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The heterogeneity of hepatocellular carcinoma (HCC) is related to immune cell infiltration and genetic aberrations in the tumor
microenvironment. This study aimed to identify the novel molecular typing of HCC according to the genetic and immune
characteristics, to obtain accurate clinical management of this disease. We performed consensus clustering to divide 424 patients
into different immune subgroups and assessed the reproducibility and efficiency in two independent cohorts with 921 patients.
The associations between molecular typing and molecular, cellular, and clinical characteristics were investigated by a multidi-
mensional bioinformatics approach. Furthermore, we conducted graph structure learning-based dimensionality reduction to
depict the immune landscape to reveal the interrelation between the immune and gene systems in molecular typing. We revealed
and validated that HCC patients could be segregated into 5 immune subgroups (IS1-5) and 7 gene modules with significantly
different molecular, cellular, and clinical characteristics. IS5 had the worst prognosis and lowest enrichment of immune
characteristics and was considered the immune cold type. IS4 had the longest overall survival, high immune activity, and
antitumorigenesis, which were defined as the immune hot and antitumorigenesis types. In addition, immune landscape analysis
further revealed significant intraclass heterogeneity within each IS, and each IS represented distinct clinical, cellular, and
molecular characteristics. Our study provided 5 immune subgroups with distinct clinical, cellular, and molecular characteristics of
HCC and may have clinical implications for precise therapeutic strategies and facilitate the investigation of immune mechanisms

in HCC.
1. Introduction HCC was the sixth most common malignancy and the fourth
most common cause of cancer-related death in the world [2].
Hepatocellular carcinoma (HCC) is one of the most com-  Current treatment of HCC is mainly surgical resection in the

mon malignant tumors with high incidence and poor  early stage, and radiotherapy and chemotherapy in the
prognosis [1]. The data from 2018 statistics indicated that ~ middle and late stages. In particular, advances in targeted
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and immunotherapy in the past decade have brought sub-
stantial benefits to patients. However, most diagnosed pa-
tients are already in advanced stages, with limited
conservative treatment options [3, 4]. Moreover, the effect of
immunotherapy varies greatly among different patients and
different cancer types. Even for the most widely used anti-
PD-1/PD-L1 and anti-CTLA4 therapies, only a small
number of patients showed good response [3], indicating
further research on the immune response in the tumor
immune microenvironment.

HCC is considered to be one of the most heterogeneous
tumors due to its comprehensive effect on genetic, meta-
bolic, immune, infectious, and other factors [5]. The het-
erogeneity of hepatocellular  carcinoma is  the
nonhomogeneity of tumor cells, stromal cells, and immu-
nity, which is a barrier to the study of the molecular
mechanisms of the disease and the improvement of clinical
treatment. Therefore, it is an essential method to study the
molecular and immune characteristics of HCC at the cellular
level and to conduct molecular typing to resolve tumor
heterogeneity [6]. Recently, Zhang et al. described the im-
mune microenvironment of HCC at the level of single cells,
and discovered a new immune cell subpopulation related to
the mechanism of immune escape from tumors [7]. Yutaka
et al. classified HCC into three immune subtypes with ad-
ditional prognostic impact on histological and molecular
classification [8]. The above studies demonstrated that the
clarification of tumor heterogeneity can help understand the
complexity of the immune microenvironment and assist in
clinical treatment.

Studies have shown that the heterogeneity of HCC was
associated with its own cellular and molecular characteristics
and were affected by immune cell infiltration in the immune
microenvironment and gene expression [9]. In this study, we
divided HCC into novel molecular types, namely, 5 immune
subgroups and 7 gene modules based on gene expression
profiles and immune characteristics. Association analyses
between immune subgroups and cellular and molecular
characteristics showed that each of the 5 immune subgroups
was connected with distinct gene expression, tumor immune
infiltrating cells, gene function, and cellular composition. In
addition, the 5 immune subgroups showed significant dif-
ferences in clinical characteristics. The immune landscape
further demonstrated the accuracy of molecular typing
based on gene expression profile and immune characteris-
tics, as well as the intrinsic molecular association of HCC
heterogeneity.

2. Materials and Methods

2.1. Acquisition and Processing of HCC Datasets. The HCC
datasets with the clinical information of experimental and
validation cohorts were obtained from the Cancer Genome
Atlas (TCGA) and gene expression omnibus (GEO) data-
bases, respectively. For the experimental cohort, we used the
TCGA GDC API to download RNA-Seq data and clinical
follow-up information data of human hepatocellular carc-
inoma (LIHC), including 424 samples. Next, the RNA-Seq
data of TCGA were preprocessed in the following steps: (1)

Journal of Oncology

removing samples without clinical data; (2) getting rid of
data of normal tissue samples; (3) genes with transcript per
million (TPM) expression equal to 0 in more than 50% of the
samples was removed; (4) the expression profile of immune
cell-related genes was retained and were subjected to log2
(TPM+1) transformation. A total of 371 samples in the
TCGA cohort met the requirements and were selected in this
study. For experiment cohorts, we downloaded 433 samples
from GSE36376 and 488 samples from GSE14520. Then, the
data were preprocessed in the following steps: (1) normal
tissue sample data were removed; (2) taking out probes with
null gene test value; (3) mapping these probes into human
genes; (4) preserving the expression profile of immune cell-
related genes. Ultimately, we obtained 240 and 225 samples
from GSE36376 and GSE14520, respectively, for verification
analyses.

2.2. Immune-Related Genes Selection. The following genes
were collected as immune-related genes for subsequent
analysis through literature retrieval and data mining. First,
we collected immune cell-specific genes derived from the
GEO database. Second, the costimulatory and coinhibitory
receptors display great diversity in expression, structure, and
function, and determine the functional outcome of T cell
receptor (TCR) signaling which was obtained from Chen
et al. literature [10]. Third, the genes of cytokines and their
corresponding receptors were downloaded from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database [11].
Fourth, the genes that participated in antigen processing and
presentation were collected from the immunological assay
data of ImmPort [12]. Fifth, we also took several immune-
related genes that were related to at least one of the
abovementioned immune genes into consideration, which to
some extent, may have a potentially complex relationship
with the tumor immune microenvironment. In total,
1989 immune-related genes met the inclusion criteria and
were used for molecular typing analyses.

2.3. Immune Subgroups and Gene Modules Analyses.
Based on the expression data of 1989 immune-related genes,
a consistency matrix was constructed by consensus cluster-
plus to obtain immune subgroups of samples. We used the
partition around medoids (PAM) algorithm and Euclidean
distance and went through 500 bootstraps, with each
bootstrap including 80% of the training set of patients. The
clustering number was set from 2 to 10, and the optimal
classification was determined by calculating the consistency
matrix and consistency cumulative distribution function.
We also conducted the identical methods with the same
settings and parameters to identify gene modules, in addi-
tion to using 1-Pearson correlation as a distance metric.
Further, the function of immune-related genes in terms of
Gene Ontology (GO) was analyzed by the Bioconductor R
package. We used the average expression level of all the
genes in the module to define the gene module score. The
association between gene module score and molecular
signatures was assessed by Spearman correlation analysis.
The reproducibility of immune subgroups was verified in the
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GSE36376 dataset by quantitatively measuring the consis-
tency of subgroups between the experimental and validation
cohorts.

2.4. Analyses of the Association between Immune Subgroups
and Cellular, Molecular, and Clinical Characteristics. The
association between immune subgroups and cellular and
molecular characteristics was assessed by analysis of vari-
ance. Four clustered immune cell types and 22 immune cell
types that were identified by CIBERSORT arithmetic were
used to analyze the composition of the immune cells [13].
These four clustered immune cells are referred to as total
mast cells (the total percentage of activated mast cells and the
percentage of resting mast cells), total macrophages (the
total percentage of M0, M1, and M2), total lymphocytes, and
total dendritic cells (the total percentage of activated den-
dritic cells and the percentage of resting dendritic cells),
respectively. Stromal fraction is the number of tumor purity
minus matrix fraction obtained by ABSOLUTE methods
[14]. The polarization status of CD4+ T cells, including Th17,
Thl, and Th2 was calculated by Bindea and colleagues’
methods [15]. The leukocyte ratio was estimated from
a mixed model containing 2,000 methylated probes, with the
largest difference between pure leukocyte cells and normal
tissues. By measuring the not a part of the polyclonal tumor
genome, the intratumor heterogeneity was determined via
ABSOLUTE methods [14]. Image-based tumor-infiltrating
lymphocytes (TIL), were defined as the number of 50 x 50
micron areas being positive for tumor-infiltrating lym-
phocytes, which exceeded the total number of areas on the
histological image. In addition, seven molecular character-
istics, including cytolytic, macrophage regulation, IFN-y
response proliferation, lymphocyte infiltration, TGF-f re-
sponse, and wound healing were defined in the corre-
sponding literature, respectively. Aneuploidy scores were the
sum of the amplified or deleted chromosome arms that were
calculated by the ABSOLUTE algorithm [14]. The number of
altered segments represented the proportion of bases that
deviate from baseline ploidy. Homologous recombination
defect score is a summary of 3 independent indicators of the
genomic scar with allelic imbalance in subtelomeric regions.
The diversity of the TCR and BCR was estimated using
MITCR arithmetic. Based on the HLA types obtained by
OptiType methods from the RNA sequence [15], the SNV or
Indel neoantigen was identified using NetMHCpan methods
[16]. Moreover, several immune-related genomics signa-
tures were incorporated into this study. “The tumor mu-
tation burden” was defined as the rate of nonsilent mutation
multiplied by 100. For the association between immune
subgroups and clinical characteristics, the Kaplan-Meier
method was used for survival analysis, and the log-rank test
was used for comparison. Univariate Cox and multivariable
Cox regression were conducted to evaluate the prognostic
value of immune subgroups using the clinical signatures as
concomitant variables.

2.5. Depiction of Immune Landscape. We used a graph-based
learning approach for dimensionality reduction analysis to

reveal the internal structure of the immune system and
visualize the distribution of individual patients. This analysis
addressed high-dimensional gene expression data into a tree
structure in a low-dimensional space by preserving local
geometric information, which has previously been used to
model cancer progression and define the trajectory of de-
velopment using large and single-cell gene expression data
[17]. We extended our analysis to immune gene expression
profiling, which may therefore, reflect relationships between
patients in a nonlinear manifold and complement the dis-
crete immune subtypes. Then, we used the different color
counterparts of plot cell trajectory methods, with different
colors corresponding to different immune subgroups, to
visualize the immune landscape.

3. Results

3.1. Identification of Immune Subgroups and Gene Modules.
Consensus clustering was performed on 371 HCC samples
from TCGA based on the gene expression profiles of
1900 immune-related genes to identify appropriate molec-
ular typing. According to the accumulative distribution
function (CDF), the optimal number of clusters was de-
termined by observing the CDF delta area curve. It could be
seen that cluster results were relatively stable when cluster
selection was 5 (Figure 1(a)-1(b)). Finally, we selected k=5
to obtain five immune subgroups (IS1 to IS5) (Figure 1(c)).
Using clinical follow-up information on HCC samples, we
found that there were significant prognostic differences
among 5 immune subgroups (Figure 1(d)). IS4 was asso-
ciated with the best prognosis, whereas IS5 had the worst
prognosis. Consistent with the experimental cohorts, the
prognostic outcome was well verified in the GSE14520
database (Figure S1). Due to HCC being mainly caused by
hepatitis B virus (HBV) infection, we divide HCC into HBV -
related and non-HBV-related HCC groups. Of note, the
results were similar to the experimental cohort in the sur-
vival analysis both in two groups (Figure S2). These results
determined the accuracy of five immune subgroups. Besides,
the immune subtype was an independent prognostic factor
in HCC according to univariate and multivariate Cox re-
gression analysis (Table S1). Next, by similar methods, we
identified 7 gene modules (GM) (Figure 1(e)-1(f)), and
several gene modules were significantly correlated with HCC
prognosis. In correspondence with the previous studies, the
high scores in TGF-f and differentiation predicted poor
outcomes (Figure 1(g)). The verification in validation co-
horts also revealed that the differentiation module presented
a poor prognosis of HCC (Table S2). The annotation of gene
module 5 (differentiation) was associated with the histo-
logical grade that higher grade had a higher differentiation
score (Figure 1(h)). These above outcomes suggest that HCC
patients can be classified into different molecular subgroups
based on immune characteristics and gene expression, with
distinct clinical relevance.

3.2. Association Analysis between Immune Subgroups and
Gene Modules. The heatmap of association between
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Ficure 1: Continued.
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FiGure 1: Identification the immune subgroups and gene modules in HCC. (a) The CDF curve of the samples for immune subgroups. (b)
The CDF delta area curve of the samples for immune subgroups. Delta area curve of consensus clustering, indicating the relative change in
area under the CDF curve for each category number k compared with k-1. (c) The clustering heatmap of samples when consensus K= 5. (d)
KM curve of prognosis of 5 immune subgroups. (e) The CDF curve of the samples for gene modules. (f) The CDF delta area curve of the
samples for gene modules. Delta area curve of consensus clustering, indicating the relative change in area under the CDF curve for each
category number k compared with k-1. (g) Univariate Cox analysis of gene modules. (h) The correlation between the expression of gene

module 5 and histological grade.

immune subgroups and gene modules revealed that each
immune subgroup was connected with distinct expression
patterns of seven gene modules (Figure S3). IS5 was related
to the lowest expression in the gene modules of immune
characteristics of T cells, inflammation, and IFN-y, as well as
the tumorigenesis characteristic of reactive stroma and
differentiation, suggesting that IS5 was an immune cold type
(Figure 2(a)). IS5 characteristic was followed by IS1, which
also had the low expression in the gene modules of the
immune characteristic of T cell, inflammation, reactive
stroma, and differentiation, but with high expression of
genes of IFN-y and angiogenesis (Figure 2(a)). On the
contrary, IS3 had the highest expression in the immune-
related gene modules and the tumorigenesis-related gene
modules, which was defined as an immune hot type
(Figure 2(a)). Unlike IS5 and IS3, we found that IS4 had high
expression of T cells, inflammation, and IFN-y, and low
expression of tumorigenesis modules like reactive stroma,
angiogenesis, differentiation, and TGF-f, implying that 1S4
belongs to both immune hot and antitumorigenesis types
(Figure 2(a)). The above results were consistent with their
prognosis that IS4 with the immune hot and antitumori-
genesis types had the longest overall survival while IS5 with
the immune cold type had the worst prognosis (Figure 1(d)).
Next, we validated our findings using an independent
GSE36376 dataset, and the results represented a high linear
correlation of the expression level of immune subgroups
between experiment (TCGA) and validation (GSE36376)
cohorts with a mean value of Pearson correlation coefficient

0f 0.98 (Figure 2(b)). The intra-group correlation coeflicients
of IS1 to IS5 were 0.611, 0.52, 0.6, 0.559, and 0.843, re-
spectively, suggesting a moderate to good agreement be-
tween the experiment (TCGA) and validation (GSE36376)
cohorts in immune subtypes (Figure 2(c)).

3.3. Association Analysis between Immune Subgroups and
Cellular and Molecular Characteristics. The heterogeneity of
hepatocellular carcinoma (HCC) was related to immune cell
infiltration and genetic aberrations in the tumor microen-
vironment and was affected by cellular and molecular
characteristics, thus, we assessed the association between
immune subgroups and several defined molecular and
cellular characteristics (Figure 3). IS5 was associated with the
lowest level of leukocytes (Figure 3(d)), lymphocytes
(Figure 3(e)), T cell receptor (TCR) (Figure 3(j)), CD8 T cells
(Figure 3(i)), follicular helper T cells (Figure S6G), memory
B cells (Figure S5A), and resting dendritic cells (Figure S5E),
which is in line with the immune cold type. However, IS5
was connected to a high degree of gene mutation, such as
aneuploidy, fraction alteration, and proliferation. The IS1
that closely followed subtype IS5 also had the low expression
of leukocytes (Figure 3(d)), and lymphocytes (Figure 3(e)),
whereas IS1 had higher enrichment of TCR (Figure 3(j)),
CD8 T cells (Figure 3(i)), follicular helper T cells
(Figure S6G), and memory B cells (Figure S5A). IS3 was
defined as immune hot type, IS3 had an increased level of
leukocytes (Figure 3(d)), lymphocytes (Figure 3(e)), CD8
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assess the similarity and reproducibility of the proposed immune subgroups between experimental and validation cohorts.

T cells (Figure 3(i)), TCR (Figure 3(j)), dendritic cells
(Figure S5E), Thl cells (Figure S5N), as well as high ex-
pression of IFN-gamma (Figure 3(c)), proliferation
(Figure 3(g)), stromal fraction (Figure 3(h)), TGF-beta
(Figure 3(k)), and wound healing (Figure 3(1)). Unlike the
immune subgroups of IS5 and IS3, the favorable prognosis of
IS4 represented the friendly and supportive immune profile.

IS4 was enriched in immune cell infiltration of leukocytes
(Figure 3(d)), lymphocytes (Figure 3(e)), CD8 T cells
(Figure 3(i)), and CD4 T cells (Figure S5L). In contrast, 1S4
was associated with a low degree of gene mutation of an-
euploidy (Figure 3(a)), fraction altered (Figure S4C), pro-
liferation (Figure S3G), stromal fraction (Figure 3(h)), TGF
(Figure 3(k)), and wound healing (Figure 3(1)). The above



Journal of Oncology

Aneuploidy.Score CTA.Score
4 L]
6 -
g 2 s
S 20- ¢ S
2 ' 3 4-
= =
&) O
2 -
Is1 ISZ 1S3 IS4 IS5 181 ISZ 1S3 IS4 IS5
@ (b)
Lymphocyte Signature Score 08 Macrophages
g g 06-
2 2
I I
= =
-2- 0.2-
ISl ISZ IS3 IS4 IS 5 I 1 ISZ IS3 IS4 IS5
(e) ()
T.Cells.CD8 TCR.Richness
L L
041 I 150-
£ g
g 0.3- s 3 100- .
0.2-
V) &) 50-
0.1-
0. , Lk -t- -
IS1 ISZ IS3 IS4 IS5 ISl ISZ IS3 IS4 IS5

@ 0)

IFN.gamma. Response Leukocyte.Fraction
1.00 - N
2_
2 4 0.75-
= 1- =
=} o
g' g' 0.50 -
= O =
O O
11 0.25- *
_2-
| 0.00 -
IS1 ISZ ISS IS4 ISS IS 1 ISZ ISS IS4 ISS
() (d)
Proliferation Stromal.Fraction
1- 0.8-
%"3 0- g 0.6-
g| %
s s 0.4-
&) O
0.2-
2=
0.0-
I 1 ISZ IS3 IS4 ISS I 1 ISZ IS3 IS4 ISS
® (b)
TGFbeta.Response Wound.Healing
0.50-
.
@ @ L)
2 0- 2 0.25-
o =}
2 2
I I
s S 0.00-
o, ]
-0.25-
IS1 IS2 IS3 IS4 IS5 IS1 IS2 IS3 IS4 IS5

(k) )

F1GURE 3: The association among immune subgroups and cellular, and molecular characteristics.

results suggest that immune subgroups are associated with
genomic and immune characteristics.

3.4. Depicting Landscape of Immune Subgroups. To facilitate
visualization and reveal the underlying structure of indi-
vidual sample distribution, we performed a dimensionality
reduction method [17] based on graph learning to depict the
landscape of immune subgroups. This analysis placed
a single sample into a graph with a sparse tree structure and
defined the immune landscape of HCC. The position of
a sample within them represented the overall characteristics
of the immune microenvironment of the corresponding
immune subgroups. For instance, IS3 and IS5 representing
the immune hot and cold type, respectively, were distributed
at opposite ends of the horizontal axis of the immune
landscape (Figure 4(a)), whereas the friendly and supportive
immune profile of IS4 was distributed on the middle of the
horizontal axis of the immune landscape (Figure 4(a)). Due
to the IS1 closely following subtype IS5, the immune
landscape showed that the position of IS1 was close to IS5
(Figure 4(a)). In addition, immune landscape analysis fur-
ther revealed significant intraclass heterogeneity within each
immune subgroup. For example, we can further divide IS1

into 3 subtypes (IS1A-C) according to their position in the
immune landscape (Figure 4(b)), and each subtype showed
a specific pattern of immune expression (Figure 4(c)).
Similar results were also identified in IS3 (Figure S7), IS4
(Figure S8), and IS5 (Figure S9). Particularly, the 3 subtypes
of IS1 showed different gene expression patterns and sur-
vival times (Figure 4(c)-4(d)). IS1C had the worst prognosis
and was abundantly enriched in tumorigenesis of angio-
genesis, differentiation, react stroma, and TGF-J3, as well as
the low expression of immune signatures including IFN—y,
inflammation, and T cells (Figure 4(c)). On the contrary, the
gene expression patterns and prognosis of IS1A were op-
posite to that of IS1C (Figure 4(c)). In the GSE14520 vali-
dation cohort, we also found similar prognostic trends in
these subtypes (Figure S10). The above results further
demonstrated the reliability of the immune subgroups.

4. Discussion

HCC is highly heterogeneous, and even the same HCC tissue
is obviously different [17]. Current clinical and pathological
classification cannot accurately assess the heterogeneity of
HCC, and therefore, could restrict immunotherapy [17, 18].
Here, we performed multicohort retrospective analyses on
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FIGURE 4: The depiction of immune landscape of HCC. (a) The trajectory of development of immune subgroups based on immune
landscape. Each color represented the previously defined immune subtype, and each dot represented a patient. (b) The trajectory of
development of 3 subtypes from IS1 based on immune landscape. Each color represented the previously defined immune subtype, and each
dot represented a patient. (c) The distribution of 7 gene modules patterns among 3 subtypes from IS1. (d) KM curve analysis of prognosis of

3 subtypes from ISI.

independent experimental and validation cohorts to identify
novel molecular typing of HCC according to genetic and
immune characteristics. The study found that HCC patients
could be segregated into 5 immune subgroups and 7 gene
modules, and the association between immune subgroups
and gene modules revealed that each immune subgroup had
distinct patterns in cellular, molecular, and clinical

characteristics. Our study depicted the immune and genetic
characteristics of HCC based on molecular typing, which
contributed to the understanding of the immune landscape
of HCC and may have had substantial help in clinical im-
plications for HCC.

The characteristic of being hot or cold of a tumor is
determined by the information of the cancer cell itself,



Journal of Oncology

which is distinguished mainly by the number of immune
cells in the tumor microenvironment [19]. In particular,
a tumor was not a large group of tumor cells gathered
irregularly but a complex microenvironment system, in
which there were not only cancerous cells but also many
symbiotic normal cells, immune cells, etc., such that im-
mune cells and tumor cells interacted with each other to
affect the outcome of tumor cells [20]. It was reported that
using immune-checkpoint inhibitor therapy on patients
with hot tumors helped activate existing immune cells to
destroy cancer cells. However, for cold tumors, immuno-
therapy is ineffective because the immune cells do not
recognize the tumor cells and it was useless to activate the
immune system [21]. In this study, we found that HCC
could be segregated into 5 immune subgroups with sig-
nificantly different molecular, cellular, and clinical char-
acteristics, particularly, IS5 and IS3 were revealed as
immune cold and hot types, respectively. Consistent with
the previous research, the immune cold type of IS5 had the
worst prognosis, suggesting the inactivity of the immune
system in killing tumor cells [22]. However, the immune
hot type of IS1 had a better survival prognosis than IS5.
Moreover, the hot or cold of a tumor was not the only factor
that determined the effectiveness of immunotherapy, un-
like previous research that only divided tumor cells into the
immune cold and hot types [23]. Our analysis further
stratified HCC into 5 immune subgroups, and IS4 with the
best prognosis was characterized by immune activity and
antitumor genesis. Thus, IS4 has both immune hot and
tumor-fighting properties. In addition, recent studies have
shown that the classification of cold and hot tumors is
mainly based on the number of T cells in the tumor mi-
croenvironment [24]. And in the immune hot type, there
were a lot of T cells around cancer, but the tricky tumor
cells could disguise themselves to evade the inhibition of
T cells [25], which may explain why the prognosis in the
immune hot type of IS3 was not the best, even though IS3
had the highest expression of T cells. Our study may
provide more detailed molecular characteristics for the
classification of HCC; that is, finding the characteristics of
immune activation and tumor suppression between cold
and hot tumors may be more helpful for immunotherapy.

The heterogeneity of HCC is related to immune cell
infiltration and genetic aberrations in the tumor microen-
vironment [26]. Therefore, we found that 5 immune sub-
groups represented distinct cellular and molecular
characteristics. The HCC of IS5 was determined by the
lowest levels of immune cell infiltration and a high degree of
gene mutation. In comparison, IS3 had increased immune
cell infiltration and high expression of IFN. Unlike extreme
1S3 and IS5, IS4 was enriched in immune cell infiltration and
was associated with a low degree of gene mutation. Ac-
cordingly, IS5, IS3, and IS4 had the worst, intermediate, and
best prognosis, respectively (Figure 1(d)). Besides, the
survival differences among 5 immune subgroups were in-
dependent of clinical factors. These results suggest that the
immune subgroups based on immune profiling may be a key
determinant of HCC molecular type prognosis and may be
incorporated into future biomarker-based risk stratification

strategies for individualized therapy. Moreover, the efficacy
of immune typing has been fully validated in independent
data sets, including independent data of HCC, HBV-related,
and non-HBV-related HCC.

There have been a large number of studies on the mo-
lecular typing of HCC, and molecular typing based on genes,
immunity, metabolism, and noncoding RNA has greatly
supplemented the current clinicopathology [27-29]. Yutaka
et al. found that the immune microenvironment of HCC can
be divided into immune-high, immune-mid, and immune-
low, which has additional prognostic effects on the histo-
logical and molecular typing of HCC [8]. Also, immune-
high was characterized by increased immune cell infiltration
with independent positive prognosis [8], which was con-
sistent with our results that the subtype enriched in immune
cell infiltration was associated with favorable survival.
Traditionally, molecular-based typing was used to develop
predictive and prognostic biomarkers, which require mul-
tidimensional analytical approaches to study gene expres-
sion profiles and to understand clinical treatment responses
and clinical outcomes [30]. Here, to facilitate visualizing and
revealing the underlying structure of individual patient
distribution, we applied graph learning-based di-
mensionality reduction techniques to molecular typing. This
approach has previously been used to model cancer pro-
gression and define developmental trajectory using large
volumes of single-cell gene expression data, allowing for
a more intuitive representation of the dynamic character-
istics of molecular typing using the immune landscape
platform [17]. In addition, when combined with immune cell
dynamics, molecular characteristics, and clinical in-
formation, molecular typing features can be more com-
prehensively displayed [31]. We found that the immune hot
type of IS3 and the immune cold type of IS5 were distributed
at opposite ends of the horizontal axis of the immune
landscape, whereas the supportive immune profile of IS4 on
the middle of the horizontal axis of the immune landscape.
These dynamic manifestations indicate that the HCC mo-
lecular typing in this study has significantly different
characteristics. Although the immunological landscape
generally summarizes immunological subtypes based on
cluster analysis [32], it does not fully reveal intracluster
heterogeneity and potential clinical relevance. Thus, we
further used immune landscapes to reveal significant
intracluster heterogeneity in each immune type. We found
that certain subtypes seem to be more diverse and hetero-
geneous. For example, IS1IC with the worst prognosis pre-
sented highly expressed gene modules of differentiation,
TGEF-f3, and reactive stoma, which havesimilar characteris-
tics to IS3, but they are located in different positions on the
horizontal axis of the immune landscape map and have
different prognostic characteristics. These results suggest our
classification of 5 immune subgroups in HCC was not yet the
most detailed, and the heterogeneity of HCC required
further detailed classification to achieve the most accurate
personalized diagnosis and treatment.

In conclusion, we identified and validated 5 immune
subgroups with distinct molecular, cellular, and clinical
characteristics. The immune landscape of 5 immune
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subgroups further demonstrated the accuracy of molecular
typing based on immune characteristics, as well as the in-
trinsic molecular association of HCC heterogeneity. Our
study may provide new insights into the immune charac-
teristics of HCC and may promote the application of novel
immune subgroups in the clinical management of HCC.
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