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Simple Summary: Endothelial cells, the innermost layer of blood vessels, play an essential role in the
progression of cancer, particularly liver cancer. To develop cancer therapies targeting those cells, the
investigation of gene co-expression networks is of great importance. In this study, we investigated
the gene expression profile of tumour endothelial cells. We compared it to endothelial cells from
non-tumour liver-tissue. Using gene-network based methods, we could identify genes that may play
a unique role in liver cancer progression or be a target for cancer therapy. Additionally, we provided
a framework for similar analyses in other cancers.

Abstract: Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most
common cause of cancer-related death, with tumour associated liver endothelial cells being thought
to be major drivers in HCC progression. This study aims to compare the gene expression profiles
of tumour endothelial cells from the liver with endothelial cells from non-tumour liver tissue,
to identify perturbed biologic functions, co-expression modules, and potentially drugable hub
genes that could give rise to novel therapeutic targets and strategies. Gene Set Variation Analysis
(GSVA) showed that cell growth-related pathways were upregulated, whereas apoptosis induction,
immune and inflammatory-related pathways were downregulated in tumour endothelial cells.
Weighted Gene Co-expression Network Analysis (WGCNA) identified several modules strongly
associated to tumour endothelial cells or angiogenic activated endothelial cells with high endoglin
(ENG) expression. In tumour cells, upregulated modules were associated with cell growth, cell
proliferation, and DNA-replication, whereas downregulated modules were involved in immune
functions, particularly complement activation. In ENG+ cells, upregulated modules were associated
with cell adhesion and endothelial functions. One downregulated module was associated with
immune system-related functions. Querying the STRING database revealed known functional-
interaction networks underlying the modules. Several possible hub genes were identified, of which
some (for example FEN1, BIRC5, NEK2, CDKN3, and TTK) are potentially druggable as determined
by querying the Drug Gene Interaction database. In summary, our study provides a detailed picture
of the transcriptomic differences between tumour and non-tumour endothelium in the liver on a
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co-expression network level, indicates several potential therapeutic targets and presents an analysis
workflow that can be easily adapted to other projects.

Keywords: hepatocellular carcinoma; network analysis; tumour associated endothelial cells; liver
endothelial cells

1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third
most common cause of cancer-related death, affecting roughly 500,000 people worldwide
each year [1]. It arises in a multistep process from preexisting cellular lesions [2], often
aggravated due to malnutrition, increased alcohol consumption and obesity [3]. Chemother-
apeutic options are often limited, and prognosis after primarily curative surgery is usually
poor [4]. Between 50 and 60% of patients who undergo primary resection with curative
intent are experiencing a recurrence of the tumour within five years [5].

Endothelial cells represent roughly 20% of the liver’s overall number of cells and
approximately 3% of the liver volume [6,7], and they contribute actively to various pro-
cesses such as metabolite transport, hemostasis in case of vascular damage, maintenance of
vascular tone, inflammation, and angiogenesis [8]. Liver endothelial cells consist of two
major subgroups, macrovascular endothelial cells and liver sinusoidal endothelial cells
(LSEC), with LSEC presenting the majority of endothelial cells present in the liver. LSEC
display fenestrated morphology with minimal basement membrane [9]. A subset of them
express high levels of CD36, which is generally not detectable on other types of endothelial
cells [10], and endoglin (ENG), a marker for angiogenic activation [11]. PECAM1, CD34
and classic adhesion molecules like ICAMs are weakly expressed [11]. Non-canonical
adhesion molecules (VAP1, DESIGN, LYVE1, and MADCAM) are present, underlining the
role of LSEC in the immune cell recruitment [11]. In unstimulated LSEC, chemokines and
cytokines are only comparatively weakly expressed [11].

When tumours coopt endothelial cells during induction of angiogenesis, a switch in
endothelial phenotype occurs that is characterised by loss of differentiation, development
of drug resistance [12], a higher angiogenic potential [13], and a distinct gene expression
pattern [14]. In HCC, this is evidenced by a loss of fenestration, abrogated expression
of markers such as LYVE1 [15], profound angiogenesis, a hyper-vascularised microen-
vironment [15], and the expression of a cocktail of growth factors and cytokines [11,16].
Thus, tumour endothelial cells play a significant role in at least four of the ten hallmarks of
cancer [17], namely “Inducing angiogenesis” [16], “Tumor promoting inflammation” [11],
“Activating invasion and metastasis” [18,19], and possibly in “Resisting cell death” [15,20],
making them promising targets in for HCC therapy. A combination of bevacizumab and
atezolizumab is the first-line treatment in advanced HCC [21], highlighting the role of
angiogenesis as target for a successful treatment and the clinical relevance to analyze
specific features of TECs for potential new therapeutic targets.

However, discovering potential new therapeutic approaches aimed at endothelial cells
requires in-depth knowledge about endothelial cells’ contribution to cancer progression,
especially concerning underlying molecular networks. Analysis of transcriptomics datasets
derived from normal and tumour endothelium using state-of-the-art co-expression network
analysis methods are uniquely suitable for this task. Similar approaches have been applied
to tumour cells of various cancers, including HCC [22–25], but to the best of our knowledge
never used to compare tumour versus non-tumour endothelium. Network-based methods
identify groups of genes - so-called modules - that act similarly across groups of samples as
defined, e.g., by clinical traits, cell types, or other parameters [26]. Modules of interest can
be identified by measuring the association of the so-called eigengene (a representation of
the gene expression pattern of the module) with the trait of interest, in our case cell location
(tumour versus non-tumour) and angiogenic activation (using endoglin as an activation
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marker, therefore comparing ENG+ versus ENG−), respectively. The biological context
of these modules can then be investigated by term enrichment analysis, which identifies
biological processes of potential relevance for the underlying pathology. Using network
topology based measures, it is possible to detect key drivers and potential therapeutic
targets in various pathologic processes [26–28].

Our study re-analyses a published dataset (E-GEOD-51401/GSE51401) derived from
endothelial cells from hepatocellular carcinoma and adjacent non-tumour tissue. First,
we assessed the data’s feasibility by analysing endothelial markers and compared them
with RNASeq data. Then, we analysed differences in the gene expression profile and the
biological context using Gene Set Variation Analysis. Third, we employed co-expression
network techniques to detect gene modules associated with cell origin (tumour versus
non-tumour tissue) and angiogenic activation (using endoglin as an activation marker,
therefore comparing ENG+ versus ENG− cells) and investigate the biological context of
these modules. Forth, we used network-based parameters to determine hub genes and
potential key drivers in the detected modules. Finally, we identified potential therapeutic
targets by querying the Drug–Gene Interaction database with the hub genes as input. This
study presents a detailed characterisation of HCC-associated tumour endothelial cells on
the transcriptome level and an analysis workflow easily adaptable to other projects.

2. Materials and Methods
2.1. Data Generation and Access

The wet-lab experiments for GSE51401 were performed by Sun H and Wang X (Zhong-
shan hospital, affiliated to Fudan University, Shanghai, China) [20]. For a detailed descrip-
tion of the protocol and the experimental design, see the parallel study by Xiong et al. [20].
Briefly, the specimen of tumours (tumour endothelial cells, TEC) or surrounding non-
tumour tissue (non-tumour endothelial cells, NEC) were collected after removal from
patients with HCC as determined using routine clinical, histopathological analysis as well
as positive alpha-fetoprotein (AFP). After washing and homogenisation, PECAM1+/ENG−,
as well as PECAM1+/ENG+ cells, were isolated using magnetic beads conjugated with
antibodies against PECAM1 and ENG. The latter plays a crucial role in angiogenesis via
regulation of cell proliferation and migration [29,30] and serves as a marker of angiogenic
activation [31]. Thus, the dataset represents quiescent and angiogenic-activated endothelial
cells from tumour and non-tumour liver tissue, without differentiation between endothe-
lial subtypes. Gene expression profiling was performed by the ShanghaiBio Corporation
(Shanghai, China) using the Human Genome U133 Plus 2.0 Arrays (Affymetrix, Santa
Clara, CA, USA) according to manufacturer’s instruction. The authors made the data
publicly available via ArrayExpress/Gene Expression Omnibus as GSE51401 [20].

2.2. Data Preprocessing and QC

CEL files were downloaded and read into “GNU R” [32] using the package “affy” [33]
and preprocessed using the R-package “arrayQualityMetrics” [34]. Arrays were marked as
outliers and excluded from further analysis if they exceeded the outlier thresholds defined
by Kauffmann et al. [34] in any of the quality control parameters: the distance between
arrays in the principal component analysis, relative log expression, normalised unscaled
standard error, joint distribution of M and A, and spatial distribution. Subsequently,
arrays were normalised by robust multiarray average (RMA) normalisation using the
R-package “affy” [33]. Probes matching to multiple genes, antisense RNAs, pseudogenes,
or uncharacterised loci were removed before further analysis, and genes with several
probes present on the array were summarised to the probe with the maximal interquartile
range using the “genefilter” package [35]. The resulting expression sets were subjected to a
second QC analysis and removal of outliers as described above.
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2.3. Single-Cell RNASeq

Single-cell RNA sequencing (scRNASeq) data were obtained from liver tissue orig-
inating from individuals with (3) and without (9) HCC by mCEL-Seq2 as described by
Aizarani et al. [36]. After data preprocessing, the resulting expression matrices were clus-
tered and assigned to cell types using the RaceID3 algorithm [37]. Clusters associated with
liver sinusoidal endothelial cells, macrovascular endothelial cells and other endothelial cells
were used to generate aggregated data for pseudo-bulk RNASeq analysis. Count matrices
were read into R and aggregated by gene and patient via summing up counts. Samples were
annotated with cell origin (i.e., HCC or non-diseased tissue) and analysed for differentially
expressed genes using the R-package “DESeq2” and an expression ∼ origin design.

2.4. Differential Gene and Pathway Expression Analysis

Differential gene expression and pathway enrichment were determined using the
R-package “LIMMA” [38]. Cell origin and activation were concatenated to a “group”
factor and entered into the model expression ∼ 0 + group. The consensus correlation to
account for pairing was calculated using the “duplicateCorrelation” function with the
patient ID as a blocking variable. The model was fit using the “lmFit” function with
the patient ID as a blocking variable and the consensus correlation as inter-duplicate
correlation. Finally, moderated t-statistics, F-statistics and log-odds ratio were calculated
using the “eBayes” function. p-values were adjusted to multiple testing according to
Benjamani–Hochberg [39]. The thresholds for differentially expressed genes were set to
| log2(FC) |> 2 and padjusted < 0.05.

2.5. Gene Set Variation Analysis

Gene Set Variation Analysis (GSVA) is an extension of the Gene Set Enrichment
Analysis for complex experimental designs. Briefly, gene expressions are normalised
across samples. Samples are ranked according to the normalised gene expression, and a
Kolmogoroff-Smirnov-like rank statistics is calculated for each gene set. This statistics is
then translated into a GSVA score, indicating enrichment of genes at the top or bottom of
the sample’s ranked gene list. The result is a matrix of GSVA scores, one per gene set and
sample, with a positive value indicating overexpression and a negative value indicating
underexpression of the geneset’s genes. This approach’s strength lies in the fact that it
translates a gene expression matrix to a term expression matrix, which can be analysed
using linear models [40]. GSVA was performed using the “gsva” R-package [40]. As input,
WikiPathways provided by the CPTAC (Clinical Proteomic Tumor Analysis Consortium,
National Institutes of Health, Maryland, Bethesda) portal were used [41]. This group
maintains a collection of cancer-related pathways based on cancer hallmarks proposed by
Weinberg et al. [17] and encompasses following pathway groups: Activating invasion and
metastasis, Avoiding immune destruction, Deregulating cellular energetics, Enabling replicative
immortality, Evading growth suppressors, Genome instability and mutation, Inducing angiogenesis,
Resisting cell death, Sustaining proliferative signalling, and Tumor promoting inflammation.
Differentially enriched pathways were determined using the R-package “LIMMA” as
described above.

2.6. Weighted Gene Co-Expression Network Analysis (WGCNA)

WGCNA was performed according to Langfelder et al. [42], modified by an iterative
network-stabilising algorithm as described by Greenfest-Allen et al. [43]. This approach is
characterised by pruning genes with a low module membership (calculated distance < 0.8)
and repetition of module detection until the network stabilises. A two-Gaussian filter
approach was used to remove noise due to lowly expressed genes. This approach assumes
that the distribution of gene-expression follows two Gaussians, one at the lower end of
the expression range representing probes with low expression values (and presumable
background expression) and the other representing probes with high expression values.
A threshold can be chosen so that genes with an expression value above this threshold
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have a higher probability of belonging to the Gaussian representing expressed genes. The
threshold was set using the R-package “mixtools” [44]. Genes with a log2 expression
values below the set threshold of 5.33 in all samples were excluded from further analysis.
Potential outliers were removed by calculating the z-normalized inter-sample connectivity
(zK) according to Oldham et al. [45]. Samples showing an | zK |> 1.96 were removed prior
to further analysis.

WGCNA was run using the parameters as suggested by Greenfest-Allen et al. [43]
for an iterative WGCNA approach except for the following: network type: “signed”, β: 12,
deepsplit: 2, correlation: “bicor”, and pamStage: TRUE. A signed network approach
was used to focus on the positive correlation between the genes. The goodness-of-fit
of the modules was estimated by determining the median module membership of the
genes, defined as the absolute correlation between the gene and the module eigengene.
It can be used to assess the goodness-of-fit of the modules to the eigengenes. A module
membership of 1 denotes a perfect fit, whereas a value of 0 shows no fit. Only modules with
a median module membership of greater than 0.8 were considered for further analysis. The
association of modules with cell origin or angiogenic activation was determined by fitting
a mixed-effects model (using the R-package “lme4” [46]) and calculating the t-statistics
as described by Li et al. [47]. The t-statistics can be used to assess the strength of the
association between a module and a sample trait [47]. Following model was used to assess
module association with cell origin or angiogenic activation:

yijk = β0i + β1 · originj + β2 · activationk + εijk i = 1, ..., n, j = 1, 2, and k = 1, 2

where yijk is the expression level of the eigengene of the i-th subject and the jk-th sample,
originj is the cell origin (with j = 1 denoting non-tumour and j = 2 denoting tumour tissue),
activationk is the activation status (k = 1 denoting ENG− and k = 2 denoting ENG+ cells),
β0i is the subject specific random intercept to account for pairing, and εijk the random error
term [47]. The t-statistics and the associated p-value was calculated using the R-package
“lmerTest” [48]. p-value correction was done according to Benjamani–Hochberg using the
“p.adjust” function in the R-package “stats” (method = “hochberg”).

Hub genes were determined by calculating the intramodular connectivity (kWithin) [26],
normalized to the maximum connectivity within the module for each gene (kWithin.norm)
according to the following model:

kWithin.normi =
∑i∈module ai

max(∑i∈module ai)

where a is the adjacency measure used to calculate the co-expression network. Genes
strongly correlating with many other genes within the module will get high intramodular
connectivity, whereas genes with weak correlations will receive low intramodular connec-
tivity. The top ten percent of genes in terms of intramodular connectivity were considered
as potential hub genes. To map strong correlations between genes with known functional
interactions, the STRING database was queried using the “STRINGdb” R-package [49].

To determine potential druggability of identified hub genes, we performed a query
on the Drug–Gene Interaction database (DGIdb) using an in-house developed API querying
function [50,51].

2.7. Term Enrichment Analysis for Detected Modules

To determine the biological context of the modules, GO term Enrichment Analysis
was done using the R-package “clusterProfiler” [52] querying the Gene Ontology—Biological
Process database [53,54]. According to the concept that the background of a term enrichment
analysis should encompass all genes interrogated, all genes present in the final expression
set were defined as background. Only terms containing at least 15 genes and at most
500 genes were considered. Terms with an adjusted p-value (Benjamani–Hochberg) of less
than 0.05 were considered to be significantly enriched. Terms smaller than fifteen or larger
than 500 genes were excluded from the analysis. GO term reduction was done using a
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GOTSSA (GO term Semantic Similarity Analysis) approach. Term lists were loaded into
R using the “GOSemSim” package to calculate semantic similarity based on the method
described by Wang et al. [55,56]. The dimensionality of the resulting similarity data was re-
duced by Uniform Manifold Approximation and Projection (UMAP) [57] using the “umap”
function of the “M3C” package and segmented into clusters by density-based clustering
using the “fpc” R-package with an ε of 0.6 and 5 as a minimum number of neighbours [58].
The GO term with the highest −log10(padusted) was chosen as a representative for the
respective cluster [59].

2.8. Statistics

If not stated otherwise, comparisons between groups were performed using Student’s
t-test. If necessary, p-values were adjusted for multiple testing using the Benjamani–
Hochberg procedure [39]. An adjusted p-value below 0.05 was considered to be statistically
significant.

3. Results

After downloading the raw data, preprocessing and performing quality control, differ-
ences in the gene expression profiles were determined using the R-package “LIMMA” and
put into biological context by performing Gene Set Variation Analysis. A co-expression
network was constructed using WGCNA and segmented into groups of genes (so-called
modules) with similar co-expression characteristics. The top two modules’ biological
context with a high positive and the top module with a strong negative association to cell
origin or angiogenic activation was investigated by term enrichment analysis. Finally, the
Drug–Gene Interaction database (DGIdb) was queried using hub genes (as determined by
their connectivity within the module) to determine potential drug targets (Figure 1).

Normal tissue

PECAM1+/ENG- PECAM1+/ENG+

E-GEOD-51401

Tumor tissue

PECAM1+/ENG+PECAM1+/ENG-

Data download and processing
(QC, rma, marker validation)

Weighted Gene Co-expression Network
Analysis

Correlation: module – origin Correlation: module – activation

Biological context

Key drivers

Drugable targets

Biological context

Key drivers

Drugable targets

Differential Gene Expression Analysis

Biological context

Gene Set Variation Analysis

sc-RNASeq

Figure 1. Workflow of the overall analysis.

3.1. Cohort Characteristics

Data preprocessing and quality control resulted in a dataset with 43 samples, drawn
from 16 subjects (3 females, median age 64; 13 males, median age 52). The population
characteristics, original samples and excluded samples are shown in Table 1. The discrep-
ancy between the number of ENG− and ENG+ samples is due to repeated sampling of the
ENG− fraction.
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Table 1. Characteristics of the study cohort. Numbers before the slash represent the number of used samples, numbers after
the slash represent the number of total samples.

Gender n Median Age (Years)
Non-Tumour Endothelial Cells (NEC) Tumour Endothelial Cells (TEC)

ENG− ENG+ ENG− ENG+

F 3 64 3/3 2/2 2/3 1 2/2
M 13 52 12/13 2 6/6 12/13 3 4/6 4

Total 16 53 15/16 8/8 14/16 6/8
1 Sample GSM1244757 (from Patient 8) was excluded due to unequal hybridization, as detected in spatial distribution plots. 2 Sample
GSM1244761 (from Patient 9) was excluded due to excessive spans of the relative log expression (RLE) distribution and the normalized
unscaled standard error (NUSE) distribution. 3 Sample GSM1244763 (from Patient 9) was excluded due to excessive distance to the other
samples in the PCA as well as an excessive NUSE. 4 Sample GSM1244737 (from Patient 3) was excluded due to excessive distance to the
other samples in the PCA. Sample GSM1244746 (from Patient 5) was excluded due to excessive spans of the relative log expression (RLE)
distribution and the normalized unscaled standard error (NUSE) distribution.

3.2. The Expression Pattern of Endothelial Markers Is in Accordance with That of Liver
Endothelial Cells

To test the data quality, the expression of LEC markers PECAM1, ENG, LYVE1, and
FLT1 was investigated across all groups. All genes displayed an expression pattern as
described previously [7]: expression of ENG, PECAM1, LYVE1 and FLT1, and upreg-
ulation of ENG in ENG+ NEC (Figure 2A–D). TEC displayed a trend (non-significant,
adjusted p-value = 0.17) to ENG upregulation in ENG+ cells (Supplementary Table S1).
The lower expression of all markers in TEC compared to NEC is in line with the reported
de-differentiation in these cells [15].

It has been reported that PECAM1 is also expressed in Kupffer and hematopoietic cells,
thus leading to potential contamination of the isolate [60]. Therefore, we investigated liver
single-cell RNASeq data concerning the expression of ENG, FLT1, LYVE1, and PECAM1.
In single-cell RNASeq analysis, ENG and FLT1 expression were restricted to LEC clusters,
with ENG being also lowly expressed in Kupffer cell-associated clusters (Figure 3A,B).
LYVE1 expression was restricted to the cluster associated with LEC, with a small cluster
of Kupffer cells being LYVE1 positive (Figure 3C). PECAM1 showed a high expression in
macrovascular endothelial cell-associated clusters, a lower expression in LEC associated
clusters and a low to moderate expression in Kupffer cell, NK, NKT, and T-cell associated
clusters (Figure 3D). These findings indicate that the use of ENG and PECAM1 for isolation
of LEC might lead to contamination of the isolate with Kupffer, NK, NKT and T-cells
(Figure 3A,D, clusters 4 and 5) [60]. To estimate potential contamination with those cell
types, the expression of PTPRC (CD45), a marker strongly expressed in Kupffer cells and
leukocytes in general (therefore also known as leukocyte common antigen, LCA), but only
weakly expressed in a subset of LEC [36] was determined. The mean expression level
of PTPRC in GSE51401 was 5.6, which is slightly above our cutoff for lowly expressed
genes (5.33). Taken together, these results demonstrate that the gene expression pattern of
GSE51401 is consistent with liver endothelial cells.
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Figure 2. Expression of ENG, FLT1, LYVE1, and PECAM1 in TEC and NEC (ENG− and ENG+). Violin
plots of the expression distribution of (A) ENG, (B) FLT1, (C) LYVE1, and (D) PECAM1 are shown.
Numbers above the bars represent adjusted p-values of the comparisons indicated by the bar.
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Figure 3. Expression of ENG, FLT1, LYVE1, and PECAM1 in liver cells. The distribution of the
expression of (A) ENG, (B) FLT1, (C) LYVE1, and (D) PECAM1 in sc-RNASeq cluster of liver cells is
shown. The cluster association is as follows: (1) Liver sinusoidal endothelial cells, (2) macrovascular
liver endothelial cells, (3) other liver endothelial cells, (4) Kupffer cells, (5) NK, NKT, and T-cells.
Expression levels are color-coded from blue to red as indicated at the lower right corner.
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3.3. The Gene Expression Profile of Tumour Endothelial Cells Is Characterised by Upregulated
Evasion from Growth Suppressors, Downregulated Immune and Inflammation-Related Pathways,
and Resistance to Apoptosis

In ENG− TEC, 223 genes were differentially expressed, with 96 being up- and 127 be-
ing downregulated (Figure 4A), 395 were differentially expressed in ENG+ TEC, with 196
being up- and 199 being downregulated in ENG+ TEC (Figure 4B). Analysis of pseudo-bulk
single-cell RNASeq data confirmed downregulation of. However, only four of the top
upregulated genes could be detected in the single-cell RNASeq data. All showed only low
expression and could therefore not be used to determine regulation. Single-cell RNASeq,
however, has a high gene dropout rate due to technical limitations when performing
single-cell experiments, such as RNA degradation during library preparation and lim-
ited per-cell sequencing depths [61]. The LIMMA between the ENG+ and ENG− in TEC
and NEC showed 239 differentially expressed genes in NEC (ENG+ compared to ENG−)
and 17 differentially expressed genes in TEC (ENG+ compared to ENG−, Supplementary
Table S1). Eleven of the 17 differentially expressed genes were differentially expressed in
both NEC and TEC. The greater similarity between ENG+ TEC to ENG− TEC compared to
their counterparts from non-tumour tissue may indicate an angiogenic activation of ENG−

TEC, which is in line with the literature [13]. The complete results of the LIMMA analysis
are available in Supplementary Table S1.

To avoid reliance on arbitrary threshold selection, GSVA, which utilises the entire
feature space without prior filtering, was employed in the downstream analysis. Out
of 87 pathways, 17 were up and 49 were downregulated in in ENG− TEC (Figure 4C).
Upregulated pathways were associated with three hallmarks of cancer: “Deregulation of
cellular energetics” (for example, Glycolysis and Gluconeogenesis), “Evading growth suppres-
sors” (for example, Cell Cycle and Retinoblastoma (RB) in cancer), and “Genome instability
and mutation”. Pathways associated with all other hallmarks of cancer (“Resisting cell
death”, “Avoiding immune destruction”, “Sustaining growth signalling”, “Angiogenesis”,
and “Tumor promoting inflammation”—Chemokine signalling pathway) were mostly consis-
tently downregulated. Interestingly, pathways associated with “Sustaining proliferative
signalling” (for instance, MAPK signalling and Ras signalling were downregulated as well
(Supplementary Table S2).

In ENG+ TEC, out of 87 perturbed pathways, were up and 20 were downregulated
(Figure 4D). Again, upregulated pathways were primarily associated with “Deregulation of
cellular energetics”, “Evading growth suppressors” (for example Cell Cycle), and “Genome
instability and mutation”. However, one “Sustaining proliferative signalling”-associated
pathway was also upregulated, namely enhancement of MAP/ERK signalling in diffuse large
B-cell lymphoma (Supplementary Table S2). In ENG− TEC the Cell cycle pathway shows
several upregulated key genes, the Cyclin group (CCNB1, 2, and 3) and CDK1. Inhibitors
regulating DNA damage checkpoints were downregulated (for example, PRKDC). Activa-
tors promoting DNA biosynthesis were upregulated (for example, MCMs, Supplementary
Figure S1A,B). The log2 fold change ratio of CCNB1, 2 and CDK1, but not CCNB3, was
increased even more in ENG+ TEC. The entry from DNA damage checkpoints (for example,
PRKDC) was upregulated as well in ENG+ TEC (Supplementary Figure S1B). Retinoblastoma
gene in cancer, another pathway associated with “Evasion of growth suppressors”, was also
upregulated, with strong overexpression of pathways members leading to G1/S transition
(CCNB1, CDK1) and mitotic spindle association (TTK) (Supplementary Figure S2). Interest-
ingly, RB1 itself was only weakly overexpressed (Supplementary Figure S2). The MAPK
signalling pathway, a pathway associated with “Sustaining proliferative signalling”, was
found to be downregulated, despite upregulation of several growth factor receptors (for
example, EGFR, FGFR3, and FGFR4). The cytokine receptors at the entry of this pathway,
however, were found to be downregulated (Supplementary Figure S3) These results indi-
cate that the pro-angiogenic gene expression profile of TEC may depend on the hallmark
“Evasion of growth suppressors” rather than sustained “Sustaining proliferative signalling”,
or “Angiogenesis”.
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Figure 4. Differential gene expression and pathway perturbation in ENG− and ENG+ TEC. (A) Dif-
ferentially expressed genes in ENG− TEC and (B) in ENG+ TEC. (C) Perturbed Wikipathways in
ENG− TEC and (D) in ENG+ TEC. Negative GSVA score difference (blue) indicates down-, positive
GSVA score difference (red) indicates upregulation of the respective pathway in TEC. Horizontal
lines indicate an FDR of 0.05. The top ten up and down-regulated genes (in term of log2FC) and
pathways (in terms of GSVA score difference) are labelled. The controls for ENG− TEC and ENG+

TEC were ENG− NEC and ENG+ NEC, respectively.

In the Chemokine signalling pathway, the cytokine-cytokine receptor interaction ligands
were mostly upregulated (for example, CXCL10, CXCL9, and CXCL5). CXCL12, however,
was strongly downregulated. The respective receptors (for instance, CXCR2, CXCR6, and
XCR1) were generally downregulated, resulting in a downregulation of the entire pathway
(except for SHC1, 2, 3, and 4, and HRAS and NRAS (Supplementary Figure S4A). This
regulation pattern was also present in ENG+ TEC, with a larger log2FC ratio in several
ligands (for example, CXCL13 or CCL20) (Supplementary Figure S4B). Taken together,
the observed downregulation of the receptors and downstream genes in the Chemokine
signalling pathway may be a contributing factor to tumour endothelial anergy (insensitivity
to pro-inflammatory signals) as described in the literature [62].

In the Apoptosis pathway, BIRC5 and HELLS were strongly upregulated in TEC com-
pared to NEC. The logFC ratio of both genes was larger in ENG+ TEC (Supplementary
Figure S5). The complete results of the GSVA are available in Supplementary Table S2.
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3.4. Weighted Gene Co-Expression Network Analysis Reveals Several Gene Modules Associated
Strongly with Cell Origin and Angiogenic Activation

Before WGCNA, samples with a zKonnectivity of less than −1.96 were excluded from
analysis (Figure 5A). Next, probes representing genes with low expression levels across all
samples were excluded from analysis, yielding a co-expression network of 14,690 genes.
The iterative approach described by Allen-Greenfest et al. [43] led to the detection of
39 modules with a size between 33 and 433 genes (Figure 5B). The module detection
(assigned module and gene connectivity) are provided in Supplementary Table S1 for
all genes.

After clustering and module detection (Figure 5B), the association between the cell
origin (tumour vs. non-tumour tissue), angiogenic activation (ENG+ versus ENG− cells),
and the module eigengenes was calculated(Figure 5C). Based on module association the
M1, M16, M15, M18, M14, and M8 modules were selected for further analysis. All selected
modules displayed a median module membership of greater than 0.8 (Figure 5D). This
high median module membership is indicative of a stabilised module assignment for the
genes of the selected modules.

In the M1 module, the eigengenes in ENG− and ENG+ TEC are upregulated com-
pared to the respective NEC. No difference is observed between ENG+ and ENG− cells
of one origin (Figure 6A). In contrast, the eigengenes in the M16 module show a small
but significant upregulation between ENG− and ENG+ NEC. In ENG− TEC, genes are
upregulated compared to ENG− NEC, but not compared to ENG+ NEC. ENG+ TEC show
a further upregulation of the eigengenes (Figure 6B). This upregulation is not significant
compared to ENG− TEC but significant compared to ENG+ NEC. In the M15 module,
ENG+ NEC show significant upregulation of the eigengenes compared to ENG− NEC. In
both ENG− and ENG+ TEC, the eigengenes are downregulated compared to the respective
NEC (Figure 6C). In module M18, eigengene expression is upregulated in ENG+ TEC and
NEC compared to ENG− NEC. both in NEC and TEC. However, eigengene expression in
ENG− TEC is slightly but not significantly upregulated in ENG− TEC compared to ENG−

NEC. Thus, cell origin’s influence on eigengene expression is small (Figure 6D). In module
M14, eigengene expression is upregulated in ENG+ NEC and downregulated in ENG−

TEC compared to ENG− NEC. Interestingly, eigengene upregulation between ENG+ and
ENG− TEC showed only a trend but failed to reach significance (Figure 6E). In module
M8, eigengene expression is downregulated in ENG+ NEC and ENG+ TEC compared to
the respective ENG− cells. In this module, cell origin seems to play a role in eigengene
expression since a distinct downregulation can be seen in ENG− TEC compared to the
ENG− NEC. Interestingly, ENG+ TEC showed the same eigengene expression level as ENG+

NEC. This may reflect phenotypical similarities between TEC and angiogenic activation in
NEC as has been reported previously [63] (Figure 6F).



Cancers 2021, 13, 1768 12 of 27

GSM1244741

GSM1244738

-3

-2

-1

0

1

samples

zK
on

ne
ct

iv
ity

A B

16(6 × 10−12) −3.4(0.1)
15(2 × 10−11) 5.2(0.002)
12(1 × 10−9) 4.8(0.004)

5.2(0.002) 8.1(1 × 10−6)
4.6(0.009) 5(0.003)

7.4(6 × 10−6) 3.9(0.03)
7(3 × 10−5) 4.2(0.02)

6.6(1 × 10−4) −6.1(2 × 10−4)
3.8(0.06) −5.3(0.001)
3.5(0.1) −2.2(1)

6(3 × 10−4) 1.2(1)
5.6(8 × 10−4) −0.35(1)

−1.2(1) −3.7(0.07)

0.53(1) −4.9(0.003)
0.1(1) −5.8(3 × 10−4)

−3.2(0.2) −2.3(1)
−4.6(0.008) −3.3(0.2)

−4.2(0.02) −5.1(0.002)
−4.9(0.004) −6.3(7 × 10−5)

−3.1(0.3) −7.6(3 × 10−6)
−3.6(0.06) −7.4(9 × 10−7)

−2.3(1) −5.1(0.003)
−1.2(1) −6.4(8 × 10−5)

−9.1(4 × 10−7) −2.8(0.4)
−9.5(4 × 10−7) −8(7 × 10−7)
−7.5(1 × 10−5) −9.8(3 × 10−8)

−15(1 × 10−12) 5.5(3 × 10−4)

−5.9(3 × 10−4) 6.5(4 × 10−5)
−3.2(0.2) 2.3(1)

−7.4(2 × 10−5) 0.7(1)
−5.1(0.003) 0.44(1)

−0.89(1) −0.68(1)
−1.4(1) 0.059(1)

1.3(1) 0.65(1)
0.26(1) −0.8(1)

2.2(1) 5(0.002)
1.9(1) 4.7(0.005)
1.5(1) 4.7(0.005)

0.59(1) 2.8(0.4)
2(1) 3.4(0.1)

M15
M1

M16
M7

M23
M36
M25
M11
M20
M18
M22
M17
M38
M29

M5
M26
M19

M2
M28

M3
M31
M39
M14
M13
M32
M35
M37

M6
M33

M9
M0

M24
M27
M30
M21
M12
M34
M10

M4
M8

O
rig

in

Ac
tiv

at
io

n

m
od

ul
e

−20

−10

0

10

20
t-statistics

C

0.00

0.25

0.50

0.75

1.00

ov
er

al
l

M
1

M
16

M
15

M
18

M
14 M
8

module

m
od

ul
e 

m
em

be
rs

hi
p

D

Figure 5. Identification of modules that are associated with either origin (tumour vs. non-tumour
endothelial cells) or angiogenic activation. (A) Outlier identification based on the z-normalized
intersample connectivity (zK). The red line denotes a zK of 1.96. Potential outliers are labelled red.
(B) Dendrogram showing detected modules. Each branch of the dendrogram represents a gene
assigned to one of the modules. Grey areas represent genes not assigned to any module. (C) Heatmap
showing the association between a module and either cell origin or angiogenic activation. The top
number represents the t-statistic, the number in brackets the associated adjusted p-value. A positive t-
statistics indicates up-, a negative t-statistics represents downregulation in the TEC (indicated by “cell
origin”), and ENG+ cells (indicated by “activation”). (D) Module membership for the entire network
(overall), for the M1, M16, M15, M18, M14, and M8 module. The red line denotes a membership
of 0.8.
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Figure 6. Eigengene plots of modules with strong association to cell origin and angiogenic activation.
(A–C) Eigengene plots for modules with a strong association to cell origin (M1, M16, and M15).
(D–F) Eigengene plots for modules with a strong association to angiogenic activation (M18, M14, and
M8. Plots are coloured according to the module colour. Numbers represent adjusted p-values for the
respective comparisons.

3.5. Cell Origin Related Modules Are Positively Associated with Cell Growth and Survival and
Negatively Associated with Immune Functions

The biological context of the M1 module was defined by cell proliferation-related GO
terms (for example, DNA replication, Mitotic nuclear division, and Chromosome segregation).
The module contains 29 hub genes, with BIRC5, UBE2T, NEK2, CDKN3, TTK, CCNB1,
TOP2A, FEN1, AURKA, RNASEH2A, and POLE2 being druggable (Figure 7A,B). Querying
the STRING database revealed a dense functional interaction network (FI) between the
hub genes, for instance, BIRC5, FEN1, NEK2, TTK, CNB1, and CDKN3, pointing towards
an existing FI network underlying this module. It appears that especially the interaction
BIRC5⇔ TOP2A⇔ NEK2 determine module function since the adjacencies between these
genes are particularly strong and branch into several other nodes, such as CDKN3, UBE2T,
and CCNB1. All of these genes have been proposed as potential drug targets in other cancer
entities. The biological context of M16 the module was defined by cell metabolism-related
GO terms (oxidative phosphorylation) and mitochondria-related GO terms (mitochondrial
translational elongation and inner mitochondrial membrane organisation). Eight hub genes
could be detected (PDZD11, ANAPC11, COA3), YIF1A, TXNDC17, MEA1, MRPS17, and
PPIL1. No known functional interactions exist and none of these hub genes was found
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in the DGIdb (Figure 7C,D). In the M15 module, nine hub genes are present (MYO9A,
GPM6A, LRRC4, CXCL12, HOXB6, F8, PHKA1, NDST3, and MAN1C1. Of these, CXCL12
and F8 are druggable. Querying the STRING database showed no known FI between these
genes. Biologically the module is characterised by complement activation, alternative pathway
(Figure 7E,F).

3.6. Activation Related Modules Are Associated with Angiogenesis, Cell Adhesion and
Immunologic Functions

The biological context of the M18 module was defined by cell-matrix adhesion and focal
adhesion assembly. The module contains seven hub genes, none of which are druggable
(Figure 8A,B). Several endothelial cell GO term clusters, for example, vascular endothelial
growth factor receptor signalling pathway, endothelial cell migration, and endothelial cell differ-
entiation, define the biological context of the M14. It further contains 10 hub genes, none,
however, being drugggable (Figure 8C,D). Finally, the GO term clusters detected in the M8
module are associated with cytokine production (Positive regulation of cytokine production)
and immune functions (B cell activation) and cell migration (positive regulation of leukocyte
cell-cell adhesion). It contains 13 hub genes, with IDS, NAMPT, and PLK3 being druggable
(Figure 8E,F). Despite a strong adjacency between several modules’ hub genes, particularly
the M8 module, no known FI have been found. Co-expression networks, however, indicate
not only direct functional interactions but also interactions covering several intermediate
proteins. The strong adjacencies might indicate that these genes are part of a cross pathway
network. The complete GO term enrichment analysis results for all detected modules are
provided in Supplementary Table S3.

3.7. Modules with a Strong Positive Association with Cell Origin and Angiogenic Activation
Contain Several Potentially Druggable Hub Genes

Several hub genes of modules positively associated with cell origin and angiogenic
activation could be identified, namely BIRC5, UBE2T, NEK2, CDKN3, TTK, CCNB1, TOP2A,
and FEN1 for the M1 module, and ERG, HSPG2, PEAR1, TIE1, IDS, NAMPT, and PLK3 for
the M18, M14, and M8 modules. A number of drugs targeting these genes are already under
investigation, especially in connection with FEN1, BIRC5, and NEK2 [64]. The associated
drugs and PMIDs are listed in Table 2.
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Figure 7. Network and GO Term enrichment plots the hub genes of modules with strong association
to cell origin. Network plots (A,C,E) are coloured according to the original module color. Read labels
indicate druggability, and edge thickness represents connection strengths (red indicating known FI).
GO term Enrichment plots (B,D,F) are coloured according to term clusters and labelled with the most
significant term of the respective clusters.
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to cell origin. Network plots (A,C,E) are coloured according to the original module color. Read labels
indicate druggability, and edge thickness represents connection strengths (red indicating known FI).
GO term Enrichment plots (B,D,F) are coloured according to term clusters and labelled with the most
significant term of the respective clusters.
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Table 2. Potentially drugable hub genes in network modules positively associated with cell origin or angiogenic activation and the respective drugs.

Gene Symbol Gene Name Drug PMIDs

Module: M1

BIRC5 baculoviral IAP repeat
containing 5

UCN-01, STAUROSPORINE, ROMIDEPSIN, VALDECOXIB, ERLOTINIB, OPRELVEKIN, VORINOSTAT, IMATINIB, TRASTUZUMAB,
PACLITAXEL, FLUTAMIDE, CALCITONIN, GATAPARSEN, DEXAMETHASONE, ROFECOXIB, PLICAMYCIN, IRINOTECAN
HYDROCHLORIDE, REGRAMOSTIM, EPIRUBICIN, TRETINOIN, SULINDAC, CARBOPLATIN, AMMONIUM
TRICHLOROTELLURATE, DOCETAXEL, RESVERATROL, OMACETAXINE MEPESUCCINATE, METHOTREXATE, DOXORUBICIN,
EPOETIN ALFA, LAPATINIB, INDOMETHACIN, CAMPTOTHECIN, PRASTERONE, GENISTEIN, FLUOROURACIL, RESERPINE,
BERBERINE

15255949, 17255535, 14767553, 16707021, 17047074, 14734714, 16951239, 16254145, 23204226,
16452223, 15347474, 16211241, 15735703, 16222118, 16787583, 14627349, 17124180, 15956246,
16403261, 16608080, 14587026, 16950207, 16889755, 14729643, 15837718, 17270149, 15854289,
15670151, 16211302, 17112829, 16461558, 17375591, 15067352, 17968851

CCNB1 cyclin B1 KENPAULLONE, PROTOAPIGENONE, SELICICLIB 21080703

CDKN3 cyclin-dependent
kinase inhibitor 3

PHA-793887, RONICICLIB, AZD-5438, AT-7519

FEN1 flap structure-specific
endonuclease 1

TYRPHOSTIN 23, APOMORPHINE HYDROCHLORIDE HEMIHYDRATE, STREPTONIGRIN, ISOTHYMONIN, CALMIDAZOLIUM
CHLORIDE, PIRARUBICIN, MYRICETIN, PROTOPORPHYRIN DISODIUM, CIANIDANOL, DEOXIEPINEPHRINE, TRANSPLATIN,
SLAZINIC ACID, OXIDOPAMINE HYDROCHLORIDE, PENTABROMOPHENOL,
AMINODIMETHOXYQUINAZOLINYLPIPERAZINE, 4-CHLOROMERCURIBENZOIC ACID, ELLIPTECINE, PINAFIDE,
HYDROXYZINE PAMOATE, CLINAFLOXACIN, SENNOSIDE B, 3-O-METHYLQUERCETIN, PHENYLSTIBONIC ACID,
PURPUROGALLIN, IDARUBICIN, CLOSANTEL, OXOPURPUREINE, THUNBERGINOL B, DIOTYROSINE, TYRPHOSTIN 51,
DAPHNETIN, TETRAIDOFLUORESCEIN, EBSELEN, MITONAFIDE, QUINACRINE, LEVODOPA, STICTIC ACID,
DEMECLOCYCLINE, DOXYCYCLINE, ATHRAQUINONES A, AMARANTH, THIMEROSAL, CEPHALOCHROMIN,
HAEMATOXYLIN, METHOXSALEN, COUMESTROL, AURINTRICARBOXYLIC ACID, GW305074X, FERROUS FUMARATE, FERROUS
GLYCINE SULFATE, GOSSYPOL, NOREPINEPHRINE, CETYLPYRIDINIUM BROMIDE, BENSERAZIDE HYDROCHLORIDE,
METHACYCLINE HYDROCHLORIDE, SURAMIN, QUERCETIN, ASTERRIC ACID, METHYLENE BLUE, EMODIN, LUTEOLIN,
SANGUINARINE SULFATE, RHEIN, METHYLDOPA (RACEMIC), ELLAGIC ACID, HOMIDIUM, DEPHOSTATIN, HOMIDIUM
BROMIDE, EPINEPHRINE, AMINACRINE HYDROCHLORIDE, DITHIAZANINE, ACRIFLAVINE, CARMINE, AMENTOFLAVONE,
DEQUALINIUM, LAVENDUSTIN C, TOLONIUM CHLORIDE, PROTOPORPHYRIN, HEXAMETHYL PARAROSANILINE, TAXIFOLIN,
ALEXIDINE HYDROCHLORIDE, PICEATANNOL, METHYLTHIONINIUM CHLORIDE, OXOGLAUCINE, FAGARONINE, ACID BLUE
129, MORIN, DAUNORUBICIN HYDROCHLORIDE, CEFSULODIN SODIUM, HISPIDIN, METHYLDOPA, PAMOIC ACID, FRAXETIN,
LOMOFUNGIN, ISOKAEMPFERIDE, NORDIHYDROGUAIARETIC ACID, EUPAFOLIN, FURAMIDINE, SANGUINARIUM
CHLORIDE, MITOXANTRONE, HYCANTHONE, PYRONIN Y, CHARTREUSIN, CARMINIC ACID, 2-METHOXY-1,
4-NAPHTHOQUINONE, ERBSTATIN, MITOXANTRONE HYDROCHLORIDE, BAICALEIN, CATECHOL, PURPURIN,
OXYTETRACYCLINE, DOPAMINE, INDOCYANINE GREEN

3319774, 20622253

NEK2 NIMA related kinase 2 ADAVOSERTIB, HESPERADIN, R-406, DACTOLISIB, PAZOPANIB, DOVITINIB, FOSTAMATINIB, GW441756X, TAE-684, CENISERTIB,
GW843682X, ILORASERTIB, PALBOCICLIB, CYC-116, SP-600125, GSK-579289A

19035792, 26516587

TOP2A topoisomerase (DNA)
II alpha

DOXORUBICIN, BECATECARIN, C-1311, CARINATIN G, ETOPOSIDE, AMSACRINE, PODOFILOX, VALRUBICIN, EPIRUBICIN,
IDRONOXIL, AMONAFIDE, 13-DEOXYDOXORUBICIN, AMRUBICIN HYDROCHLORIDE, HYDROQUINONE, DIAZIRINE, LUPEOL,
DOXORUBICIN HYDROCHLORIDE, UNGEREMINE, DAUNORUBICIN HYDROCHLORIDE, SPARFLOXACIN, ANNAMYCIN,
ELSAMITRUCIN, LOMEFLOXACIN, NORFLOXACIN, DACTINOMYCIN, FLEROXACIN, LUCANTHONE, AMRUBICIN,
VOSAROXIN, TENIPOSIDE, DAUNORUBICIN, MITOXANTRONE, DAUNORUBICIN CITRATE, DEXRAZOXANE, BETULIN,
IDARUBICIN, KAEMPFERITRIN, GANCOTAMAB, BERUBICIN HYDROCHLORIDE, ELINAFIDE, ETOPOSIDE PHOSPHATE,
MYRICETIN, DEMETHYLZEYLASTERONE, FRANGULIN B, IDARUBICIN HYDROCHLORIDE, PACLITAXEL, FLUOROURACIL,
SECAUBRYOLIDE, MITOXANTRONE HYDROCHLORIDE, GENISTEIN, QUERCETIN, HURATOXIN, FISETIN, DIGITOXIN,
MOXIFLOXACIN, PEFLOXACIN, TROVAFLOXACIN, ENOXACIN, DECLOPRAMIDE, CIPROFLOXACIN, OFLOXACIN,
ELLIPTECINE, ADRIAMYCIN, 4’-O-ACETYLPATENTIFLORIN B, MAKALUVAMINE E, DIPHYLLIN, SIMOCYCLINONE D8,
BANOXANTRONE, FINAFLOXACIN, MAKALUVAMINE C TFA SALT, CAMPTOTHECIN, MAKALUVAMINE A, MAKALUVAMINE F,
ALDOXORUBICIN, LYCOBETAINE, VINCRISTINE, TRICITRINOL B, OLEANDEROLIDE

26211460, 17089011, 11752352, 17578914, 17010609, 20170164, 22276998, 21388138, 17351394,
17016621, 16377807, 16309315, 16271071, 8823806, 8870683, 23711769, 22867019, 25466187,
23968711, 23920485, 11678653, 25003995, 23566520, 21644529, 18258442, 25941559, 20863598,
22364746, 25922181, 23353750, 24931277, 24012683, 23360284, 20006518, 26216018, 17361331,
17514873, 9426516, 9485461, 9494516, 16759114, 25945730, 19691293, 24326278, 22620261,
26264845, 19783445, 26291037, 19386396, 24334150, 21435753, 25815139, 22867097, 25799376,
25800514, 25240702, 24775914, 18816045, 26292628, 24507920, 24095018, 1311390, 11473732,
17911018, 19155103, 25626146, 22537681, 19725581, 11006484, 11716434, 10691026, 1322791,
8519659, 8632768, 1845848, 10783066, 16061385, 1331331, 1334447, 16019763, 16234514,
17639997, 14728934, 17658777, 24054489, 15833037, 11754608, 22014547, 7756657, 3015015,
1323952, 9169823, 10487533, 17628745, 16480143, 8702194, 22260166, 1963303, 6380596,
11004693, 9631585, 10451375, 11278845, 18687447, 11046078, 12911317, 10194547, 17115008,
11179439, 17652819, 11984069, 11332155, 10203104, 12034365, 11836027, 8036155, 10523799,
22014228, 21880496, 7769390, 8759170, 20561793, 17139284, 17016423, 20596674, 20802486,
18471102, 10089819, 2847647, 22119124, 8691207, 17340571, 25808831, 11205246, 25312684,
23266176, 21761866

TTK TTK protein kinase HESPERADIN, BAY-1217389, FOSTAMATINIB, BAY-1161909 19035792, 26516587

UBE2T ubiquitin conjugating
enzyme E2T

MK-2206
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Table 2. Cont.

Gene Symbol Gene Name Drug PMIDs

Module: M14

HSPG2 heparan sulfate
proteoglycan 2

HALOPERIDOL, PALIFERMIN, CYCLOSPORINE 27023437, 10593896, 16989989, 14753849, 9788974, 14974815

PEAR1 platelet endothelial
aggregation receptor 1

ASPIRIN, CLOPIDOGREL, PRASUGREL, TICAGRELOR 23392654, 23859572, 28820077, 26962983, 27937053

ERG v-ets avian
erythroblastosis virus
E26 oncogene
homolog

DOFETILIDE, SOTALOL HYDROCHLORIDE, AZD1305, NERISPIRDINE, IDARUBICIN HYDROCHLORIDE, MITONAFIDE,
N-ACETYLASPARTIC ACID, GUANIDINE HYDROCHLORIDE, DALFAMPRIDINE, AZD7009, AMIODARONE HYDROCHLORIDE,
MEDROXYPROGESTERONE ACETATE, HOMIDIUM BROMIDE, DAUNORUBICIN HYDROCHLORIDE, PERGOLIDE MESYLATE, 1,
4-DIMETHOXYANTHRAQUINONE, TEDISAMIL
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The M1 module contained several hub genes interconnected by a known functional
interaction network that can be targeted by several drugs (Figure 9). The majority of
the functional interactions have been inferred from co-expression, database, and text
mining approaches. The interactions BICR5 ⇔ UBE2T ⇔ FEN1 ⇔ CCNB1 ⇔ CDKN3
⇔ TTK was confirmed by experimental evidence either in humans or in homologs from
other organisms. These findings suggest that a regulatory network may underly module
M1. The complete results of the drug-gene interaction database query are provided in
Supplementary Table S4.

BIRC5

37

UBE2T

1

NEK2

16

CDKN3

4

TTK

4
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TOP2A

78

FEN1

113
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experiments
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neighborhood

textmining
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0.00
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Figure 9. Functional Interaction network underlying the potentially druggable hub genes in module
M1. The functional interaction network between potentially druggable hub-genes is shown. Edge
color represents interaction type. The number indicates the number of drugs targeting the gene.

4. Discussion

Tumour endothelial cells play a decisive role in cancer progression. Numerous stud-
ies have been undertaken to investigate the underlying biological processes and identify
prognostic markers or therapeutic targets in HCC and other tumour entities [36,65–68].
However, except for the dataset used in this study (GSE51401), these studies are of too
limited size to allow the systematic integration of differential gene expression and path-
way perturbation analysis with advanced bioinformatics approaches. Consequently, they
focused on differentially expressed genes, resulting in a general picture of perturbed bio-
logic functions. Nowadays, advanced network-based bioinformatics approaches such as
Weighted Gene Co-expression Network Analysis (WGCNA) allow gaining a more in-depth
insight into the biological context of expression data by identifying gene modules with
similar expression patterns across conditions and identifying hitherto unknown gene-gene
correlation networks, hub genes, and potential therapeutic targets.

Our study combined differential gene expression analysis, GSVA and WGCNA with
querying the Drug–Gene Interaction database and STRING database to re-analyze GSE51401, a
dataset containing TEC and NEC derived transcriptomics data. We identified differentially
regulated genes, pathways, gene modules and their biologic functions, hub genes, and
potential therapeutic targets.

Our results show that the pro-growth phenotype reported for the TEC for this
dataset [20] as well as in other studies [69] may be caused by pathways involved in
“Evading growth suppressors” rather than “Sustaining proliferative signalling” or “Induc-
ing angiogenesis” patterns. Somewhat surprisingly, the Angiogenesis and MAPK signalling
pathway pathways were downregulated despite upregulation of the main ligands (VEGFA
and PDGFB) and receptors (EGFR, FGFR3, and FGFR4). The fact that almost all “Sustaining
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proliferative signalling” and “Inducing angiogenesis” related pathways were consistently
downregulated in TEC leads to the conclusion that the sustained cell growth observed in
TEC may be driven by signals stemming from other sources. These results raise questions
about the origin of these signals and may have implications for the design of anti-angiogenic
therapies. Tumour endothelial cells may develop apoptosis resistance [70], as has been
demonstrated in the cells of GSE51401 [20]. Our analysis indicates that BIRC5/Survivin
and HELLS’s overexpression, two apoptosis inhibitors, may be instrumental in confer-
ring apoptosis resistance in TEC. In the Chemokine signalling pathway, a panel of ligands
was upregulated, for example, CXCL5, CXCL11, CXCL9, and CXCL10. The receptors, for
example, CXCR2, were generally downregulated in ENG− and ENG+ TEC. Particularly
CXCR2 is a receptor for angiogenic cytokines [71] and thought to mediate pro-angiogenic
signalling [72]. This was again somewhat surprising since upregulation of chemokine re-
ceptors has been observed in several other tumour entities and is thought to be supporting
TEC [73].

The second result of our study is the identification of modules associated with tumour
and angiogenic activated EC. The M1 module was strongly associated with cell cycle-related
functions and contained 22 hub genes, for example, FEN1B, BIRC5, UBE2T, NEK2, CDKN3,
TTK, CCNB1, and TOP2A. This is confirmed by an HCC-associated network proposed by
Xing et al. [74], which was derived from five studies in HCC. This network contains twelve
of our hub-genes and has BIRC5 as the central gene as well. The adjacencies between
BIRC5⇔ NEK2⇔ TOP2A⇔ CDKN3⇔ CCNB1 were found to be particularly strong and
are confirmed by an underlying functional-interaction network as determined by querying
the STRING database. Experimental evidence from putative homologues in other species
suggests the existence of a protein-protein interaction network encompassing the majority
of hub genes. Recently, Zhao et al. undertook an in-depth analysis of several datasets
(GSE121248, GSE87630, GSE84598, and the TCGA-LIHC project) to identify potential
biomarkers in HCC [75,76]. Several of the hub genes we detected (for example, FEN1,
TOP2A, and UBE2T) were also identified as hub genes and potential biomarkers in these
studies. Survival analysis showed that high expression of these genes, particularly FEN1,
is associated with worse outcome [75]. Since we detected these hub genes in endothelial
cells, we hypothesise that TEC play a role in mechanisms involving for instance FEN1,
TOP2A or UBE2T. The M16 module presents itself as related to mitochondrial functions
and may attest to the activated cell metabolism reported in tumour endothelial cells [77].
The findings of the GSVA, namely a downregulation of immunological functions in TEC
(complement activation, alternative pathway), are mirrored in module M15. Thus, the M15
module may reflect EC’s impaired immunological function and their role in the cancer
hallmark “Evading immune destruction”. The identification of 9 hub genes, for example,
CXCL12 and F8, highlights these genes’ role in functions associated with this module.
Interestingly, no functional interactions have been found in the STRING database. The
strong co-expression in these modules, for example ANAPC1⇔ TXND17, COA3⇔ MEA1,
or PHKA1 ⇐ MYO9A may point towards novel, functionally relevant protein-protein
interactions. Somewhat surprisingly, CXCL12, a chemokine with an important role in
angiogenesis [78], was found to be a hub gene in a module negatively associated with TEC.

With an enrichment of the GO terms Cell matrix adhesion and Basement membrane or-
ganisation, the M18 module may display the “reorganisation of the basement membrane”
and “adhesion” properties during angiogenic activation of endothelial cells [77]. No
different eigengene expression was observed between NEC and TEC. Functions of angio-
genic activated endothelial cells (for example, Vascular endothelial growth receptor signalling
pathway, endothelium development, regulation of angiogenesis) characterise the module M14,
highlighting this module’s role in angiogenesis and confirming the feasibility of our data.
Interestingly, however, this module’s eigengenes were downregulated in ENG− TEC, which
may point towards a dedifferentiation of tumour endothelial cells. Finally, the enrichment
of terms describing immunological functions in module M8 mirrors the findings of the
GSVA concerning downregulation of immunological functions in TEC. TEC’s decrease
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of responsiveness to pro-inflammatory stimuli is well known and has been coined “tu-
mor endothelial anergy” [62]. The association with positive regulation of immunological
functions (for example Positive regulation of cytokine production, and Positive regulation of
leukocyte cell–cell adhesion), combined with a decreased expression of the module eigengene
in TEC highlights again their role in the cancer hallmark “Evading immune destruction”.
The strong co-expression between the hub genes of the modules M14 and M8 may indicate
novel, potentially relevant protein-protein interactions.

As a further result, querying the Drug–Gene Interaction database identified several
potentially druggable genes, for example, FEN1, BIRC5 and NEK2. FEN1 is essential in
maintaining genome stability, replication and repair [79,80]. It plays a major role in DNA
replication and protection against apoptosis and the development of drug resistance [81],
has been suggested as a potential target in a variety of cancers [82], and has also been
identified as a potential hub gene in hepatocellular carcinoma [75,83]. BIRC5 which is
secreted into the microenvironment [84], acts as an apoptosis inhibitor [85] and may play a
significant role in the apoptosis-resistant phenotype observed in TEC [20]. Therefore, our
results may point towards a TEC mediated protection against apoptosis for the tumour cells.
BIRC5 can be targeted by several drugs, for example, erlotinib, lapatinib, trastuzumab, or
5FU. The SEARCH trial investigated the efficacy of a combination of sorafenib and erlotinib
but failed to reach the primary endpoint [86]. Lapatinib, a small-molecule inhibitor of
ERBB1/ERBB2 tyrosine kinases, has been shown to inhibit BIRC5 expression via the ERB2
signalling [87]. This inhibition, however, seems to take place at a posttranscriptional rather
than transcriptional level [87]. Trastuzumab, which is primarily used in breast cancer [88],
interacts via the PI3K pathway with BIRC5 [89] and shows some effectiveness [90]. Several
drugs directly targeting BIRC5 are under investigation, employing five different modes of
action: disruption of BIRC5 interactions, inhibition of homodimerisation, decrease gene
expression, degradation of BIRC5 mRNA, and usage in immune therapy [64]. For example,
shepherdin disrupts the binding of BIRC5 to HSP90, resulting in anti-cancer activity [91].
A 5-desflavacin analogue disrupts BIRC5-SMAC interactions [92]. Molecular docking
studies identified other BIRC5-SMAC interrupting agents such as withanone or piperine
derivates [93,94]. Recently it has been demonstrated that PZ-6-QN, a BIRC5-SMAC inter-
action disruptor, showed promising anti-cancer activity [95]. Taken together, these data
indicate that the disruption of BIRC5 interactions may hold promise in cancer therapy. In-
terestingly, the M1 module contained only SMAC, but not HSP90. SMAC was not identified
as hub-gene in the M1 module. NEK2 plays a role in developing drug resistance against
various anti-cancer drugs, including 5-fluorouracil and sorafenib [69,96,97]. A potential
role of NEK2 in resistance development against lenvatinib and other anti-angiogenic drugs
has not been investigated yet. NEK2 has been proposed as a promising target in cancer
therapy [98,99], and various drugs are currently under development. As with BIRC5, these
drugs employ several modes of action, namely silencing mRNA expression using siRNA,
blocking the ATP binding site, and interruption of protein-interaction [99]. Several small
molecular compounds disrupt the interaction HEK-NEK1 resulting in NEK2 degradation
and cell death. [100]. In our results, we found HEC1 to be a member of the M1 module.
However, as with SMAC, HEC1 was not classified as hub-gene. Other functionally relevant
genes, for example, FEN1, NEK2, TOP2A, CCNB1 or CDKN2, displayed greater connectivity
and co-expression strength within the module. Further, experimental evidence in other
species indicates that some of these observed co-expression patterns may indicate under-
lying protein-protein interaction networks. According to the centrality-lethality theorem,
genes with high connectivity are more likely to be therapeutic targets than genes with
low connectivity [27]. We interpret these findings so that the reported co-expression net-
works could be utilised to identify potential two types of new therapeutic targets, namely
among the hub genes themselves and protein-protein interactions associated with strong
co-expression values.

Finally, we present an easy-to-implement framework, consisting of identifying differ-
entially perturbed pathways via Gene Set Variation analysis, followed by a co-expression
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network-based determination of key modules and potential therapeutic targets. While
this study successfully identifies differentially expressed genes, perturbed pathways, rele-
vant gene modules and potential therapeutic targets and provides a blueprint for similar
questions, it has several limitations. Although unique in study size and design, GSE51401
is a non-recent microarray-based dataset; therefore, it should be validated using newer
RNASeq data. Second, the analysis has been done in silico only and requires, therefore,
validation, as it should be done with all bioinformatical analyses. Preferably, this should be
a combination of proteomic analysis and functional assays. Third, the analysis is restricted
to one tumour entity and should be further validated in other tumour entities to allow
more general conclusions. It would also be of interest to carry out pan-cancer endothelial
profiling to characterise similarities and differences between endothelial cells from different
tumour entities.

5. Conclusions

This study systematically investigated the differences between normal and tumour
endothelial cells in hepatocellular carcinoma on gene expression level. Gene Set Variation
Analysis showed a gene expression profile of tumour endothelial cells characterised by up-
regulated evasion from growth suppressors pathways, and downregulated tumour-promoting
inflammation and resisting cell death pathways. Weighted Gene Co-expression Network
Analysis identified several modules strongly associated with cell origin and cell activa-
tion. These modules were characterised by GO terms associated with cell proliferation,
mitochondrial metabolism and immune functions. Cell proliferation and mitochondrial
metabolism associated modules were upregulated, immune function associated modules
were downregulated in TEC. Determination of hub genes revealed several druggable hub
genes, such as FEN1, BIRC5, and NEK2, which may lead to new therapeutic approaches tar-
geting endothelial cells. Finally, other researchers might use this framework as a blueprint
when tackling similar questions in other tumours.
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Abbreviations
The following abbreviations are used in this manuscript:

DGIdb Drug–Gene Interaction database
NEC endothelial cells derived from non-tumour tissue

(liver sinusoidal, macrovascular, and other endothelial cells)
TEC endothelial cells derived from tumour tissue

(liver sinusoidal, macrovascular endothelial cells, and other endothelial cells)
LSEC Liver sinusoidal endothelial cells
LEC Liver endothelial cells (liver sinusoidal, macrovascular, and other endothelial cells).
HCC Hepatocellular carcinoma
log2FC logarithm of the fold change to the base 2
WGCNA Weighted Gene Network Analysis
GSEA Gene Set Enrichment Analysis
GOTEA GO Term Enrichment Analysis
GSVA Gene Set Variation Analysis
GOTSSA GO Term Semantic Similarity Analysis
FI Functional interactions
DEG differentially expressed gene
5FU 5-fluorouracil
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