associated with an antiviral T cell response but a poor innate immune  response5. The prevailing hypoth-
esis is that high antigen load leads to T cell exhaustion in addition to defective adaptive and innate  immunity6. 
However, it is unclear how immune clearance of HBsAg occurs, and it is assumed that HBV specific T cells are 
required to achieve “immune control”. The classic example of immune clearance of HBV occurs in the setting 
of bone marrow transplantation from a donor with resolved HBV to a CHB  patient7, where HBV specific T and 
B cell responses were restored. Studies in acutely infected chimpanzees and transgenic mice models revealed 
the importance of CD8 T cell responses in HBV control and the finding that HBV can escape innate immune 
recognition has made the role of innate immunity in CHB  ambiguous8. In addition, CHB patients have defec-
tive B cell response with HBsAg specific B cells showing exhaustion and atypical memory  phenotype9. Study-
ing the immune mechanisms that lead to functional cure are indeed challenging due to the low frequency of 
patients achieving functional cure and the assays to evaluate the immune responses are complex and limited 
by the low frequency of HBV specific T  cells10. Consequently, there is a significant unmet need to unravel the 
immune responses associated with functional cure. Since there are limitations to the use of PBMC to assess 
cellular immunity, and the liver microenvironment requires invasive liver biopsy, one option is to use an array 
of plasma cytokines and chemokines to interrogate the full spectrum of immune pathways. Cytokines and 
chemokines exert their effects by modulating the function of immune and non-immune stromal cells. They 
work in a concerted manner to set off a cascade of immune responses resulting in elimination of viral infection 
by cell and antibody mediated  mechanisms11, and the outcome of immune reaction is determined by the quality 
of cytokine–chemokine response.

To investigate the chemokine-cytokine profile of HBsAg loss, we utilised CHB patients from a randomised 
clinical trial of NA ± peg-IFN-α (SWAP study) (Suppl. fig. 1A)12. We profiled plasma for 87 cytokines, chemokines, 
growth factors and soluble receptors, pre and post therapy using statistical analysis and Bayesian probabilistic 
network algorithms to assess the cytokine networks in responders and non-responders.

Results
Statistical analysis of chemokines and cytokines. Plasma cytokines were assessed at three time-
points during the course of therapy in responders and non-responders. The median time interval from start 
of peg-IFN-α therapy to loss of HBsAg in responders was 24  weeks (range: 8–72  weeks). The time-point at 
which the patients were recruited for the study was referred to as the baseline (T0), the time-point before which 
the responders showed HBsAg loss was labelled T1 (median = 12 weeks) and the time-point after which the 
responders showed HBsAg loss was labelled T2 (median = 36 weeks) (Supplementary Table 2). Non-responders 
from similar time-points were chosen for analysis. Comparisons were made within each group over time, and 
between each group at the matching time-points, using students t-test with corrections for multiple testing and 
Pearson correlation.

Baseline findings in responders and non‑responders. We observed a difference in qHBsAg at baseline between 
responders and non-responders where non-responders had 20-fold higher mean qHBsAg levels than respond-
ers (Fig. 1A). A clustering analysis and heat map indicated that prior to treatment the cytokine levels were not 
very different between responders and non-responders (T0, Fig. 1B). Only soluble form of EGFR (sEGFR) was 
significantly lower at baseline in the responder group. Pearson correlation analyses of plasma levels of HBsAg, 
with the cytokines and chemokines revealed that the top factors negatively correlated with HBsAg loss were 
several C–C and C-X-C chemokines together with the cytokines IL-20, IL-12p70, IL-16, IL-18, IL-21, IL-15 and 
IL-17A (Table 1).

On‑treatment responses. With peg-IFN-α therapy at the time-point T1 increased levels of several cytokines and 
chemokines were observed (Fig. 1B; T1) indicating an inflammatory response. This is supported by the elevation 
in ALT levels before HBsAg loss (Suppl. fig. 1B). The individual cytokines showing an increase at this time-point 
are shown in Supplementary Figure 2A and B. After HBsAg loss some of these factors were down-regulated 
(Fig.  1B; T2) indicating resolution of inflammation and further evidenced by decrease in ALT levels in the 
responders (Supp fig. 1B). These results revealed differences in immune response between responders and non-
responders with peg-IFN-α treatment, most notably at the time-point before HBsAg loss (T1). Statistical analy-
sis showed significant increase in cytokine levels in responders compared to non-responders prior to HBsAg loss 
(Fig. 2A, T1; and Supp fig. 2A and B). When comparing time-points in responders and non-responders there 
was an increase in sTNFRII, sVEGFR2, sVEGFR3 and sIL-2Ra, while sIL-1RII was found to decrease from T0 
to T1 (Suppl Fig. 1C).

Peg‑IFN‑α treatment results in dominant type 1 response in responders. In order to further understand the type 
of cytokine response, we compared the levels of each analyte between the responders and non-responders. Peg-
IFN-α therapy resulted in higher levels of IFN-γ, IL-12p70, IL-7, IL-8, IL-16, IL-4 and IL-13 in the responders 
(elaborated in next section), before the detectable loss of HBsAg. In addition, chemokines CCL11 (Eotaxin), 
CCL24 (Eotaxin-2), CCL26 (Eotaxin-3), CCL4 (MIP-1b), CXCL1 (GRO-a), CXCL9 (MIG), CXCL11 (I-TAC), 
CXCL12 (SDF-1a) and CXCL13 (BLC) were increased in the responders. Taken together, this suggests that a 
strong inflammatory host response plays a key role in HBsAg loss.

Many of the augmented cytokines/chemokines in responders, which included IL-12p70, IL-27, IFN-γ, 
TNF-α and CXCL9, are associated with a Type 1 immune response (Fig. 2B). In contrast, among the Type 2 
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Figure 1.  Plasma cytokine levels differ between responders (labelled S loss) and non-responders (labelled No 
S loss) during peg-IFN-α therapy. (A) Trend of quantitative HBsAg (qHBsAg) levels between the responders (S 
loss) and non-responders (non S loss) in the cohort combined from the Add-on and Switch arms. The numbers 
below indicate the median value of the qHBsAg for each group at the time-points indicated. (B) Heat map of 
cytokine levels from the plasma samples analysed at the three time-points indicated. The heat map data was 
clustered on the cytokines and chemokines and separated by time-points. Heat map shows data from responders 
(S loss; n = 14) and non-responders (No S loss; n = 12). Scale bar indicates the Z score of the normalised cytokine 
and chemokine values (red, high; green, low).
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response-associated cytokines only IL-4 and IL-13 were increased in the responders (Fig. 2C). Similarly, among 
the Type 17 response-associated cytokines, IL-22 and GM-CSF were increased significantly in the responders 
(Fig. 2D). Taken together, these findings suggest that at the time-point before HBsAg loss, there is a dominance 
of type 1 immune response in patients who showed HBsAg loss and it probably involves the activation and func-
tion of myeloid cells (DCs, macrophages), T cells, NK cells, and B cells.

Changes in chemokines and cytokines between timepoints. To understand peg-IFN-α therapy induced differ-
ences in immune response of responders and non-responders, we analysed the differences in cytokines between 
baseline and before HBsAg loss time-points within each group. A Venn diagram of the cytokines that are sig-
nificantly different between the two time-points is shown (Fig.  3A). Responders showed increased levels of 
IL-2R, CXCL10, CXCL11, IL-23 and sVEGFR2. Increase in IL-2R indicates activation of T cells by IL-2. Elevated 
CXCL10 (IP-10) and CXCL11 suggest a type 1 response. In both groups sTNF-RI increased with IFN-α treat-
ment.

Bayesian network analysis of cytokines. Cytokines and chemokines act as relay messengers helping 
immune cells traffic to the site of infection and co-regulate one another. While statistical analyses show the 
prominent cytokines that are different between responders and non-responders, it fails to account for the com-
plexity of the immune response. However, in a probabilistic network such as Bayesian network, changes in one 
cytokine/chemokine will affect all other variables in the network. This helps in describing the total effects of 
cytokines/chemokines in a complex network on the treatment outcome. Therefore, we used Bayesian probabil-
istic network analysis to examine the contribution of all cytokines in the network with respect to the time-point 
and with respect to HBsAg loss.

Baseline differences between responders and non‑responders. A semi-supervised tree network of the cytokines 
at baseline revealed a select number of cytokines were associated with HBsAg loss (Fig. 4A). The size of the node 

Table 1.  Pearson correlation analysis of cytokines to HBsAg levels at baseline (T0) time-point. Pearson 
correlation coefficient (r) and R square of cytokines to levels of HBsAg at baseline time-point (T0). Only 
cytokines with a two-tailed P value less than 0.05 are shown.

Cytokine versus HBsAg at baseline Pearson r R squared P value (two-tailed)

Type 1 response

IL-12p70 − 0.3985 0.1588 0.0485

IP-10 (CXCL10) − 0.5055 0.2556 0.0099

I-TAC (CXCL11) − 0.5046 0.2546 0.0101

BLC (CXCL13) − 0.5001 0.2501 0.0109

IL-15 − 0.4171 0.174 0.038

IL-18 − 0.4114 0.1692 0.041

MIP-1-alpha (CCL3) − 0.5576 0.3109 0.0038

MIP-1-beta (CCL4) − 0.4426 0.1959 0.0267

T and B cell activation and differentiation

CD40L − 0.4564 0.2083 0.0218

IL-21 − 0.4427 0.196 0.0267

IL-17A − 0.3974 0.1579 0.0492

APRIL − 0.4297 0.1846 0.0321

TRAIL − 0.4689 0.2198 0.0181

IL-16 − 0.4516 0.2039 0.0235

IL-20 − 0.5619 0.3158 0.0035

Chemokines and other factors

MCP-3 (CCL7) − 0.5239 0.2744 0.0072

Eotaxin-2 (CCL24) − 0.5172 0.2675 0.0081

Eotaxin (CCL11) − 0.5089 0.259 0.0094

Eotaxin-3 (CCL26) − 0.4972 0.2472 0.0114

Fractalkine (CX3CL1) − 0.4962 0.2462 0.0116

MDC (CCL22) − 0.421 0.1773 0.0361

MIP-3-alpha (CCL20) − 0.4783 0.2288 0.0156

TNF-RII − 0.4123 0.17 0.0405

TSLP − 0.4549 0.207 0.0223

HGF − 0.4441 0.1972 0.0262

Tweak − 0.4432 0.1964 0.0265
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indicates the probabilities of the factors contributing to HBsAg loss. Positive and negative Pearson correlations 
between the adjoining nodes are indicated by blue and red arcs respectively. Interestingly, a pro-inflammatory 
module with macrophage migration inhibitory factor (MIF) as the major node was positively correlated with 

Figure 2.  Cytokines that are different between responders and non-responders at the time-points tested. (A) 
Cytokines, chemokines and soluble factors that are significantly increased (blue) or decreased (red) in treatment 
responders is shown. Statistical analysis was done using t-test. *Indicates P value < 0.05 (B–D) Modular analysis 
of cytokines and chemokines between responders and non-responders. Bar graphs representing the cytokines 
and chemokines of (B) Type 1 pathway, (C) Type 2 pathway, and (D) Type 17 pathway at the time-point before 
loss of HBsAg are shown. *Indicates P value < 0.05 from t-test with multiple test corrections.
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responders in the network at baseline. Other factors like CCL22 (MDC), CXCL10, CCL20 (MIP-3a), IL-4, and 
G-CSF were positively correlated to MIF. The presence of players from both Type 1 and Type 2 response path-
ways in the baseline network suggests a lack of clear dominance of any one type of response.

Peg‑IFN‑α treatment induced cytokine differences over time within responders and non‑responders. To under-
stand peg-IFN-α therapy induced differences in immune response of the responders and non-responders, we 
analysed the differences in cytokines between baseline and before loss of HBsAg time-points within each group. 
Figure 3B and C show the cytokine network differences between time-points T0 and T1 for non-responders and 
responders, respectively. The levels of sTNFR1 positively correlated with treatment suggesting a TNF-α response 
in both responders and non-responders. Chemokines CXCL1 and CXCL10 were positively correlated to differ-
ences in treatment time-points (ΔT0, T1 in Fig. 3A–B) in the responders suggesting a type 1 immune response. 
The non-responders did not show any difference for these factors between time-points suggesting that there is 
dysregulation of response to IFN-α therapy.

Enhanced type 1 immune response during peg‑IFN‑α treatment in responders compared to non‑responders. Dur-
ing the course of peg-IFN-α treatment and prior to loss of HBsAg, the network was more complex with many 
cytokines and chemokines coming into play hinting at an enhanced response in responders (Fig. 4B). The net-
work of cytokines indicated that at the time-point before HBsAg loss, there is an inflammatory response with 
elevation of many different cytokine modules including Type 1 and Type 2 cytokines. Notably, the HBsAg loss 
group had increased probabilities of elevated levels of the chemokine CXCL9 and soluble form of the recep-
tor for IL-6 (sIL-6R). The type 1 immunity inducing cytokine IL-12p70 was positively correlated to CXCL9. 
Furthermore, the cytokines IL-3, IL-22 and IL-4 and chemokines CCL4, CCL2 (MCP-1), CXCL1 and CCL26 

Figure 3.  Cytokine differences between time-points in responders and non-responders. (A) Venn diagram 
showing the cytokines that are significantly different between baseline (T0) and before HBsAg loss (T1) time-
points. Statistical analysis was done using t-test. Blue and red colour indicates an increase and decrease in levels 
of cytokine at T1 respectively. (B–C) Bayesian network of cytokines that are different between the time-points 
baseline (T0) and before HBsAg loss (T1) in non-responders (B) and responders (C). Size of the nodes indicate 
relative contribution to the difference in cytokines or chemokines between the time-points and the colour of the 
arcs indicate positive (blue) or negative (red) Pearson correlation. The Pearson correlation values for some of the 
adjoining nodes are shown. Network and figures were generated using BayesiaLab software (version 8) (https:// 
www. bayes ia. com/).

https://www.bayesia.com/
https://www.bayesia.com/
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showed positive correlations to CXCL9 in the network. These findings indicate the shaping of an enhanced type 
1 immune response starting with the activation of DCs, as indicated by increase in IL-12, followed by CXCL9 in 
recruitment and activation of NK cells and Th1 cells to liver.

Figure 4.  Cytokine network analysis at different time-points during treatment. Bayesian network of cytokines 
that are associated with responders (patient group) at the baseline time-point (A), at the time-point before 
HBsAg loss (B) and after HBsAg loss (C). Size of the nodes indicate their relative probabilistic contribution 
to the loss of HBsAg and the colour of the arcs indicate positive (blue) or negative (red) Pearson correlation 
between adjoining nodes. The Pearson correlation values for the nodes are as indicated. Network and figures 
were generated using BayesiaLab software (version 8) (https:// www. bayes ia. com/).

https://www.bayesia.com/
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The network of cytokines at time-point after loss of HBsAg (Fig. 4C) indicated a dominant type 1 response 
exemplified by the central node of IL-12p70 that positively correlated to HBsAg loss. The cytokines IL-1a, IL-16, 
IL-18, M-CSF and IL-4 were positively correlated to loss of HBsAg and associated with the IL-12p70 node in the 
network. The soluble receptors sEGFR and sgp130 were found to have negative correlation with loss of HBsAg 
at this time-point similar to that seen at baseline. Chemokines CXCL1, CCL20 (MIP-3a), CCL7 (MCP-3) were 
also connected to the network. Taken together, these network analyses indicated that with IFN-α treatment the 
responders showed activation of an inflammatory pathway with the emergence of type 1 response resulting in 
loss of HBsAg.

Add-on and switch treatments differ in their cytokine responses. We next examined the differ-
ences in the patient’s immune response between add-on and switch treatment arms. We compared the cytokine 
levels between responders and non-responders within each treatment arm using Bayesian network analysis. The 
network of cytokines associating with HBsAg loss in the add-on group is shown (Fig. 5A). Loss of HBsAg posi-
tively correlated to CXCL9 and CXCL11. These were the major contributors to HBsAg loss in the network with 
other cytokines like IL-7, IL-12p70, and IL-4 connected to these two nodes. Other cytokines that contributed 
to loss of HBsAg via CXCL9 and CXCL11 nodes were TRAIL, IL-7, IL-4, M-CSF, MIF and MIP-1b. The CXCL9 
and CXCL11 modules indicated a type 1 immune response with contributions from other cytokines IL-12p70, 
IL-4, IL-7 and IL-20. The levels of some of the cytokines associated with HBsAg loss from the network are shown 
(Suppl Fig. 3A). These results indicate a strong DC driven type 1 response typified by the cytokine IL-12p70 and 
the chemokines CXCL9, CXCL11 in the network.

In the switch treatment arm, however, the cytokine network was less complex compared to that of add-on 
treatment (Fig. 5B). In this network the only node directly associated with HBsAg loss was CD40L. All other 

Figure 5.  Bayesian network analysis of cytokines at the time-point before loss of HBsAg (T2) in the add-on and 
switch arms of treatment. Bayesian network of cytokines contributing to loss of HBsAg in (A) add-on treatment 
and (B) switch treatment. Size of the nodes indicate relative probabilistic contribution of each node to the loss 
of HBsAg and the colour of the arcs indicate positive (blue) or negative (red) Pearson correlation between 
adjoining nodes. The Pearson correlation values for the nodes are as indicated. Network and figures were 
generated using BayesiaLab software (version 8) (https:// www. bayes ia. com/).

https://www.bayesia.com/
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nodes of cytokines like IL-13, IL-4, IL-20, IL-27 and chemokine CCL8 (MCP-2) were connected through the 
central CD40L node. The levels of some of these cytokines in the responders and non-responders are shown 
(Suppl Fig. 3B). Soluble TWEAK, a marker of liver inflammation is also present in the network indicating an 
active inflammation in these  patients13. These results indicate that the immune response in the switch arm of 
treatment is probably mediated by activated T cells which may be the result of a Type 2 response. Taken together, 
these results show that the add-on and switch treatments are quite different in terms of the immune cells and 
immune responses involved in HBsAg clearance.

Discussion
The nature of immune responses resulting in HBsAg loss in CHB patients is not well understood. In this study we 
have employed machine learning and network analysis to unravel the immune responses induced in functionally 
cured CHB patients treated with peg-IFN-α. Machine learning and network analysis is a powerful method to 
analyse complex multidimensional  data14, 15 and has been extensively used for analysing complex data in biology 
and  medicine16, 17.

The impact of HBsAg on exhaustion of HBV T and B cell immune responses has been proposed as the rea-
son for the inability to clear  HBV18, with the duration of exposure to HBsAg and not HBsAg levels, correlating 
strongly with loss of antigen specific T cell frequency and  function19. Our findings strongly demonstrate for the 
first time that low qHBsAg levels at baseline are associated with a pro-inflammatory cytokine and chemokine 
milieu in the responders, and in particular identified a central role for MIF, a pro-inflammatory marker and 
an important regulator of innate immunity, is associated with HBsAg loss. MIF was shown to be increased in 
chronic HBV patients in the immune clearance  phase20. Bayesian analysis also identified other factors at base-
line like CCL22, CXCL11, CXCL10 and IL-4 playing a role in HBsAg loss. These factors associated with MIF in 
the network play important roles in activation, differentiation and trafficking of effector T cells and NK cells to 
the site of  infection21–24. The overall findings indicate that even at baseline the immune milieu was largely pro-
inflammatory that set the scene for interferon response.

During peg-IFN-α treatment there was an elevation of inflammatory cytokines and chemokines in respond-
ers but not in non-responders suggesting a lack of immune response. This immune response in responders 
comprised of an increase in several type 1 immune response cytokines (IFN-γ, TNF-α, IL-12p70, and IL-27). 
IL-12p70 secreted by activated DCs promotes type 1 immune response, and is associated with HBeAg serocon-
version during antiviral  therapy25. Other than a type 1 inflammatory responses, there was evidence of a type 2 
inflammatory response with increased IL-4 and IL-13 in the responders before HBsAg loss. IL-4 seems to have 
an important role as well since it contributes to HBsAg loss in the network at all three time-points. IL-4 has a 
direct antiviral function by its ability to repress promoters of surface and core antigens of  HBV26, and is increased 
in acute self-limiting HBV  infection27 highlighting its importance in controlling viral infection. The presence 
of IL-4 in the network indicates a strong multi-functional T cell response. IL-22 enhances infiltration of T, NK 
and NKT cells to liver and also induces STAT3 activation in liver cells resulting in survival and proliferation of 
 hepatocytes28–30. Therefore, IL-22 may play a dual role in enhancing inflammation while mitigating the cellular 
damage induced by infiltrating immune cells. Consequently, upon peginterferon therapy, the cytokine signature 
of activation of the myeloid compartment with both type 1 and 2 responses are involved in achieving functional 
cure. Chemokines play an important role in attracting immune cells into the liver microenvironment to enhance 
immune responses. In particular, CXCL9, an IFN-γ inducible factor secreted by monocytes and endothelial 
 cells31, recruits other lymphocytes to liver during HBV  infection32 via CXCR3 signalling. This chemokine has 
been shown to be important in sustained anti-viral response with peg-IFN-α  treatment33.

Separate Bayesian analysis of add-on vs switch arm of treatment revealed a differential cytokine/chemokine 
network involved in HBsAg loss. In patients who had add-on peginterferon therapy, the dominant feature was 
MIF, TRAIL and the CXCL9-CXCL11 module. These findings support a dominant type 1 response. In the switch 
arm however, soluble CD40L was the dominant node indicating T cell activation mediated by IL-4, IL-13, IL-27 
and IL-20. CD40L is a co-stimulatory receptor expressed on activated CD4 T cells and plays an important role in 
activation of B cells and other APCs by binding to  CD4034. Our data suggests that the functional cure is achieved 
by more than one immune mechanism with the involvement of both type 1 and type 2 responses, and is probably 
mediated by non-cytolytic function of  cytokines35–37. A dominant myeloid module was observed to be active in 
the add-on arm, while the switch arm showed T cell activation.

Immune responses are seldom due to one particular cell type, cytokine or chemokine but occur as a net-
work response. We have utilized the power of Bayesian analysis in identifying these immune response modules 
rather than individual cytokines or chemokines. We have further shown that Type 1 and Type 2 networks are 
both involved in orchestrating an immune response leading to HBsAg loss. Consequently, we can conclude that 
there are multiple immune networks and more than one immune mechanism involved in HBsAg loss. Further 
interrogation of these networks using PBMCs and liver samples is needed to determine the immune mechanism 
of HBsAg loss. Finally, we show that Bayesian probabilistic analysis is an unbiased machine learning approach 
that provides insights into immune responses leading to HBsAg loss, the hallmark of functional cure in CHB.

Methods
Patients and samples. In this randomised control  study12, CHB patients were enrolled to three different 
arms of therapy, as shown in Fig. 1A and Supplementary Fig. 1A. Out of the 202 patients receiving NA switched 
to peg-IFN-α, or NA+ peg-IFN-α, 17 patients achieved HBsAg loss (8%). Patients in the switch arm stopped NA 
4 weeks after randomisation while in the add-on arm, NA was continued till the end of study at week 72. The 
study was approved by the National Healthcare Group Domain Specific Review Board, Singapore (NHG DSRB 
Ref: 2016/00713). The research was performed in accordance with all relevant regulations, and informed consent 
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was obtained from all participants and performed in accordance with the Declaration of Helsinki. The study was 
registered in clinicaltrials.gov (NCT01928511) on 26/08/2013. A total of 26 patients (12 patients without HBsAg 
loss (non-responders) and 14 with HBsAg loss (responders) were then selected. Plasma samples collected at 
three time-points (baseline, before HBsAg loss and after HBsAg loss) were analysed. HBsAg loss was defined as 
a negative result on the ARCHITECT HBsAg Qualitative II assay (Abbott Diagnostics, Abbott Park, IL, USA) 
at week 72 of the study.

Multiplex cytokine and chemokine analysis. Plasma samples were analysed for a panel of cytokines, 
chemokines and soluble factors (Table 2). A total of 87 analytes (Supplementary Table 1) were measured using 
3 multiplex panels; Immune Monitoring 65-plex ProcartaPlex Panel (Thermofisher, Waltham, Massachusetts, 
USA), Human Soluble Cytokine Receptor Panel and Human Liver Protein Panel (Merck Millipore, Billerica, 
MA, USA) (Supplementary Table  1). Assays were performed as per manufacturer’s instructions. Plates were 
washed using Tecan Hydrospeed Washer (Tecan, Männedorf, Switzerland) and read with Flexmap 3D system 
(Luminex Corp, Austin, TX, USA). Data were analyzed using the Bio-Plex manager 6.2 software with a 5-param-
eter curve-fitting algorithm applied for standard curve calculations.

Data normalization and statistical analysis. Cytokine concentrations were log transformed and nor-
malised for plate variations using ComBat from Bioconductor package sva based on a plasma reference sample 
that was run along with samples in all the  plates38. Data normalisation was confirmed using PCA analysis of data 
from different batches/plates. Only normalised values were used for analysis and reported in this manuscript. 
Differences in plasma cytokine concentrations between groups were calculated using the student t-test and cor-
rected for multiple comparisons using Bonferroni’s method where indicated in the figure legends. Associations 
of cytokine concentrations with clinical parameters were determined using Spearman Rank correlations. Graph-
pad prism (version 8) and R software version 3.1.2 were used for statistical  computation39. Heatmaps were gener-
ated using Heatmapper (www. heatm apper. ca)40.

Bayesian probabilistic network analysis. Probabilistic machine-learning network analysis was per-
formed using BayesiaLab software (version 8) (https:// www. bayes ia. com/). Data discretization was performed 
using supervised multivariate approach with the parameter HBsAg loss as target node. Data were discretized 
into two bins and analysed using optimised structural co-efficient (alpha) values for each time-point. Networks 
were generated by semi-supervised approach using Maximum Weight Spanning Tree algorithm along with 
Taboo order post processing to ensure robust network generation. The networks were then graphed for the prob-
ability contribution of nodes to the target node and the Pearson correlation values between adjoining nodes. For 
the networks looking at responders and non-responders, pooled data from both treatment arms were used. The 
HBsAg loss status was assigned as the target node and the network was constructed around it as described above. 
For analyses of responders and non-responders in the two treatment arms, networks were generated using data 
from each treatment arm separately. Similar workflow was used for generating networks using time-points as 
target nodes for analysis of treatment-induced changes between responders and non-responders (Delta T0, T1).
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