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Abstract

Since milk yield is a highly important economic trait in dairy cattle, the genome-wide associa-

tion study (GWAS) is vital to explain the genetic architecture underlying milk yield and to

perform marker-assisted selection (MAS). In this study, we adopted a haplotype-based

empirical Bayesian GWAS to identify the loci and candidate genes for milk yield. A total of

1 092 Holstein cows were sequenced by using the genotyping by genome reducing and

sequencing (GGRS) method. After filtering, 164 312 high-confidence SNPs and 13 476

haplotype blocks were identified to use for GWAS. The results indicated that 17 blocks were

significantly associated with milk yield. We further identified the nearest gene of each haplo-

type block and annotated the genes with milk-associated quantitative trait locus (QTL) inter-

vals and ingenuity pathway analysis (IPA) networks. Our analysis showed that four genes,

DLGAP1, AP2B1, ITPR2 and THBS4, have relationships with milk yield, while another

three, ARHGEF4, TDRD1 and KIF19, were inferred to have potential relationships. Addi-

tionally, a network derived from the IPA containing one inferred (ARHGEF4) and all four

confirmed genes likely regulates milk yield. Our findings add to the understanding of identify-

ing the causal genes underlying milk production traits and could guide follow up studies for

further confirmation of the associated genes, pathways and biological networks.

Introduction

As a highly important trait for breeding, milk yield is directly associated with the economic

factors of dairy farming since increased milk yield allows for greater benefits. With the aid of

huge advances in marker technology, it is possible for us to dissect heritable quantitative traits

such as milk production by mapping the underlying genomic region or quantitative trait locus

(QTL). To date, 2 437 QTL intervals correlated with milk yield have been reported on Animal

QTLdb for cattle (http://www.animalgenome.org, Release 32, Apr 27, 2017). However, the

QTL mapping study traditionally uses a linkage analysis to map QTLs, which results in over-

large intervals that make it difficult to identify the underlying mutation and improve breeding

with the use of marker information [1].
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With the advent of high-throughput, single-nucleotide polymorphisms (SNPs) genotyping,

the genome-wide panels of SNPs allow for a genome-wide association study (GWAS) to

explore the genes associated with the complex traits of interest. Compared to the traditional

QTL mapping methods, the advantage of GWAS lies in its more precise intervals. Therefore,

GWAS has become a widely accepted approach to explore the association between markers

and the trait. There are a few GWASs using single-point analysis to identify the key genes for

milk yield[2, 3]. For example, Jiang et al. performed a GWAS for milk production traits in a

Chinese Holstein population and identified 20 significant genome-wide SNPs for milk yield

[2]. However, though GWASs almost always use single-point analysis, the construction of

haplotype blocks and identification of tag SNPs are quite informative in the identification of

markers [4]. A haplotype analysis with data from a GWAS study proved that it substantially

improved the amount of the phenotypic variance explained, compared with single SNPs from

a particular region of the genome [5]. Indeed, often neglected as a tool, haplotype-based

GWAS may be useful in extracting more information from the dataset and could contribute to

the reduction in the missing heritability problem.

Additionally, the most common and efficient model implemented in GWAS is the linear

model with the random effect of polygene and fixed effects including marker and population

structure such as region, age, etc. However, such models have encountered two issues: the

background noise in genomics and the stringency and high rate of false-negatives after Bonfer-

roni correction. Therefore, we adopted a linear mixed model recently developed by our labora-

tory, and we assumed a haplotype effect as random and to be normally distributed [6]. By

using an empirical Bayesian (EB) method, the prior variance is the estimate from the same

dataset, and the posterior mean is the best linear unbiased prediction (BLUP) of the marker

effect. The present study conducted a haplotype-based GWAS with an empirical Bayesian

method for milk yield traits in Shanghai Holsteins. We tried to analyze the blocks with 2, 3 and

4 SNPs, find the significant blocks, and identify the associated genes, pathways and networks

important for the milk production trait to guide the improvement of dairy cattle breeding.

Material and methods

Population and phenotypes

Approval by the Institutional Animal Care and Use Committee of Shanghai Jiao Tong Univer-

sity (contract no. 2015-07-0136) was given for all experimental procedures involving animals

in the present study. A total of 1 092 cows were selected from 24 farms in Shanghai Bright Hol-

stan Co., Ltd., with the following criteria: 1) primiparous cows born between 2001 and 2012

with the regular and standard performance of DHI (milk yield, fat percentage, protein percent-

age and somatic cell count); 2) age at first calving between 24 months and 36 months; and 3)

test day from 5 to 335 DIM. The blood samples were collected along with regular quarantine

inspection of the farms. The estimated breeding values (EBVs) were used as phenotypes in this

study. EBVs were calculated by using a random regression test-day model with fixed effects of

herd test day and fixed regression coefficients, which differ by season of calving, and random

regression coefficients for additive animal and permanent environment. The modified Wil-

mink function [7] described in [8] was modeled as a covariate for both fixed regression and

random regression. Variance component analyses and the estimation of EBVs were run using

the BLUPF90 software [9].

Genomic data

A total of 164 312 high-confidence SNPs with minor allele frequencies (MAFs)� 0.05 were

detected by using the GGRS method[10]. Briefly, the DNA was extracted from blood samples,
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and all 1 092 Holstein cows were sequenced. The raw reads with a base average quality score of

at least 20 (error rate of base-calling of 1 in 100) and of at least 30 (error rate of base-calling of

1 in 1000) in the first 65 bp aligned to the cow reference genome were retained. The filtered

reads were aligned to the UMD3.1 assembly of the cattle genome [11] by using the Burrows-

Wheeler Aligner (BWA) [12]. The successfully aligned reads were used to discover SNPs by

using SAMtools software. These SNPs were retained for further analysis based on the following

criteria: more than 30% genotyped samples and sequencing depth greater than 5-fold on aver-

age. Eventually, the missing genotypes were imputed by iBLUP [13]. The SNP and phenotype

data are freely available at public repository Dryad (https://doi.org/10.5061/dryad.cs133). The

haplotype phase was inferred with the BEAGLE v4.1 software (Browning et al., 2007). Haplo-

type blocks in 1 092 Holstein cows were detected using PLINK v1.07 software for each chro-

mosome using the method proposed by Gabriel et al. [14]. Haplotype blocks containing two

SNPs, three SNPs and four SNPs were used to perform GWAS by using the following statistical

model.

Statistical model

We adopted a haplotype-based empirical Bayesian model inherited from a SNP-based method

proposed by our group [6]. Here, we use a block with 2 SNPs as an example to demonstrate

the theory and methods. The method holds for blocks with any SNPs. Let y be an n × 1 vector

of phenotypic values for n individuals. Define Zk as an n × 4 matrix of haplotype inheritance

for block k. The jth row of matrix Zk is defined as a 1 × 4 vector. If this individual carries the

first and second haplotypes, then

Zjk ¼ ½1 1 0 0�

If the individual is a homozygote with the third haplotype, then Zjk is defined as

Zjk ¼ ½0 0 2 0�

The general rule for defining Zjk is that there are at most two non-zero elements, and the

sum of all four elements equals two. Let

gk ¼ ½g1k g2k g3k g4k�
T

Let k be the kth haplotype block under consideration. The model is

y ¼ Xbþ Zkgk þ xþ ε

The variance matrix of y is

varðyjX; bÞ ¼ ðZkZ
T
k lk þ Klþ IÞs2

where λ = ϕ2/σ2 and lk ¼ �
2

k=s2.

Eigen decomposition can be used to save the computation time of estimating multiple

genetic variance components.

The eigen-decomposition for matrix K is K = UDUT. Let y
�

= UTy, x
�

= UTx and Z�k ¼
UTZk represent the transformed variables, so that

y� ¼ X�bþ Z�kgk þ UTðxþ εÞ

The variance-covariance matrix of y
�

is

varðy�jX�; bÞ ¼ ðZ�kZ
�T
k lk þ RÞs2 ¼ Hks

2
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where R = Dλ + I is a diagonal matrix, and Hk ¼ Z�kZ
�T
k lk þ R is a general covariance structure.

After eliminating the parameters β and σ2, we have the following profiled restricted log-likeli-

hood function:

Lðlk; lÞ ¼ �
1

2
lnjHkj �

1

2
lnjX�TH � 1

k X�j �
n � r

2
lnðy�TPky

�Þ

where

Pk ¼ H � 1

k � H � 1

k X�ðX�TH � 1

k X�Þ� 1X�TH � 1

k

This likelihood function contains only two parameters: θ = {λk,λ}. The Newton-Raphson

algorithm can be used to calculate the numeric solution of θ. We can then obtain the empirical

Bayesian estimate of haplotype effects and construct a Wald test statistic. Assume that the

Wald test statistic follows a Chi-square distribution with one degree of freedom. The p-value is

calculated using pk ¼ Prðw2
1
>WkÞ.

QTL data collection and pre-processing

Cattle QTL data were downloaded from the animal QTL database (http://www.animalgenome.

org/, Release 32, Apr 27, 2017). Based on both the QTLs associated with milk in cattle and the

genome’s location information, we could obtain the initial gene set associated with the milk-

related QTLs by using a brief Perl script. After defining the initial gene set, we performed multi-

level bioinformatics analyses to explore the potential biologically significant genes harbored in

the QTL regions.

Identifying bovine milk trait function gene sets by ingenuity pathway

analysis (IPA)

We use the IPA to filter the prioritized genes and quickly visualize their regulatory networks

by their specific relationships with milk-associated biological pathways. As research with IPA

is mostly on the human and the rat, we use human or rat homologous genes of the uploaded

gene set to perform the analysis in which we are searching for the genes associated with milk

yield. The analysis returns gene sets and associated networks based on the IPA database and

gene function. We select the network with the most relevant milk-associated genes in the

uploaded set, and we infer that the rest of the genes in the network from the uploaded gene set

may have potential relationships with milk yield.

Results

Across all 13 476 tested blocks, we found a total of 17 blocks whose associations with milk

yield were statistically significant, produced three Manhattan plots, identified the associated

genes and annotated them with the milk-associated QTL intervals and IPA networks. It should

be noted that the 17 blocks were found when using a modified Bonferroni (mBon) correction,

compared with only 10 blocks that could be identified by using a classical Bonferroni correc-

tion. The EB method, the use of an ‘effective number of tests’ rather than the ‘total number of

markers’ to correct for multiple tests allowed for a reduced p-value threshold from 0.05/13

476 = 3.71 × 10−6 (classical Bonferroni correction) to 0.05/618.31 = 8.09 × 10−5 under the mod-

ified Bonferroni correction. Among the 17 significant blocks, as presented in S1 Table, 9 were

from the blocks with 2 SNPs, and another 8 came from the blocks containing 3 SNPs. No sig-

nificant block was found among the blocks with 4 SNPs.
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According to the number of SNPs contained in blocks, three Manhattan plots (Fig 1) were

produced to display the profiles of the P-values (in terms of -log(p)) of tested blocks. The two

threshold lines were calculated based on a classical Bonferroni (Bon) and a modified

Fig 1. Manhattan plot for blocks with 2, 3, and 4 SNPs. The upper line is the threshold obtained from a classical

Bonferroni correction, with a P-value of 8.09E-05, and the lower line is the threshold of a modified Bonferroni-

corrected threshold, with a P-value of 3.71E-06. The number of significant blocks detected by using a classical

Bonferroni (Bon) on Fig 1(A) was 6, while the modified Bonferroni (mBon) could detect 3 more blocks. Similarly, Fig

1(B) shows that only 4 blocks were detected by using a classical Bonferroni, but the modified Bonferroni could identify

8 significant blocks. No block was significant in the blocks with 4 SNPs, as shown in Fig 1(C).

https://doi.org/10.1371/journal.pone.0192695.g001
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Bonferroni (mBon) correction. In a total of 11 of the 17 significant blocks, the associated genes

could be found within the interval, while the other 6 blocks contained no genes. A total of 24

genes were located within 50 kb upstream and downstream of the block region. For each SNP, we

selected and listed the closest gene (11 genes in all). Of all 27 SNPs in the blocks containing genes,

13 were within the associated genes of the blocks; others were located less than 20 kbp away from

the nearest gene. Four blocks, with the genes ITPR2,OR4N5,THBS4 and TDRD1, were highly sig-

nificant, with a P-value reaching the level of 10−8. The details of the significant blocks, corre-

sponding SNPs, nearest known genes and P-values are presented in Table 1. We have also

performed single-locus GWAS to compare with the haplotype-based GWAS, and only three

SNPs within Block 2–2, Block 2–8 and Block 3–5 were identified after Bonferroni correction.

To further annotate the significant blocks, we compared the block intervals with the QTL

regions associated with milk. As shown in Table 2, seven blocks were located within the milk-

related QTLs. Among the 7 blocks, two blocks, Block 3–6 and Block 3–8, did not harbor any

gene but were within the reported milk-associated interval on QTLdb. The closest genes associ-

ated with the other five blocks within the QTL intervals were CEP63, ITPR2, THBS4,KIF19 and

TDRD1. All 7 of the blocks were correlated with certain substances in milk. Two blocks located

on Chr. 1 showed relationships with the chemical elements zinc and phosphorus, while the other

five were linked to acid percentage in milk, including myristic acid, capric acid and caprylic acid.

By calculating the haplotype frequencies for each block, we found that the dominant haplotype

for the two 2-SNP blocks was “H00”, while the remaining 5 blocks with three SNPs were domi-

nated by different haplotypes, including “H011”, “H110”, “H111”, and “H000” (S2 Table).

Additionally, we submitted a dataset containing all 24 genes detected in 11 blocks to IPA

software, and we obtained the network analysis shown in Fig 2. The network involved 35 mole-

cules in all, and eight of them were genes in our submitted dataset, namely, AP2B1,ARHGEF4,

BTBD17, DLGAP1, ITPR2, MTX3, POLE and THBS4. Among them, five genes, AP2B1,ARH-
GEF4,DLGAP1, ITPR2 and THBS4, were the nearest genes to the corresponding SNPs in the

blocks, as listed in Table 1. The other three, BTBD17, MTX3 and POLE, were located approxi-

mately 15 kbp, 35 kbp, and 25 kbp away from the corresponding SNPs, respectively. The score

of the network was 19, and the biological processes defined by IPA were related to lipid metab-

olism. In addition, we identified the 7 blocks (Blocks 2–2, 2–4, 2–5, 2–6, 3–1, 3–2, and 3–4)

harboring these 8 genes, and we compared the dominant haplotypes for each block. From S2

Table, the frequency of “H00” for all four blocks with 2 SNPs was the highest, but for three

3-SNP blocks, the dominant haplotype varied. Blocks 3–1, 3–2, and 3–4 were dominated by

“H000”, “H011”, and “H110” with frequencies of 0.776, 0.905 and 0.819, respectively.

Finally, we calculated the allele frequencies of each SNP contained in 17 significant blocks

to display the current population, and the MAFs are listed in S3 Table. There were 42 SNPs in

all, most of which had a low or medium frequency of their minor alleles. Twenty SNPs had an

MAF under 0.1, and another 18 SNPs’ MAFs were larger than 0.1 but less than 0.3. Only 4

SNPs displayed a high frequency of their minor alleles (larger than 0.3). Among the 4 SNPs,

three were located on Chr. 17, and the other one was located on Chr. 24. All the SNPs on Chr.

10, Chr. 20, and Chr. 26 had an MAF lower than 0.1, while all MAFs of the SNPs on Chr. 2,

Chr. 5, and Chr. 6 were within the interval of 0.3–0.5. Additionally, we compared the contribu-

tions of the major alleles and minor alleles to milk yield. It turned out that except for two SNPs

on Chr. 20, all the other 40 major alleles were the favorite genes in the current population.

Discussion

In sum, we performed a genome-wide association study based on haplotypes to identify the

loci and correlated genes responsible for milk yield traits in Shanghai Holsteins. To our
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knowledge, it is the first GWAS for milk production traits using a haplotype-based empirical

Bayesian model. Employing the empirical Bayesian method proposed by Wang et al., the

model treated the effect of a haplotype as a random variable and assumed it to be normally

Table 1. Genome-wide significant blocks for milk yield.

Block Chr. Bonferroni correction SNPs Nearest Gene P-value

Name Distance

Block 2–1 1 Only mBon 135 886 514 CEP63 Within 4.93E-06

135 886 546 CEP63 Within

Block 2–2 5 Both Bon

& mBon

83 678 733 ITPR2 Within 4.51E-10

83 678 739 ITPR2 Within

Block 2–3 10 Both Bon

& mBon

27 514 423 OR4N5 9 432 5.28E-08

27 514 460 OR4N5 9 395

Block 2–4 17 Only mBon 45 596 775 FBRSL1 17 085 1.62E-05

45 596 988 FBRSL1 16 872

Block 2–5 19 Both Bon

& mBon

15 017 221 AP2B1 9 149 1.29E-06

15 017 461 AP2B1 8 909

Block 2–6 24 Only mBon 38 309 144 DLGAP1 15 261 7.31E-05

38 309 195 DLGAP1 15 312

Block 3–1 2 Only mBon 1 590 666 ARHGEF4 18 375 2.47E-05

1 590 672 ARHGEF4 18 369

1 590 684 ARHGEF4 18 357

Block 3–2 10 Both Bon

& mBon

10 935 068 THBS4 10 357 7.84E-08

10 935 325 THBS4 10 100

10 935 342 THBS4 10 083

Block 3–3 14 Only mBon 10 142 741 OC90 Within 9.83E-06

10 142 746 OC90 Within

10 142 975 OC90 Within

Block 3–4 19 Only mBon 57 737 460 KIF19 Within 3.74E-06

57 737 480 KIF19 Within

57 737 777 KIF19 Within

Block 3–5 26 Both Bon

& mBon

34 961 904 TDRD1 Within 4.06E-10

34 961 905 TDRD1 Within

34 961 908 TDRD1 Within

Block 2–7 1 Both Bon

& mBon

149 340 609 4.01E-09

149 340 632

Block 2–8 14 Both Bon

& mBon

31 436 218 2.44E-10

31 436 401

Block 2–9 20 Both Bon

& mBon

74 328 375 1.08E-07

74 328 383

Block 3–6 1 Both Bon

& mBon

29 116 305 2.30E-08

29 116 327

29 116 348

Block 3–7 6 Only mBon 57 444 519 6.78E-05

57 444 521

57 444 587

Block 3–8 17 Both Bon

& mBon

66 974 027 2.13E-06

66 974 043

66 974 064

https://doi.org/10.1371/journal.pone.0192695.t001

Haplotype-based GWAS on milk yield in Holsteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0192695 February 15, 2018 7 / 13

https://doi.org/10.1371/journal.pone.0192695.t001
https://doi.org/10.1371/journal.pone.0192695


distributed [6]. The prior variance under EB theory of the marker effect of interest could be

estimated from the data. In addition, the EB method allowed us to use the ‘effective number of

tests’ rather than ‘total number of markers’ to perform a modified Bonferroni correction,

resulting in a considerable decrease in the threshold of P-values. Compared with classical Bon-

ferroni correction, we obtained 7 more significant blocks, and interestingly, two correspond-

ing genes, DLGAP1 and ARHGEF4, might have relationships with milk production traits and

will be discussed later in detail. Finally, we detected 17 blocks in all that appeared to be signifi-

cantly related to milk production traits in Shanghai Holsteins.

Considering that the closest gene to each SNP in the block could provide more accurate

information, we based our analysis of genes mainly on the nearest genes, as listed in Table 1.

Of the 11 nearest genes for 27 significant SNPs, four showed convincing associations with milk

yield traits in previous reports, namely, DLGAP1, AP2B1, ITPR2 and THBS4, on Chr. 24, Chr.

19, Chr. 5 and Chr. 10, respectively. First, DLGAP1 has been identified as a significant gene

associated with milk yield based on the genomic analysis of 15 745 SNPs in buffaloes that was

performed to find those associated with milk yield and content [15]. The P-value of DLGAP1
in our study was 7.31 × 10−5, and it was only identified when using our modified Bonferroni

(mBon) correction, which proves the effectiveness of the EB-mBon method. For another two

genes, AP2B1 and ITPR2, Kolbehdari et al. performed a whole-genome scan to identify the

QTLs affecting milk production traits using 1 536 SNP markers [16]. The results showed that

the genes AP2B1 and ITPR2 were associated with four significant SNPs related to the persis-

tency of milk yield and fat yield in milk. In addition, our result suggested that ITPR2 was a

highly significant gene with a P-value of 4.51 × 10−10, and it was also detected to be located

within a QTL region with a relationship to myristic acid percentage in milk. The ITPR2 gene

also has been reported to be associated with fat percentage in previous GWA studies [2, 17].

The last gene, THBS4, has been recognized as a differentially expressed gene between the mam-

mary gland of two groups of cows with extremely high and low milk protein percentage and

fat percentage by Cui’s investigation of the complexity of the mammary gland transcriptome

in dairy cattle using RNA-seq[18]. In our study, THBS4was also located on the QTL interval

associated with capric acid percentage in milk. Therefore, four of the 11 significant nearest

genes detected by using our EB-mBon method (DLGAP1, AP2B1, ITPR2 and THBS4) could be

confirmed to have definite correlations with the traits of interest, which demonstrates the

validity and practicability of our method.

Another three genes, ARHGEF4, TDRD1 and KIF19, were not reported to be directly linked

to milk production traits. However, they participate in relevant biological processes, which

might have certain associations with milk yield. ARHGEF4was identified to be involved in two

networks of bovine milk proteins, which means that it is likely to be a factor influencing the

proteins in milk [19]. In addition, Cremonesi conducted a meta-analysis that combined six

Table 2. Milk-associated QTL intervals for significant blocks.

Blocks Associated gene Chr. QTL Interval Description

Start End

Block 3–6 Not found 1 5 541 350 62 148 459 Milk zinc content

Block 2–1 CEP63 1 44 984 520 145 633 241 Milk phosphorus content

Block 2–2 ITPR2 5 76 533 399 93 514 025 Milk myristic acid percentage

Block 3–2 THBS4 10 10 139 639 11 156 367 Milk capric acid percentage

Block 3–8 Not found 17 48 057 944 67 505 450 Milk myristoleic acid percentage

Block 3–4 KIF19 19 36 754 043 61 016 756 Milk caprylic acid percentage

Block 3–5 TDRD1 26 1 419 676 38 996 499 Milk capric acid percentage

https://doi.org/10.1371/journal.pone.0192695.t002
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Fig 2. IPA network for genes associated with the significant blocks. Biological network of the associated genes within the significant blocks, with the solid lines

indicating direct interactions and dashed lines indicating indirect interactions. The eight genes marked in gray, AP2B1,ARHGEF4,BTBD17, DLGAP1, ITPR2, MTX3,

POLE and THBS4, are those involved in the submitted list. Among them, 4 genes (AP2B1,DLGAP1, ITPR2, and THBS4) are confirmed, and 1 gene (ARHGEF4) is

inferred to be associated with milk yield from previous reports and QTL analysis.

https://doi.org/10.1371/journal.pone.0192695.g002
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independent studies of infected mammary glands to identify the differentially expressed genes,

and ARHGEF4was one of them and was placed into a pathway associated with phospholipase

C signaling [20]. The annotations from Gene Ontology (GO) also showed its function of pro-

tein binding and regulation of protein signal transduction. Thus, it is reasonable to presume

that ARHGEF4 is highly likely to affect milk production traits. Also worth mentioning is that

ARHGEF4 is a gene other than DLGAP1 that was only detected under our modified Bonferroni

correction. This again proved that the EB-mBon method could greatly increase statistical

power and identify more genes associated with the trait of interest. The gene TDRD1was

annotated with germ cell development and DNA methylation involved in gamete generation

on GO. Additionally, Chitwood performed an RNA-seq analysis of single bovine blastocysts

and discovered that TDRD1was overexpressed in embryos and was involved in the biological

process of the negative regulation of gene expression [21]. In our study, the P-value for the cor-

responding block of the gene TDRD1 reached the level of 10−10, showing extremely high signif-

icance. Finally, the gene KIF19was also reported to be involved in a network associated with

inflammatory disease and response in mouse mammary glands during lactation [22]. In addi-

tion, both the genes TDRD1 and KIF19 are within the QTL interval, representing the relation-

ship to capric acid and caprylic acid percentage in milk, respectively. Therefore, it could be

inferred that ARHGEF4, TDRD1 and KIF19might exert some influence on milk yield traits.

Additional research and experiments are needed to confirm these genes’ relationship to milk

yield and guide the breeding of Shanghai Holsteins.

Another 4 genes (OC90,CEP63, FBRSL1 and OR4N5) have few reports regarding their asso-

ciation with milk yield traits, but they were involved in multiple biological processes and

molecular functions. OC90 is a novel gene located on Chr. 14, and it participates in several

metabolic and catabolic processes as well as the regulation of molecular activities. CEP63 is a

centrosome protein contributing to chromosomal stability by preventing centrosome overdu-

plication [23]. Although CEP63 is located in a QTL region with milk association, so far, there

is no convincing evidence to prove that it is responsible for milk production traits. FBRSL1 is

fibrosin-1-like and crucial for many biological processes in mammals, including stem cell

maintenance and differentiation [24]. OR4N5 is an olfactory receptor gene involved in multi-

ple signaling pathways and receptor activities. Further studies are needed to deeply explore

their associations with milk yield and then determine whether the four genes are real factors or

are just false positives. The relevant references and conclusions for all 11 genes are summarized

in Table 3. The biological networks for the submitted genes in IPA show satisfactory results as

well, which could help explain the relationships of both the single-gene and integrated net-

works to milk production traits. It is so exciting to determine that all 4 previously confirmed

Table 3. Summary of the significant genes.

Chr. Gene P-value References Conclusion

24 DLGAP1 7.31E-05 Venturini, Cardoso et al. (2014) Confirmed

19 AP2B1 1.29E-06 Kolbehdari, Wang et al. (2009) Confirmed

5 ITPR2 4.51E-10 Kolbehdari, Wang et al. (2009) Confirmed

10 THBS4 7.84E-08 Cui, Hou et al. (2014) Confirmed

2 ARHGEF4 2.47E-05 D’Alessandro, Zolla et al. (2011) Inferred

26 TDRD1 4.06E-10 Chitwood, Rincon et al. (2013) Inferred

19 KIF19 3.74E-06 Le Guillou, Sdassi et al. (2012) Inferred

1 CEP63 4.93E-06 He, Zhao et al. (2015) Certain biological process

17 FBRSL1 1.62E-05 Bathla, Rawat et al. (2015) Certain biological process

10 OR4N5 5.28E-08 Mauer (2011) Certain biological process

https://doi.org/10.1371/journal.pone.0192695.t003
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genes, DLGAP1, AP2B1, ITPR2 and THBS4, as well as one inferred gene, ARHGEF4, are placed

in this network. Therefore, it is possible that the network participates in the regulation of milk

yield, although it has not yet been annotated by IPA. Meanwhile, the remaining 3 genes in the

network, BTBD17, MTX3 and POLE, might also be implicated in the regulation of milk yield

by performing certain biological functions. More research is needed to explore whether and

how the network is closely linked to milk production traits.

Additionally, we calculated the minor allele frequencies (MAF) of the 42 SNPs contained in

17 significant blocks and evaluated the average allele effects for milk yield. Most of the SNPs

displayed a frequency lower than 0.3, and the result shows that 40 SNPs in the tested popula-

tion were dominated by favorite genes with larger contributions to milk yield. On only two

SNPs, located at 74 328 375 and 74 328 383 bp on Chr. 20, the favorite genes had lower allele

frequencies. Further validation of these two SNPs in multiple populations is needed, and if

they do affect the milk yield, this could be applied to the improvement of breeding strategies.

To increase the milk yield, we could select the samples with the two SNPs dominated by favor-

ite genes and thus increase the frequency of favorite genes in the population. For those with

lower frequencies of favorite genes on the two SNPs, we could insert the desired gene artifi-

cially by using genetic engineering.

Compared to several previously reported GWA studies using the Illumina BovineSNP50

BeadChip, the SNPs were identified by using a reduced sequencing method [10] in the present

study. Approximately thirty thousand SNPs were overlapping between the two SNP-detection

platforms, and some SNPs located in known genes were not detected by our platform. For

example, one famous DGAT1 gene with large effects on milk traits in Holstein cows has been

reported by several GWA studies. However, no SNPs within DGAT1 were identified in the

present study.

In conclusion, we identified 17 significant blocks in all, and in 11 of them, genes could be

found within the block interval. Of the 24 genes within the blocks, we focused the analysis on

the 11 genes nearest to the SNPs in blocks. From QTL analysis and previous reports, we con-

firmed that DLGAP1, AP2B1, ITPR2 and THBS4 do have certain relationships with milk yield

traits, while three genes, ARHGEF4, TDRD1 and KIF19, could be inferred to be associated with

milk production. Additionally, a biological network containing all four confirmed genes and

one inferred gene might participate in the regulation of milk yield. Further studies on the

inferred genes, pathways and biological networks across multiple populations should be con-

ducted to confirm their roles in milk production. We believe that our findings provide new

insights into the exploration of the genes responsible for milk production traits, and they

could guide the improvement of the breeding systems for Shanghai Holstein and other dairy

cattle.
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