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Background.2e prediction of hepatocellular carcinoma (HCC) survival is challenging because of its rapid progression. In recent
years, necroptosis was found to be involved in the progression of multiple cancer types. However, the role of necroptosis in HCC
remains unclear. Methods. Clinicopathological parameters and transcriptomic data of 370 HCC patients were obtained from
TCGA-LIHC dataset. Prognosis-related necroptosis genes (PRNGs) were identified and utilized to construct a LASSO risk model.
2e GEO cohorts (GSE54236 and GSE14520) were used for external validation. We evaluated the distribution of HCC patients,
the difference in prognosis, and the accuracy of the prognostic prediction of the LASSO risk model. 2e immune microen-
vironment and functional enrichment of different risk groups were further clarified. Finally, we performed a drug sensitivity
analysis on the PRNGs that constructed the LASSOmodel and verified their mRNA expression levels in vitro. Results:A total of 48
differentially expressed genes were identified, 23 of which were PRNGs. We constructed the LASSO risk model using nine genes:
SQSTM1, FLT3, HAT1, PLK1, MYCN, KLF9, HSP90AA1, TARDBP, and TNFRSF21. 2e outcomes of low-risk patients were
considerably better than those of high-risk patients in both the training and validation cohorts. In addition, stronger bile acid
metabolism, xenobiotic metabolism, andmore active immune cells and immune functions were observed in low-risk patients, and
high expressions of TARDBP, PLK1, and FLT3 were associated with greater drug sensitivity. With the exception of FLT3, the
mRNA expression of the other eight genes was verified in Huh7 and 97H cells. Conclusions. 2e PRNG signature provides a novel
and effective method for predicting the outcome of HCC as well as potential targets for further research.

1. Introduction

Necroptosis is a unique type of inflammatory programmed
cell death that occurs when apoptotic pathways are halted or
inhibited, and TNF-α, Fas ligand, and tumor necrosis factor-
related apoptosis-inducing ligand stimulated death recep-
tors—TNFR1, TNFR2, and FAS—are the most prevalent
triggers [1]. 2e role of necroptosis in the progression of
cancer is complicated. On the one hand, tumor cells can be
eliminated directly by the process of necroptosis [2]. In
addition, necroptosis supplies antigens and inflammatory

stimuli to dendritic cells to kick-start acquired immunity,
which then activates CD8+T cells and antitumor immune
responses [3]. On the other hand, inflammatory responses
caused by cytokines released by necrotic cells can promote
the development of tumors [4, 5]. Recently, a prognosis-
related necroptosis gene signature was used to predict the
prognosis and describe the immune microenvironment in
human tumors [6, 7].

Hepatocellular carcinoma (HCC) is one of the most
aggressive tumors, and the risk factors predominantly in-
clude HBV and HCV infection, alcoholic liver disease, and
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nonalcoholic fatty liver disease [8]. It has been found that
hepatocytes can form different types of tumors (intrahepatic
cholangiocarcinoma and HCC), which are mainly determined
by the mode of cell death (apoptosis and necroptosis) in the
tumor microenvironment [9]. In addition, chronic inflam-
mation is an important driving factor for the development of
hepatocellular carcinoma, since the release of damage-associ-
ated molecular patterns associated with necroptosis can pro-
mote angiogenesis and cell proliferation, thus promoting
tumor growth and metastasis [10]. Furthermore, the selection
of targeted medicines as well as survival prediction remains
major challenges because of the lack of effective molecular
prognostic indicators. 2erefore, we identified differentially
expressed genes (DEGs) associated with necroptosis in this
study, which was applied to develop a predictive model and
describe immunological features in various modes. Our
findings will provide a thorough overview of necroptosis-re-
lated genes that may have a role in the development of HCC as
well as a novel perspective on the clinical application of im-
munotherapy drugs.

2. Materials and Methods

2.1. Datasets. We obtained the transcriptomic expression
data and clinicopathological information of 370 HCC pa-
tients from 2e Cancer Genome Atlas-Liver Hepatocellular
Carcinoma (TCGA-LIHC) database (https://portal.gdc.
cancer.gov/projects/TCGA-LIHC) in October 2021. 2e
same data of 78 and 221 HCC patients were obtained from
the two Gene Expression Omnibus cohorts (GEO, ID :
GSE54236 and GSE14520, https://www.ncbi.nlm.nih.gov/
geo/) respectively.

2.2. Analysis of DEGs Associated with Necroptosis. We
identified 67 genes associated with necroptosis from a
previous study [11], which are presented in Supplementary
Table 1. We utilized the “Limma” R package to normalize the
mRNA expression levels and screened DEGs associated with
necroptosis in TCGA-LIHC. 2e associations of DEGs were
obtained by the protein-protein interaction network (PPI
network; https://string-db.org/cgi/input.pl), and Cytoscape
was used to visualize the results and obtain hub genes. We
analyzed the relationship between all DEGs and prognosis
using Gene Expression Profiling Interactive Analysis
(GEPIA) platform (http://gepia.cancer-pku.cn/) and ex-
plored their mutation characteristics using GSCALite
platform (http://bioinfo.life.hust.edu.cn/GSCA/).

2.3. Clustering Analysis of TCGA-LIHC According to DEGs.
We further screened out prognostic DEGs by univariate Cox
regression (p< 0.05). Based on these DEGs, we performed a
cluster analysis (“ConsensusClusterPlus” R package) and ex-
plored clinicopathological differences between different clusters.

2.4. Construction and Validation of the Least Absolute
Shrinkage and SelectionOperatorRegressionModel. We used
the “GLMnet” R package to build the least absolute

shrinkage and selection operator (LASSO) regression
model. 2e specific method was described previously [12].
In short, nine genes were used to establish a risk model
and divided TCGA-LIHC into high-risk and low-risk
groups according to the median risk score. 2en, the
mRNA levels of the GSE54236 and GSE14520 cohorts
were standardized as a validation cohort via the “sva”
function in R. 2e risk score of each HCC patient was
calculated according to the same formula. Overall survival
(OS) of the two subgroups was compared based on the
Kaplan–Meier analysis. Principal component analysis
(PCA) and t-distributed stochastic neighbor embedding
(t-SNE) analysis were performed by the “t-SNE” package
in R. 2e receiver operating curve (ROC) and area under
the curve (AUC) of 1-, 3-, and 5-year OS were analyzed
using the “survivalROC” package in R.

2.5. Functional Enrichment Analysis. Gene set enrichment
analysis (GSEA) with h.all.v7.2.symbols gene sets was used
to investigate potential biological functions according to risk
scores. In addition, we calculated the difference in the im-
mune cell enrichment fraction and function between high-
and low-risk groups by single-sample gene set enrichment
analysis (ssGSEA) [13].

2.6. Cell Culture. 2e cells and culture conditions were as
follows: human normal liver cell line LO-2 (RPMI-1640
containing 10% FBS), and HCC cell lines Huh7 (MEM con-
taining 10% FBS) and 97H (DMEM containing 10% FBS) in a
5% CO2 incubator at 37°C. 2e total RNA was extracted with
TRIZOL (Invitrogen) reagent. 2en, cDNA was obtained by
reverse transcription with cDNA Synthesis Mix (E047-01B;
Novoprotein) and analyzed by quantitative PCR (E096-01B;
Novoprotein). 2e mRNA expression levels were normalized
againstGAPDH expression. All primers used for the nine genes
in this study are listed in Supplementary Table S2.

2.7. Statistical Analysis. All statistical analyses were com-
pleted by R software 4.0.1, and p< 0.05 were considered to be
statistically significant.

3. Results

3.1. Identification ofDEGs,HubGenes, andMutationPatterns
Associated with Necroptosis. 2e expression levels of a total
of 67 genes with necroptosis were calculated, and we
identified 10 downregulated genes (ID1, BACH2, AXL,
MYC, GATA3, TLR3, FLT3, KLF9, TNFRSF1A, and FAS)
and 38 upregulated genes (HDAC9,DDX58, CYLD,MAPK8,
CFLAR, MPG, RIPK1, TARDBP, SIRT2, BRAF, BCL2L11,
OTULIN, ATRX, DIABLO, STUB, SPATA2, MLKL,
MAP3K7,HAT1, FADD, ITPK1,CASP8,HSP90AA1, RNF31,
HSPA4, USP22, TNFRSF21, SLC39A7, TSC1, SQSTM1,
TRIM11, TRAF2, DNMT1, LEF1, PLK1, MYCN, CDKN2A,
and TERT) in tumor tissue compared with normal tissue.
2e visual results of the DEGs are shown in a heatmap in
Figure 1(a). 2e correlation network is shown in
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Figure 1(b). A PPI network was used to identify the in-
teractions between DEGs, which was displayed in Cyto-
scape, and the MCC algorithm in Cytohubba plug-in was
used to calculate the top 10 hub genes (Figure 1(c)). A
missense mutation was the main single nucleotide mu-
tation type (Figure 1(d)). 2ese genes also had different
levels and types of copy number variation (Figure 1(e))
and showed different patterns of methylation
(Figure 1(f )).

3.2. Relationship BetweenHubGenes and Prognosis. We used
the GEPIA platform to calculate the relationship between hub
genes and prognosis. For OS, FADD,MAP3K7, and TNFRSF1A
were associated with worse outcomes (p< 0.05) and CFLAR,
SQSTM1, and RIPK1 showed the same trend. In addition, the
high expression of TRAF2 was associated with shortened dis-
ease-free survival (p< 0.05), and CASP8, FADD, and SQSTM1
showed the same trend (Supplementary Figure 1). Other genes
had no significant correlation with prognosis.

3.3. HCC classification according to prognostic-related nec-
roptosis genes (PRNGs). We identified 23 PRNGs using

univariate Cox analysis. KLF9 and FLT3 were associated
with better prognosis (hazard ratio <1), whereas FADD,
TRIM11, CASP8, IPMK, TRAF2, USP22, MAP3K7,
SQSTM1, DNMT1, BRAF, CDKN2A, HSPA4, HAT1,
PLK1, MYCN, SLC39A7, SPATA2, IDH1, HSP90AA1,
TARDBP, and TNFRSF21 were associated with worse
prognosis (hazard ratio >1, Figure 2(a)). We performed a
cluster analysis and divided TCGA-LIHC into two cate-
gories according to CDF values (Figures 2(b)–2(d)). 2e
survival analysis results showed that cluster 1 had a better
prognosis than cluster 2 (Figure 2(e)), and the clinico-
pathological parameters of the two clusters were signifi-
cantly different, which suggested that different clinical
features represent different necroptosis patterns
(Figure 2(f )).

3.4. Establishment and Validation of a PRNG LASSO Risk
Model in TCGA Training Cohort and GEO Test Cohorts.
We performed LASSO regression analysis using 23 PRNGs
in TCGA-LIHC training cohort to establish the prognostic
model. To minimize overfitting, nine genes were used to
generate the final TCGA LASSO risk model (Figures 3(a)
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Figure 1: Screening of DEGs in HCC patients from TCGA database. (a) Expression heatmap of DEGs between normal and tumor tissues in
TCGA-LIHC cohort. (b) Interaction between DEGs visualized by Cytoscape (red: positive correlation; blue: negative correlation.2e depth
of the color represents the strength). (c) Identification of hub genes according to the MCC algorithm. Single nucleotide variation (d), copy
number alterations (e), and methylation state (f ) of hub genes.
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and 3(b)), and the risk genes and their coefficients are shown
in Table 1. 2e formula used to calculate risk scores was as
follows: Sum of (gene expression∗coefficient). Based on the
median risk score, TCGA-LIHC patients were divided into
high- and low-risk groups (Figure 3(c)). 2ere were more
deaths and poorer OS in the high-risk group (Figures 3(d)
and 3(e)). 2e subsequent ROC analysis revealed that the
risk model could accurately assess and predict the survival of

HCC patients (AUC at 1, 3, and 5 years was 0.789, 0.735, and
0.703, respectively; Figure 3(f )). Finally, the PCA plot and
t-SNE plot revealed that the risk models could distinguish
the high- and low-risk groups to some extent (Figures 3(g)
and 3(h)). Heatmaps showed worse staging and pathological
grade in the high-risk group (Figure 3(i)).

2e prognostic assessment of the risk model was well
reproduced in the GEO validation cohort. We first used

pvalue Hazard ratio
FADD 0.012
TRIM11 0.023
CASP8 0.005
IPMK 0.001
TRAF2 0.003
USP22 0.007
MAP3K7 0.003
SQSTM1 <0.001
DNMT1 <0.001
BRAF 0.044
CDKN2A 0.003
HSPA4 <0.001
FLT3 0.012
HAT1 <0.001
PLK1 <0.001
MYCN <0.001
SLC39A7 0.020
SPATA2 0.029
IDH1 0.048
KLF9 0.012
HSP90AA1 <0.001
TARDBP <0.001
TNFRSF21 0.010

0 1 2 3 4 5
Hazard ratio

1.430 (1.081-1.892)
1.457 (1.052-2.017)
1.632 (1.157-2.301)
1.698 (1.238-2.329)
1.466 (1.141-1.883)
1.435 (1.102-1.869)
1.723 (1.202-2.469)
1.390 (1.179-1.640)
1.435 (1.159-1.777)
1.543 (1.011-2.356)
1.249 (1.077-1.448)
1.873 (1.333-2.632)
0.516 (0.307-0.865)
2.126 (1.499-3.014)
1.585 (1.332-1.887)
1.382 (1.172-1.630)
1.304 (1.042-1.632)
1.563 (1.047-2.334)
1.276 (1.002-1.625)
0.817 (0.699-0.957)
1.568 (1.218-2.019)
3.052 (1.843-5.055)
1.198 (1.044-1.374)

(a)

consensus matrix k=2

1
2

(b)

0.0

0.2

0.4

CD
F

0.6

0.8

1.0

0.0 0.2 0.4
consensus index

consensus CDF

0.6 0.8

2
3
4

5
6
7

8
9

1.0

(c)

2
0.0

0.1

re
lat

iv
e c

ha
ng

e i
n 

ar
ea

 u
nd

er
 C

D
F 

cu
rv

e
0.2

0.3

0.4

Delta area

3 4 5 6
k

7 8 9

(d)

210

0.00

0.25
p<0.001

0.50

0.75

Su
rv

iv
al

 p
ro

ba
bi

lit
y

1.00

Cl
us

te
r

Cluster

Number at risk

3 4 5
Time (years)

6 7 8 9 10

210

C1
C2

C1
C2

139
231

79
182

40
100

26
64

16
47

8
32

8
18

4
5

2
4

2
2

1
0

3 4 5
Time (years)

6 7 8 9 10

(e)

N
M

TRIM11

FADD

−4

−2

0

2

4

N
N0
N1
unknow

M
M0
M1
unknow

T***
T1
T2
T3
T4
unknow

Stage***
Stage I
Stage II
Stage III
Stage IV
unknow

Grade***
G1
G2
G3
G4
unknow

Gender*
FEMALE
MALE

Age*
<=65
>65

Cluster
C1
C2

TNFRSF21

HSP90AA1

KLF9

MYCN

PLK1

HAT1

CDKN2A

BRAF

DNMT1

SQSTM1

MAP3K7

USP22

TRAF2

IPMK

CASP8

Cluster
Age*
Gender*
Grade***
Stage***
T***

(f )

Figure 2: Identification of the molecular subtypes of TCGA-LIHC according to PRNGs. (a) Forest plot of univariate Cox regression analysis
according to PRNGs. (b, c, d) TCGA-LIHC patients were divided into two groups based on the consensus clustering matrix (k� 2). (e)
Kaplan–Meier OS curves in the two clusters. (f ) Correlations between the two groups and their clinicopathological characteristics are
depicted in a heatmap.
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SE14520 to validate the risk model. 2e risk scores of 221
HCC patients were calculated according to the previous
formula, and 96 patients were assigned to the low-risk group
and 125 to the high-risk group (Figure 4(a)). Patients in the
low-risk group had longer OS (Figures 4(b) and 4(c)). 2e
AUC of 1-year, 3-year, and 5-year OS was 0.688, 0.637,
and 0.643, respectively (Figure 4(c)), and the PCA plot
and t-SNE plot revealed that the risk genes were effective
in distinguishing between the two risk groups

(Figure 4(d)). 2e GSE54236 cohort containing 78 HCC
patients showed similar results, and the AUC of 1-year
and 3-year OS was 0.665 and 0.631, respectively (Sup-
plementary Figure 2).

3.5. Independent Prognostic Analysis and Establishment of a
Prognostic Nomogram Based on TCGA-LIHC. We further
evaluated whether the risk model could be used as an
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Figure 3: Construction of a LASSO risk model based on TCGA-LICH training cohort. (a, b) Construction of the LASSO regression model
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independent predictor of prognosis. For the training
cohort, TNM staging (p< 0.001, HR � 3.084, 95% CI:
1.955–4.866) and risk score (p< 0.001, HR � 4.480, 95%
CI: 2.975–6.746) were possible risk factors in the uni-
variate Cox regression analysis (Figure 5(a)). In the
multivariate analysis, the risk score was an independent
prognostic factor (p< 0.001, HR � 4.010, 95% CI:
2.645–6.081; Figure 5(b)). For the GSE14520 cohort, risk
score is also an independent prognostic factor (p � 0.003,
HR � 2.209, 95% CI: 1.307–3.734; Figures 5(c) and 5(d)).
Finally, we created a novel prognostic nomogram based
on the training cohort that incorporates risk scores and
clinical data to provide a credible method for predicting
HCC patient survival (Figure 5(e)).

3.6. Functional Enrichment Analysis. We further attained
DEGs (logFC >0.585,p< 0.05) to distinguish the biological
functions and networks associated with the risk group in the
training and validation cohorts. Total GSEA analysis results
are presented in Supplementary Table 3. Figure 6(a) shows
that the top five hallmarks, SPERMATOGENESIS, MITO-
TIC_SPINDLE, G2M_CHECKPOINT, E2F_TARGETS,
and MYC_TARGETS_V1, were associated with the high-
risk subgroup, while three hallmarks, COAGULATION,
BILE_ACID_METABOLISM, and XEN-
OBIOTIC_METABOLISM, were more enriched in the low-
risk subgroup in the training cohort. 2e enrichment
analysis results of the two validation cohorts were similar to
the training cohort (Figures 6(b) and 6(c)).

3.7. Differences in the Tumor Immune Microenvironment
Associated with Risk Subgroups. Despite the lack of effective
immunotherapeutic biomarkers for HCC, the immune score
of the tumor immune microenvironment is a promising
indicator. 2erefore, we further investigated 16 types of
immune cells and 13 types of immune functions in different
risk subgroups according to ssGSEA.We found that low-risk
patients had more activated immune cells and functions in
both the training cohort and the validation cohorts (Fig-
ure 7), which may be the reason for the better prognosis of
low-risk patients.

3.8. Relationship Between Risk Model Genes and Drug
Sensitivity. By analyzing the GDSC and CTRP databases,
potential drugs were found to be associated with genes

involved in the risk model. In general, we found that high
expression of TNFRSF21 and SQSTM1 mostly reduced drug
sensitivity, while the high expression of TARDBP, PLK1, and
FLT3 enhanced drug sensitivity (Figure 8).

3.9. Validation of the Expression of Risk Model Genes. We
compared the mRNA levels of the risk model genes in two
HCC cell lines (Huh7 and 97H) and a normal liver cell line
(LO-2). 2e expression of all the other genes was con-
sistent with the previous results except for the increased
expression of FLT3 in tumor cell lines (Figures 9(a)–9(i)).
It is reported that FLT3 promotes the proliferation and
migration of HCC, so we further investigated the reasons
for the decrease in FLT3 expression. 2e results showed
that FLT3 copy number deletion mutation exists in 37.5%
of patients in TCGA-LIHC which is related to the level of
mRNA expression (Figures 9(j)–9(k)).

In addition, protein expression levels of risk model genes
(HAT1, SQSTM1, TARDBP, and HSP90AA1) were obtained
from the CPTAC database (Figure 10(a)). Meanwhile, we
verified the protein expression levels of HAT1, SQSTM1,
PLK1, HSP90AA1, TARDBP, and TNFRSF21 using the HPA
database (Figure 10(b)).

4. Discussion

HCC is the second most lethal tumor after lung cancer,
and there were approximately 830,180 new deaths
worldwide in 2020 [14]. In recent years, the traditional
prognostic evaluation system based on clinicopathological
parameters and staging has not been able to meet the
requirements of precision medicine [15]. With the de-
velopment of sequencing technology, researchers have
paid more attention to the molecular typing of diseases
and the seeking of new biomarkers to guide clinical di-
agnosis and treatment [16]. 2is strategy not only com-
plements the traditional prognosis evaluation, but also
reveals a new pathogenesis. Necroptosis is a unique way of
cell death. Recently, its characteristics have been de-
scribed in a variety of human tumors. Generally,
according to different subtypes of necroptosis, the
prognosis of patients can be accurately predicted [6, 7]. In
hepatocellular carcinoma, it has been recognized that
necroptosis is a double-edged sword that provides the
inflammatory environment required for carcinogenesis,
while the immune response is launched to fight against

Table 1: Risk genes and coefficients based on TCGA-LIHC.

Gene Coefficient
SQSTM1 0.19065746423157
FLT3 −0.441569284806212
HAT1 0.0328900450017848
PLK1 0.214656176920298
MYCN 0.218448389883388
KLF9 −0.013711346071549
HSP90AA1 0.131284235992642
TARDBP 0.31939225321784
TNFRSF21 0.0404023046649232
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tumors [17]. However, the signature of necroptosis genes
has not been fully described in HCC.

2is study systematically identified DEGs related to
necroptosis in patients with HCC. First, we found that 10
genes were downregulated and 38 genes were upregulated in
tumor samples. 2en, we performed consistent clustering
according to 23 PRNGs and found that patients with HCC
could be divided into two subtypes between which the
survival time differed substantially. Interestingly, the clusters
were associated with clinicopathological parameters, which
means that the strong inflammation caused by necroptosis
compels tumor cells face severe natural selection, which
leads to stronger invasiveness of some subclones and poor

prognosis. Subsequently, nine genes were used to build a
LASSO risk model according to the training cohort, which
was well verified in the test cohorts. We found that risk score
was an independent prognostic factor and mapped a no-
mogram to predict the OS of HCC patients. We further
illuminated the functional enrichment characteristics of
different risk subgroups. Mitotic spindle disruption [18],
E2F [19], MYC pathways [20], mTORC1 signaling [21], and
G2/M cell cycle [22] enriched in the high-risk group are all
associated with the stronger invasiveness of HCC.

HCC is characterized by low tumor mutational burden
and microsatellite stability, and the expression of immune
checkpoints fails to predict the response of patients to

Hazard ratiopvalue

Age (<=65 vs >65) 0.965 1.011 (0.620-1.649)

Gender (Male vs Female) 0.295 0.778 (0.487-1.244)

Grade (1+2 vs 3+4) 0.770 1.071 (0.678-1.690)

Stage (I+II vs III+IV) 3.084 (1.955-4.866)

riskScore <0.001 4.480 (2.975-6.746)

0.25 0.5 1 2
Hazard ratio

4 8

<0.001

(a)

2.434 (1.530-3.871)

<0.001riskScore 4.010 (2.645-6.081)

1 2
Hazard ratio

4 8

‘Stage (I+II vs III+IV)’ <0.001

Hazard ratiopvalue

(b)

riskScore <0.001

0.125 0.25 0.5 1 2 4 8
Hazard ratio

pvalue Hazard ratio

Age (<=65 vs >65) 0.124 0.455 (0.167-1.242)

1.694 (0.818-3.512)

3.516 (2.241-5.514)

2.744 (1.623-4.638)

Stage (I+II vs III+IV) <0.001

Gender (Male vs Female) 0.156

(c)

2.209 (1.307-3.734)

3.121 (1.969-4.946)

1 2 4 8
Hazard ratio

Hazard ratiopvalue

riskScore 0.003

‘Stage (I+II vs III+IV)’ <0.001

(d)

Points

TNM Staging

riskScore

Total Points

Linear Predictor

1-year Survival Probability 

3-year Survival Probability 

5-year Survival Probability

0 20 40 60 80 100

3

Stage I+II

Stage III+IV

4 5 6

0 20 40 60 80 100 120

−2.5 −1.5 −0.5 0.5 1.5 2.5

0.8 0.6 0.4 0.2

0.8 0.6 0.4 0.2

0.8 0.6 0.4 0.2

(e)

Figure 5: Independent prognostic analysis and nomogram. (a) Univariate and (b) multivariate Cox analyses of TCGA-LIHC training
cohort. (c, d) Risk score was also an independent prognostic risk factor for the validation cohort. (e) Nomogram incorporating a risk score
that can be used to forecast OS in HCC patients.

8 Journal of Oncology



HALLMARK MITOTIC SPINDLE

HALLMARK COAGULATION

HALLMARK BILE ACID METABOLISM

HALLMARK XENOBIOTIC METABOLISM

−2.0 −1.5 −1.0 −0.5

TCGA

HALLMARK G2M CHECKPOINT

HALLMARK E2F TARGETS

HALLMARK MYC TARGETS V1

HALLMARK MTORC1 SIGNALING

0.5 1.0 1.5

(a)

HALLMARK XENOBIOTIC METABOLISM
HALLMARK MYC TARGETS V1

HALLMARK MITOTIC SPINDLE

HALLMARK E2F TARGETS

0.5 1.0 1.5 2.0

HALLMARK G2M CHECKPOINT

HALLMARK TNFA SIGNALING VIA
NFKB

GSE14520

HALLMARK BILE ACID METABOLISM

HALLMARK COAGULATION

−3 −2 −1

(b)

HALLMARK MITOTIC SPINDLE

0.5 1.0 1.5 2.0

HALLMARK G2M CHECKPOINT

HALLMARK E2F TARGETS

HALLMARK MYC TARGETS V1

HALLMARK MTORC1 SIGNALING

GSE54236

HALLMARK BILE ACID METABOLISM

HALLMARK FATTY ACID METABOLISM

HALLMARK XENOBIOTIC METABOLISM

HALLMARK MYOGENESIS

HALLMARK HYPOXIA

−2 −1

(c)

Figure 6: 2e results of GSEA were similar to the three cohorts. (a) TCGA-LIHC training cohort. (b) GSE14520 validation cohort. (c)
GSE54236 validation cohort.

Journal of Oncology 9



1.00 TCGA
* *** *** ****** *** *** **

0.75

0.50Sc
or
e

0.25

0.00

Risk
low
high

aD
Cs

B_
ce
lls

CD
8+

_T
_c
el
ls

D
Cs

iD
Cs

M
ac
ro
ph

ag
es

M
as
t_
ce
lls

N
eu
tro

ph
ils

N
K_

ce
lls

pD
Cs

T_
he
lp
er
_c
el
ls

Tfh
Th

1_
ce
lls

Th
2_
ce
lls TI
L

Tr
eg

1.00 *** ****** *

0.75

0.50Sc
or
e

0.25

A
PC

_c
o_

in
hi
bi
tio

n

A
PC

_c
o_

sti
m
ul
at
io
n

CC
R

Ch
ec
k-
po

in
t

Cy
to
ly
tic

-a
ct
iv
ity

H
LA

In
fla
m
m
at
io
n-
pr
om

ot
in
g

M
H
C-

cla
ss
_I

Pa
ra
in
fla
m
m
at
io
n

T_
ce
ll_

co
-in

hi
bi
tio

n

T_
ce
ll_

co
-s
tim

ul
at
io
n

Ty
pe
_I
_I
FN

_R
ep
on

se

Ty
pe
_I
I_
IF
N
_R

ep
on

se

Risk
low
high

(a)

GSE14520

Sc
or
e

1.00

0.75

0.50

0.25

0.00

aD
Cs

B_
ce
lls

CD
8+

_T
_c
el
ls

D
Cs

iD
Cs

M
ac
ro
ph

ag
es

M
as
t_
ce
lls

N
eu
tro

ph
ils

N
K_

ce
lls

pD
Cs

T_
he
lp
er
_c
el
ls

Tfh
Th

1_
ce
lls

Th
2_
ce
lls TI
L

Tr
eg

1.00 *****

********

0.75

0.50Sc
or
e

0.25

A
PC

_c
o_

in
hi
bi
tio

n

A
PC

_c
o_

sti
m
ul
at
io
n

CC
R

Ch
ec
k-
po

in
t

Cy
to
ly
tic

-a
ct
iv
ity

H
LA

In
fla
m
m
at
io
n-
pr
om

ot
in
g

M
H
C-

cla
ss
_I

Pa
ra
in
fla
m
m
at
io
n

T_
ce
ll_

co
-in

hi
bi
tio

n

T_
ce
ll_

co
-s
tim

ul
at
io
n

Ty
pe
_I
_I
FN

_R
ep
on

se

Ty
pe
_I
I_
IF
N
_R

ep
on

se
Risk

low
high Risk

low
high

(b)

10 Journal of Oncology



immunotherapy [23]. 2erefore, evaluation of the tumor im-
mune microenvironment may be the critical index of immu-
notherapy in the future [24]. Recent studies revealed that
immune checkpoint inhibitors cannot activate exhausted Tcells,
and the characteristic of “hot” tumor (innate attraction of Tcells)
is the key to the effectiveness of immunotherapy [25, 26].
Conceivably, the low-risk patients may benefit from immu-
notherapy due to more active immune cells and a stronger
immune function. In addition, we also conducted drug sensi-
tivity analysis and found that high expression of TNFRSF21 and
SQSTM1mostly reduced drug sensitivity, while high expression
of TARDBP, PLK1, and FLT3 enhanced drug sensitivity.

SQSTM1, TNFRSF21, TARDBP, HAT1, PLK1, MYCN,
KLF9, HSP90AA1, and FLT3 were applied in the construction
of the LASSO riskmodel. SQSTM1 is reported as an autophagy
receptor that can serve as a bridge between polyubiquitinated
cargo and autophagosomes as well as mediate necroptosis by
recruiting RIPK1 [27]. SQSTM1, TNFRSF21, and TARDBP
have rarely been reported in HCC, but they are associated with
poor outcomes (Figure 2). HAT1 is an acetyltransferase that
can form a complex with RIP1/3 to reduce programmed cell
death [28]. PLK1 can activate the NF-κB signaling pathway to
promote HCC development; thereby, harnessing necroptosis
through inhibiting PLK1 may be a promising treatment
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Figure 7: Both the training cohort and the validation cohorts revealed richer immune cell infiltration and immune function in low-risk
patients. (a) TCGA-LIHC training cohort. (b) GSE14520 validation cohort. (c) GSE54236 validation cohort. (∗p< 0.05; ∗∗p< 0.01;
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strategy [29, 30].MYCN [31] andHSP90AA1 [32] can promote
HCC by activating the MYC pathway.

FLT3was the only gene in our validation experiment that
was inconsistent with the results of the bioinformatic
analysis. FLT3 belongs to the receptor tyrosine kinase family,
which is more widely reported in hematological diseases
[33]. Sorafenib is the first-line drug for HCC and is a multi-
kinase inhibitor, targeting FLT3 among others. 2e previous
results showed that the mRNA expression of FLT3 was
decreased in 64% of patients with HCC because of the loss of
gene copy number; however, patients with high FLT3

expression benefit from sorafenib, which improves prog-
nosis [34]. 2erefore, the high expression of FLT3 promotes
the proliferation and migration of HCC [35], which may be
the reason for the high expression of FLT3 in vitro.

2ere were some limitations that need to be clarified in
this study. First, patients with HCC were not stratified
according to different primary factors (such as nonalcoholic
fatty liver disease-associated hepatocellular carcinoma and
hepatitis virus-associated hepatocellular carcinoma), and
there might be necroptosis signature heterogeneity in dif-
ferent population. Second, bioinformatics provides an initial
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strategy for screening genes, but the function of these genes
needs to be further explored via protein analysis and in vitro/
vivo experiments.

5. Conclusion

2is study established a valuable risk model based on
necroptosis genes, which can effectively predict the prog-
nosis of patients with HCC. Our results provided some
potential biomarkers and targets, and further research will
assist in elucidating the role of necroptosis genes in the
progression of HCC.
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(d) ROC analysis. (e) PCA analysis. Supplementary Table 1.
Necroptosis gene list. Supplementary Table 2. Gene primer.
Supplementary Table 3. Total GSEA analysis results. (Sup-
plementary Materials)
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