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Summary

Microalgae industrial production is viewed as a solu-
tion for alternative production of nutraceuticals, cos-
metics, biofertilizers, and biopolymers. Throughout
the years, several technological advances have been
implemented, increasing the competitiveness of
microalgae industry. However, online monitoring and
real-time process control of a microalgae production
factory still require further development. In this mini-
review, non-destructive tools for online monitoring
of cellular agriculture applications are described.
Still, the focus is on the use of fluorescence spec-
troscopy to monitor several parameters (cell concen-
tration, pigments, and lipids) in the microalgae
industry. The development presented makes it the
most promising solution for monitoring up-and

downstream processes, different biological parame-
ters simultaneously, and different microalgae spe-
cies. The improvements needed for industrial
application of this technology are also discussed.

Challenges of monitoring cell cultivations

Due to the increased interest for greener and renewable
bio-based economies, algal biomass is being valorized
for the sustainable production of food and feed, chemi-
cals, fuels, and materials. Through the years, several
technological advancements have been studied and
implemented, increasing the competitiveness of biomass
production. The introduction of closed cultivation sys-
tems, such as bioreactors, enabled the production under
defined and controlled conditions, leading to optimized
viability, reproducibility, and higher productivities. Follow-
ing this trend for more competitive production systems,
the need for online monitoring has emerged.
Within the biotechnological processes involved in a

cell-based production, three types of parameters need
to be monitored: physical, such as temperature and
conductivity; chemical, such as pH, O2 and CO2 partial
pressure (pO2 and pCO2); and biological, such as cell
concentration and viability, substrate and product’ con-
centrations. It is important to take into consideration
that interactions between these three classes of param-
eters can occur and that these interactions are usually
complex. Also, the parameters measured online are
usually less than the required parameters needed for
accurate monitoring and control (Ulber et al., 2003;
Glindkamp et al., 2009). Currently, most of the monitor-
ing is based on offline analysis of samples withdrawn
from the cultivation or biorefinery processes. The sam-
pling frequency is conservative to neither disturb the
system nor contaminate it, and the metabolic activities
must be stopped to show the status of the culture at a
specific time. In addition, some results depend on time-
consuming analytical procedures, making this sampling
strategy not appropriate for direct process control (Hen-
riques et al., 2010).
Therefore, online monitoring and closer process con-

trol of bioreactors is a basic requirement for the develop-
ment of efficient biological processes (Marose et al.,
1999; Sch€ugerl, 2001).
The general requirements are usually selectivity, sensitiv-

ity, and response time (Dorresteijn, 1997; Olsson and
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Nielsen, 1997; Glindkamp et al., 2009). Four configurations
have been explored so far (Fig. 1): inline, where the medium
is monitored directly; online, when the sensor is moved to a
particular part of the bioreactor, like a bypass, so the bubbles
from aeration do not interfere (for example); at-line, where a
sample is withdrawn from the bioreactor but rapidly analyzed;
and offline, when the sample is removed from the bioreactor,
and there is a need for laborious laboratory work. With in-/
online sensors, it is possible to acquire a continuous stream
of information. Thus, biological systems can be monitored
faster and more efficiently allowing an immediate response,
leading to improved production processes with high-quality
process control.
Nowadays, the most common in- and online sensors

used in biotechnology are based on electrochemical
principles such as pH, pO2, and conductivity, and are
well-known in the field. However, the need for efficient
tools to monitor simultaneously a wide range of sub-
strates and products and to control the cultivation envi-
ronment increased the urgency for better solutions, and
the use of optical sensors for online monitoring is
emerging.

Spectroscopic optical sensors

With the improvement of optical fibre technology, effi-
cient at larger distances and longer communication

ranges, the optical sensor technology became very
promising for in-/online monitoring. The principle of
spectroscopic optical sensors is based on the interac-
tion between light waves (absorption or luminescence)
with the molecules. This technique presents several
advantages for in-/online monitoring of complex biologi-
cal systems, for example, industrial microalgae produc-
tion and refinery. These sensors are non-invasive, non-
destructive, and allow the detection of several mole-
cules simultaneously. The need for sampling the sys-
tem is low or inexistent, decreasing the risk of culture
contamination, and no time delay is observed when
acquiring the data, making them a great solution for
real-time monitoring. Also, as non-invasive techniques,
spectroscopic sensors do not interfere with the biologi-
cal material, allowing to monitor in vivo cells and obtain
information on their intracellular state, in addition to
information on extracellular media (Marose et al., 1999;
Ulber et al., 2003; Hantelmann et al., 2006; Glindkamp
et al., 2009).
The spectroscopic optical sensors can be divided into

three categories based on the way they interact with the
sample: (i) they can be used in combination with an indi-
cator for specific molecules (usually fluorescent dyes)
(Ulber et al., 2003); (ii) coupled to a biological receptor
like a catalytic effect (enzyme-based) or comprise
immune and gene sensors (antibodies) (Marose et al.,
1999); (iii) or, in the most simple case, analyze the opti-
cal properties of the sample (Wolfbeis, 2005). This last
approach is more adequate when aiming to monitor cell
cultivation since no interaction with the culture is
required, and several metabolites can be analyzed at the
same time. Several spectroscopic methods, including
infrared, Raman, and fluorescence spectroscopies, have
been used for (bio)process monitoring, often in combina-
tion with optical fibres (Wolfbeis, 2005).

UV/Vis

Ultraviolet/visible (UV/Vis) has been, and still is today,
widely used to monitor a wide number of parameters in
various applications. UV/Vis is one of the most simple,
universal, and inexpensive optical technique that allows
high scanning speeds in the range from 200 to 780 nm
(Ulber et al., 2003; Ryder, 2018; Singh et al., 2019). This
technique has two major drawbacks: the lack of specific-
ity and can only be used in liquid and homogenous sam-
ples (Ulber et al., 2003; Claßen et al., 2017). Although
the presence of particles causes the light to scatter, this
behaviour is frequently used as an advantage as optical
density (OD), to quantify biomass concentration in turbid
samples (Claßen et al., 2017). UV/Vis can be used to
monitor large molecule groups such as proteins, as total
protein concentration due to the typical absorption

Fig. 1. Fluorescence spectra of Dunaliella salina microalgae. Emis-
sion wavelengths in the x-axis, excitation wavelengths in the y-axis,
and fluorescence intensity in colour-grade scale. Three distinct fluo-
rescence regions are identified: I – protein-like region (excitation
275 nm, emission 300–350 nm); II – humic compounds region (exci-
tation 350 nm, emission 400 nm); and III – pigments band (emission
higher than 650 nm).
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between 260–280 nm. UV/Vis can also be used to moni-
tor dissolved organic carbon (DOC) and different min-
erals in natural organic matter to assess water quality,
and in wide applications in food industry, from roasting
coffee to gin storage (Belay et al., 2008; de Carvalho
Polari Souto et al., 2015; Govindaraj et al., 2020; Xie et
al., 2021; Zhu et al., 2021).

Infrared spectroscopy

Infrared (IR) spectroscopy provides information about the
structural composition of the molecule (position, shape,
and size) through the detection of the biological bonds
C–H, N–H, O–H, and S–H. IR has been used in biopro-
cess monitoring for the measurement of several metabo-
lites, such as ethanol, glucose, and fructose (Glindkamp
et al., 2009). IR has also been used for lipid research for
the oil and fat industry, for example, to determine trans-
isomers in fats (Laurens and Wolfrum, 2011). Because
most bioprocesses occur in aqueous medium, and water
is known to have a high IR absorbance for wavelengths
higher than 2500 nm, IR spectroscopy can only be used
with a short optical path length or in the range of near-to
short-wave IR range (NIR), from 780 to 2500 nm (Glind-
kamp et al., 2009).
The use of Fourier transform IR (FTIR) opened the pos-

sibility to use IR spectroscopy in more dilute products,
increasing the range of opportunities in the food industry,
such as dairy, and in dilute cellular cultivations, such as
microalgae and cyanobacteria (Laurens and Wolfrum,
2011).
Near-infrared (NIR) has been developed as a rapid

inexpensive method to monitor the chemical composition
of food and feed. Like in FT-IR, the NIR absorption spec-
tra are a result of the overtones and vibration combina-
tions of the sample’s chemical structure. However, NIR
bands are broader and less defined and can be weak,
similar, and/or overlap (Laurens and Wolfrum, 2011).
Each wavelength can have contributions of several mol-
ecules present in the sample, and each molecule itself
can absorb more than one wavelength. Therefore, it is
necessary to apply advanced data analysis to obtain the
information embedded in the spectra. Nevertheless, the
restrictions of this technique also bring advantages. The
low absorption coefficients enable a higher penetration
depth, allowing the use of this technique in solids or tur-
bid liquids, such as culture broths (Marose et al., 1999;
Ulber et al., 2003; Glindkamp et al., 2009; Henriques et
al., 2010).
An NIR spectrometer coupled with an optical probe

was used to monitor cell density via light absorption (tur-
bidity) or scattering in the visible and/or NIR range (Mar-
ose et al., 1999). However, some of the bottlenecks
need improvement: the inability to distinguish viable from

non-viable cells, the narrow cell concentration range
where it can be applied, and the sensitivity to different
cell morphologies. Some products were monitored in fer-
mentations, such as ethanol, glucose, glycerol, ammo-
nia, or lactic acid, some in-/online, and some offline
(Marose et al., 1999; Claßen et al., 2017).
NIR spectroscopy is currently used by several indus-

tries to check authenticity, for example in chicken meat
(Parastar et al., 2020) or to provide a biochemical finger-
print, as in tobacco, fishmeal, hazelnuts, and other dried
fruits (Pannico et al., 2015; Muresan et al., 2016).

Raman spectroscopy

Unlike IR spectroscopy that is being used in industrial
processes for several years, Raman spectroscopy is still
in the stage of academic research (Claßen et al., 2017;
Schulz, 2018). Raman spectroscopy is based on the
phenomena of shifted wavelength scattering of mole-
cules excited with monochromatic light due to inelastic
collisions of photons with the molecule (Ulber et al.,
2003). These collisions are dependent of the molecular
composition of the sample under analysis. This technol-
ogy does not require clear samples and enables the use
of immersion probes, increasing the spectrum of usage
in biotechnology industries (Claßen et al., 2017; Ryder,
2018). Furthermore, the development of Fourier-
transform allowed to considerably reduce acquisition
times and photodecomposition. Nevertheless, the inten-
sity of the signal acquired is very weak and difficult to
separate from the scattering, and it cannot be used with
strongly fluorescent samples (Ulber et al., 2003; Singh et
al., 2019).
Nowadays, Raman spectroscopy is being researched

to replace the standard procedures, such as GC or
HPLC, for quality control and adulteration detection of
several food products, or even pesticides (Shaw et al.,
1999; Schulz, 2018). Several authors described the use
of Raman spectroscopy, together with advanced data
analysis, to monitor several parameters within microbial
cultivations, such as biomass concentration, substrate
consumption (glucose, glycerol, ammonia), and product
formation (penicillin, glutamine) (Marose et al., 1999;
Ulber et al., 2001; Claßen et al., 2017).

In-depth look into fluorescence spectroscopy

Principle

The phenomenon of light emission (luminescence) can
be divided into two types, phosphorescence and fluo-
rescence. The difference between them is the time in
which the absorbed light is emitted. Fluorescence
occurs when an excited singlet state returns to its
ground state by the rapid emission of a photon
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(Lakowicz, 2006; Ranzan et al., 2012). For phospho-
rescence, the absorbed light can be stored and emitted
between a few seconds or hours.
The first fluorescence sensors developed enabled

only one wavelength of excitation and emission, mean-
ing that only one fluorophore could be measured,
restricting the use of this technology in complex pro-
cesses. Later on, the development of multiwavelength
fluorescence sensors made it possible to detect simul-
taneously several fluorophores in the same measure-
ment, boosting the use of fluorescence spectroscopy as
a scanning technique (Marose et al., 1998; Ulber et al.,
2003; Glindkamp et al., 2009; Ranzan et al., 2012).
The measurement of several emission wavelengths
over a range of excitation wavelengths creates a two-
dimensional excitation–emission matrices (EEMs), that
can be plotted in three-dimensional graphs through the
intensity recorded for each excitation–emission pair.
(Tartakovsky et al., 1996; Marose et al., 1999; Lako-
wicz, 2006; S�adeck�a and T�othov�a, 2007; Lenhardt et
al., 2015). Figure 1 shows the typical fluorescence
spectra measured at-line during membrane harvesting
of Dunaliella salina microalgae (at a cell concentration
of 1.8 9 106 cells mL�1), where the x-axis indicates the
emission wavelength, y-axis indicates the excitation
wavelength, and the intensity is represented by a color
gradient defined in the legend.
Fluorescence spectroscopy is a noninvasive tech-

nique, with highly sensitive detection and specificity, able
to detect instantaneously several fluorophores. These
fluorophores can be divided into extrinsic and intrinsic
ones. Extrinsic fluorophores are usually added to a sam-
ple that does not have fluorescence itself, such as fluo-
rescein and rhodamine. Intrinsic fluorophores occur
spontaneously in nature, such as NAD(P)H, chlorophyll,
amino acids, cofactors, and vitamins (Tartakovsky et al.,
1996; Marose et al., 1999; Podrazk�y et al., 2003; Hantel-
mann et al., 2006; Lakowicz, 2006; Ranzan et al., 2012;
S�a et al., 2019, 2020; Gao et al., 2021).
Fluorescence spectroscopy is sensitive to metabolites,

intracellular and extracellular, and to medium composition.
In biological systems, where the medium is characterized
for having a rich composition, the interaction fluorophore-
medium is rather complex. Parameters such as the polarity
of the medium, fluorophore’s structure, and the interaction
between fluorophores and medium molecules can cause a
shift in the spectra. Quenching is the phenomenon of mask-
ing the fluorescence intensity signal of natural fluoro-
phores. Quenching can be collisional or static if the
decrease in the fluorescence is achieved by contact with
another fluorophore or when forming a non-fluorescent
complex, respectively (Ulber et al., 2003; Lakowicz, 2006).
For this reason, the use of fluorescence to indirectly infer
non-fluorescent compounds was reported since their

presence can affect the fluorescence captured, and there-
fore, create a fingerprint in the fluorescence spectra (Ulber
et al., 2003; S�a et al., 2020a, 2020b). A different phenome-
non is the inner-filter effect, also mentioned as self-
absorption, where the fluorescence light is absorbed by the
fluorophore itself (Larsson et al., 2007). Also, very dilute
solutions will have a higher scatter interference in the EEMs
because of the interaction between water and fluorophore
molecules. Two types of scatter can be noticed: 1st and
2nd order Rayleigh, when the emission equals the excita-
tion or two times the excitation, respectively, and Raman,
with a shift to longer wavelengths called red shift (Zepp et
al., 2004; Bahram et al., 2006).

Biochemical applications

The urge for an in-/online technology not only in the bio-
process industry but also in environmental and pharma-
ceutical applications accelerated the research and
development of a system that could be coupled to a bio-
reactor, via optical fibre, and that could give a real-time
view of the process.
Several research groups have studied the use of fluo-

rescence spectroscopy as an online monitoring tool for
fermentations. Most of the reported cases investigated
the fluorescence of the reduced form of NAD(P)H, in
which fingerprint is detected at an excitation wavelength
of 340 nm and emission wavelength of 460 nm. NADH
is a highly fluorescent molecule, and it is known that the
fluorescence intensity signal has a good correlation with
the biomass concentration and its metabolic state (Tarta-
kovsky et al., 1996; Marose et al., 1999; Sch€ugerl, 2001;
Pons et al., 2004). For that reason, fluorescence spec-
troscopy has been used to track physiological changes,
such as the transition between bacterial aerobic and
anerobic metabolisms (Glindkamp et al., 2009), and the
change between oxidative and oxidoreductive metabo-
lism in yeasts (Hantelmann et al., 2006). Fluorescence
spectroscopy was also used to monitor biomass and
substrate or product concentrations in E. coli and S. cer-
evisiae fermentations (Marose et al., 1999; Podrazk�y et
al., 2003).
The flexibility of fluorescence spectroscopy is well-

reported for the monitoring of a number of analytes, via
direct or indirect correlations, such as proteins, vitamins,
co-enzymes, glucose, ethanol, ATP, pyruvate, nitrate, or
succinate (Shaw et al., 1999; Ulber et al., 2003; Hantel-
mann et al., 2006; Glindkamp et al., 2009; Ranzan et al.,
2012). DELTA Light & Optics (Lyngby, Denmark) devel-
oped the BioViewTM and used to predict several cultiva-
tion parameters, such as enzyme activity, product
formation, and substrate consumption, with the final goal
of defining an optimal harvest time (Marose et al., 1998;
Pons et al., 2004).
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Fluorescence spectroscopy has also been studied as
a monitoring tool in several fields of the food industry,
such as the industrial downstream processing of sugar
beet molasses (Ulber et al., 2003), the characterization
and classification of honey (Lenhardt et al., 2015), or the
detection of orange juice frauds (Ammari et al., 2015).
Other applications under study include in situ characteri-
zation of polycyclic aromatic hydrocarbons (PAHs)
(Grundl et al., 2003) or even as a sensor to detect illegal
drugs (cocaine and marijuana) in street samples (Babi-
cheno et al., 2004), which shows the versatility of this
technique. In the pharmaceutical field, fluorescence
spectroscopy was studied as a monitoring tool for the
physiological state of mammalian cell cultures, a platform
to produce antibodies, blood, and growth factors or cyto-
kines (Teixeira et al., 2009). Also, several studies
reported the potential of using this technique in waste-
water treatment plants (Wolf et al., 2001, 2005; Hambly
et al., 2010; Galinha et al., 2012; Louvet et al., 2013;
Carstea et al., 2016). Ranzan et al. stated that the appli-
cation of this technology as a monitoring tool in biologi-
cal systems proved to improve the ecological and
economic management of the overall process under
study (Ranzan et al., 2012). More applications can be
found in the review of Pons et al. (2004).
Pulse Amplitude Modulated (PAM) fluorometry has

been used in the scientific fields of plants and microal-
gae to determine photosynthetic activity and detect phys-
iological stress (White et al., 2011; Zhao et al., 2017).
Through PAM measurements, it is possible to determine
parameters that tightly correlate with the functional state
of photosystems I and II, such as non-photochemical
quenching (NPQ), maximum quantum efficiency (Fv/Fm),
or light saturation (Ek). Some works reported the correla-
tion between PAM measurements and stress indicators,
such as lipid accumulation (White et al., 2011; Zhao et
al., 2017). More about PAM fluorometry can be found
elsewhere.
Although a major advancement was observed in the

quality of the optical sensors used in spectroscopy meth-
odologies, these sensors are still rarely used in the bio-
technology industry, and most of the devices developed
have been only used for research purposes. The main
difficulties described for the restricted application of this
technology to date are mostly due to interferences that
influence the quality of the fluorescence spectra, such
as turbidity, gas bubbles, and fouling (Tartakovsky et al.,
1996; Marose et al., 1999; Ulber et al., 2003).

Chemometrics: a brief description of the
mathematics needed for spectra interpretation

A full fluorescence spectrum contains not only complex
in-depth information about the natural fluorophores

present in the sample but also the interferences between
them and the environmental medium (Marose et al.,
1999; Sch€ugerl, 2001). Therefore, chemometric methods
are used to deconvolute the data within fluorescence
matrices and to establish the relationship between them
and the concentration of substrates and products to be
monitored (Teixeira et al., 2009; Henriques et al., 2010;
Galinha et al., 2012, 2013).
The first records of chemometric methods were

reported by Mandel in 1949, but only 25 years later, the
name “chemometrics” was invented (Mandel, 1949).
According to the definition of the Chemometrics society,
chemometrics is “the chemical discipline that uses math-
ematical and statistical methods to design or select opti-
mal procedures and experiments and to provide
maximum chemical information by analyzing chemical
data”.
Multivariate analysis, such as principal component

analysis (PCA), is often used to extract meaningful infor-
mation from the spectra, resulting in the reduction of the
size of the data set. For a n number of initial variables
(X1, X2, . . ., Xn), n linear combinations are obtained, the
so-called principal components (PCs), characterized for
being uncorrelated and ordered according to the vari-
ance explained (the first PC explains the higher part of
the variance, and smaller parts of variance are explained
with subsequent components) (S�adeck�a and T�othov�a,
2007; Leardi, 2008). The PCA defines the initial data set
(the matrix X) as X = T.PT + E, where T is the score
matrix (represents the objects in the new orthogonal
space), P is the loading matrix (represents the relation-
ships between the PCs and the original variables), and
E is the error (residuals) matrix (contains the difference
between the observed values and the ones modelled by
the PCA).
Most of the chemometric applications in biochemistry

are prediction models since the use of spectral measure-
ments to replace time-consuming chemical and biologi-
cal lab analysis is very appealing. In other words,
chemometric models are often used to find correlations
between a bio-/chemical variable (called dependent vari-
able, y) and the data acquired from instruments such as
a spectrofluorometer (independent variable, x) (Brereton
et al., 2018). This relationship established between the
dependent variable, and a set of independent variables
will be used as a linear polynomial prediction model,
defined as y = b0 + b1x1 + b2x2 +...+ bkxk + f, where b0
is an offset, bk (k = 1, . . ., K) are regression coefficients,
and f is the residual. To calculate b, the vector of the
regression coefficients, several methods can be used: (i)
multiple linear regression (MLR), that require uncorre-
lated spectral variables (x-variables), which can be hard
to find in fluorescence spectra where collinearity is com-
mon; (ii) principal component regression (PCR), a MLR
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analysis applied to PCA scores, where PCs that explain
high variability in the spectra are correlated with the tar-
get properties (y); (iii) projection to latent structures
(PLS), that find the correlations that best describe the
highest covariance between spectral (x-variables) and
target properties (y), expressed in a new basis (latent
variables) (Tartakovsky et al., 1996; Marose et al., 1999;
Ulber et al., 2001; S�adeck�a and T�othov�a, 2007; Leardi,
2008; Glindkamp et al., 2009; Ranzan et al., 2012).
When the regression methods fail to develop a linear

relation between inputs and outputs, the use of nonlinear
methodologies is helpful in modeling more complex data,
for example, multivariate additive PLS splines
(MAPLASS) or artificial neural networks (ANN) (Yu et
al., 2018). Briefly, ANN embodies a “machine-learning”
algorithm that attempts to mimic the information proces-
sing found in the human brain, using artificial “learning-
from-experience”. Detailed information about ANN can
be found elsewhere (Wolf et al., 2001; Lin et al., 2012;
Oliveira et al., 2017; Yu et al., 2018).
The possibility of having a clear insight of the bio-

chemical processes and reactions is a powerful tool for
numerous industries. Workman (2002) presented several
advantages of using chemometrics, among them: (i)
allows the possibility of providing real-time and high-
quality information from fewer data; (ii) improves the
existing knowledge of the processes under study and
enables the improvement of measurements; and (iii)
requires low capital investment.
The combination of a high-sensitivity and resolution

spectrophotometry, such as fluorescence spectroscopy,
with chemometrics analysis for data pre-treatment and
exploration, enriches the knowledge and control of the
processes. In line with that, Process Analytical Technol-
ogy (PAT) has been presented as a way to minimize
variability in manufacturing processes, enabling their
control. PAT is defined as a system to design, analyze,
and control processes through timely measurements of
key parameters (Simon et al., 2015). These parameters

can be process parameters (as pH or temperature) and
performance attributes, which in the case of biotechnol-
ogy processes can be biomass concentration and prod-
uct formation from chemical and/or microbiological
methods and spectroscopic analyses.

Case-study: microalgae production

Microalgae are well-known photosynthetic microorgan-
isms with the ability to produce a wide variety of metabo-
lites with the use of sunlight and CO2 fixation from the
atmosphere or fume gas. When comparing microalgae
to plant crops, they present several advantages: they
have higher areal productivity and higher biomass pro-
duction rates, they can grow in diverse and inhospitable
environments, they do not compete for land, and some
species can grow in seawater (Zeng et al., 2011; de
Vree et al., 2016).
However, nowadays, microalgae production is far from

terrestrial crops since the production capacity of microal-
gae is still performed in niche markets for high-value
products. Their industrial production costs need to be
reduced, and the scale needs to increase to make this
industry more competitive (Posten, 2009; Wijffels et al.,
2010). In Europe, most of the industrial cultivation facili-
ties are based in closed photobioreactors (71%), against
open ponds (19%), and fermenters (heterotrophic bio-
mass production) (10%) (Fig. 2) (Ara�ujo et al., 2021).
Since the growth and productivity of microalgae culti-

vation is so tightly correlated with light conditions, better
engineering solutions must be developed regarding light
distribution, mass transfer, and hydrodynamics (Posten,
2009; de Vree et al., 2016; Esposito et al., 2017; Ara�ujo
et al., 2021). Operational costs are still too high and
dependent on the local conditions and the metabolites
produced for commercialization (Posten, 2009; Ara�ujo et
al., 2021).
By minimizing the production and processing costs of

microalgae biomass, the cost of microalgae products will

Fig. 2. Photobioreactor’s configurations, available at AlgaePARC, at Wageningen University and Research (from right to left): (1) raceway pond,
(2) horizontal tubular reactor, (3) vertical stacked tubular reactor, and (4) flat panels.
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decrease. The new technologies developed must be
easily scalable and competitive in operational and invest-
ment costs. To increase the economical yield of this
industry, a biorefinery approach has been proposed
where, instead of focusing on a specific product, a port-
folio of products needs to be extracted, separated, and
purified according to its end market (Wijffels et al.,
2010).
In a microalgae biorefinery production, the entire value

chain is connected. Higher product yields need high bio-
mass productivity, high biomass harvesting, and proces-
sing efficiency. Microalgae cultivation is mostly done in
very diluted biomass concentrations, from 0.2 to 2 g l�1,
to avoid large dark zones in the cultivation systems,
which leads to low productivities (Bilad et al., 2014; de
Vree et al., 2016). This low biomass concentration with
consequent large cultivation volumes leads to high
dewatering costs. The most common technology used
for dewatering microalgae biomass is centrifugation,
which is a very energy-demanding technology (Bhave et
al., 2012). To reduce harvesting costs, two-step harvest-
ing processes are being studied, for example, using
membrane filtration as a primary dewatering step before
centrifugation (Bhave et al., 2012; Monte et al., 2018).
Microalgae cultivation can be a complex system with

several biological, fluid dynamics, environmental, and
nutritional conditions playing a crucial role in the produc-
tivity and viability of the industrial process. Therefore,
the development of prediction models that allow in-/
online monitoring of substrates and products is funda-
mental for process control, enabling the possibility to
take decisions and actions in real-time (Esposito et al.,
2017).

Cell concentration

In the current industrial scenario, most microalgae prod-
ucts are sold as whole biomass powder, making total
biomass a key parameter to control process efficiency.
During cultivation at industrial scale, too high or too low
biomass concentration can influence several biological
parameters. Low concentrations can result in inefficient
light absorption or photoinhibition, while high concentra-
tions result in dark regions in the bioreactor that pro-
vokes endogenous respiration (de Vree et al., 2016).
Biomass concentration can be monitored using differ-

ent parameters, such as optical density (OD), dry weight
(g l�1), and cell concentration (cells l�1), most of them
measured offline. Measuring cell concentration is the
most accurate method to evaluate microalgae growth
since some cultivation conditions also induce several
biological changes, such as coloration or accumulation
of fatty acids. For example, as mentioned by Janssen et
al. (2018), accumulation of lipid bodies due to nitrogen

depletion leads to an increase of the dry weight while
the cell concentration reaches a plateau. Experiments
using a day/night cycle lead the biomass to follow circa-
dian rhythms, which means that cell size increases dur-
ing the day while the cell concentration increases during
the night (due to cell division), leading to misleading OD
measurements (Fabregas et al., 2002; de Winter et al.,
2013).
Monitoring cell concentration using fluorescence spec-

troscopy was reported in several studies in different
microalgae and for different production processes, for
example, cultivation and harvesting (S�a et al., 2017,
2019, 2020; Monte et al., 2018; Gao et al., 2021). In all
these studies, fluorescence spectroscopy, coupled with
different modeling techniques, proved to be a robust tool
in a wide range of biomass concentrations disregarding
the microalgae size or biological state (S�a et al., 2019).
The most promising result was reported by Gao et al.
(2021). For the first time, using only fluorescence spec-
troscopy EEMs, the authors develop one single predic-
tion model able to be used for cell concentration
prediction of different microalgae species (tested with
Tisochrysis lutea and Phaeodactylum tricornutum),
revealing the high potential of this technique to be used
in microalgae production (Gao et al., 2021). This is
advantageous from the typical OD measurement that
provides different results for different cell morphologies.
Other spectroscopies have also been used to monitor

cell concentration during microalgae cultivation. For
example, direct coupling of an optical probe and Raman
spectroscopy were reported to successfully monitor cell
concentration of heterotrophic cultivation of Auxenochlor-
ella protothecoides (Nadadoor et al., 2012).

Pigments

While cell concentration can be a rather simple mea-
surement, assessing metabolite content is a much labori-
ous, expensive, and time-consuming work, involving
extraction steps and chromatographic techniques. There-
fore, the development of prediction models for pigments,
able to be used online, is of extreme importance for
microalgae industrialization.
Chlorophyll is the most abundant light-harvesting pig-

ment in nature and is a molecule well-studied for its
potential use in several fields. In the feed and food sup-
plement industry, chlorophyll is relevant due to its antiox-
idant properties. Because of its bright green color, it is
also an appealing dye for the food and paint industries
(Rodrigues et al., 2015; Chew et al., 2017). Chlorophyll
content in the microalgae is tightly correlated with light
intensity and circadian rhythms. It was reported that
chlorophyll content increases during the light period and
starts to decrease with the beginning of a dark period
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(Fabregas et al., 2002; de Winter et al., 2013; Braun et
al., 2014). This phenomenon is explained by the fact that
the cell division mechanism is favorable in the dark
period, where the chlorophyll content of the “adult” cell is
divided between the new “daughter” cells (Fabregas et
al., 2002). Moreover, microalgae are known for their abil-
ity to adapt their photosynthetic apparatus to different
light conditions, a process called photo acclimation. High
light intensities reduce chlorophyll content to protect the
cell; while low intensities induce the photosynthetic
apparatus to synthesize chlorophyll and provide the cell
with higher light-harvesting capacity (Dubinsky and
Stambler, 2009; Janssen et al., 2018). Fluorescence
spectroscopy was already used to monitor and model
the content of chlorophylls in Dunaliella salina and in
Nannochloropsis oceanica, separately (S�a et al., 2019,
2020). Other reports show the potential of this technique
to distinguish several chlorophylls (a, b, and c) and their
degradation products (pheophytin a and b, and pheopor-
phyrin c in acetone: water model-solutions (Moberg et
al., 2001) and the possibility to estimate algal blooms
(Gregor and Mar�s�alek, 2005; Ziegmann et al., 2010).
Shin et al. (2015) described the development of a porta-
ble and low-cost fluorescent sensing by coupling a
microfluidic chip with multiple light-emitting diodes for
excitation and a photodetector to measure the fluores-
cence signal from a microalgal sample. The develop-
ment of this technology is of great importance for the
microalgae industry, even if some improvements and
adjustments are needed to make it more accurate and
for multi-detectable purposes since it can be easily incor-
porated in industrial microalgae production systems.
Some microalgae are well-known for their ability to

accumulate carotenoids, a family of light-harvesting pig-
ments and reactive oxygen species (ROS) scavengers,
that act as non-photochemical quenching, which means
they can absorb the excess light preventing damage to
the photosynthetic apparatus. The global market for

carotenoids was nearly $1.5 billion in 2017 and should
reach $2.0 billion by 2022 (McWilliams, 2018).
For example, the industrial production of D. salina is

one successful case of microalgae production. This halo-
tolerant microalga can produce high contents of caroten-
oids, approximately 10% of its total dry weight, under
stress conditions such as high salinity, high light inten-
sity, nutrient depletion, or extreme temperatures (Fig. 3)
(Ben-Amotz, 1983; Borowitzka et al., 1990; Lamers et
al., 2012).
The cultivation systems more often used for D. salina

cultivation are large unstirred open ponds or paddle-
wheel stirred raceways. A two-step cultivation is com-
monly applied: the first stage, a “green” phase, where
growth is done under optimal conditions; a second
stage, the “orange” phase, where the culture is submit-
ted to stress factors and the carotenoid production is
enhanced (Wichuk et al., 2014).
In a previous study, fluorescence spectroscopy was

also used to monitor simultaneously different caroten-
oids, such as zeaxanthin, a-carotene, all-trans-b-
carotene, and 9-cis-b-carotene in D. salina in different
biological states, from non-stressed (“green”) to stressed
(“orange”), induced by nitrogen depletion or increased
salinity (S�a et al., 2019). Although the analytical method-
ologies commonly used for pigment analysis (such as
HPLC) are accurate and able to assess different com-
pounds simultaneously, they are expensive, time-
consuming, and require a laborious extraction step. The
use of fluorescence spectroscopy, coupled with appropri-
ate mathematical tools, enables the possibility of having
several and repeated measurements at real-time, a moti-
vating advantage for industrial production of these high
value and in high demand compounds.
Other microalgal pigments were reported in the litera-

ture as an alternative source for the current production.
For example, fucoxanthin has gained high attention due
to its antioxidant, anti-obesity, and antidiabetic

Fig. 3. Dunaliella salina: “green” cells, rich in chlorophyll (left), and “orange” cells, rich in carotenoids (right).
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properties, possible to be used in cosmetics, pharma-
ceuticals, and nutraceuticals (Guedes et al., 2011; Fung
et al., 2013; Maeda et al., 2018). At the moment, fuco-
xanthin is mainly extracted from seaweed, but several
microalgae can accumulate higher concentrations, such
as the marine brown species T. lutea and P. tricornutum
(Gao et al., 2020). Microalgal fucoxanthin can be stimu-
lated by the self-shading effect of cells or low light inten-
sity as a strategy to absorb sufficient light for
photosynthesis (Faraloni and Torzillo, 2017). It is
reported that T. lutea can accumulate up to 1.82% of its
dry weight (DW) (Kim et al., 2012; Mohamadnia et al.,
2020), while P. tricornutum can accumulate as much as
5.92% DW (McClure et al., 2018). Therefore, both micro-
algae are promising candidates for fucoxanthin industrial
production. Recently, Gao et al. (2021) reported the pos-
sibility of monitoring fucoxanthin content in these two dif-
ferent microalgae, in a pilot-scale production (Fig. 4),
using only one prediction model, leveraging the use of
fluorescence spectroscopy as a monitoring tool to a
non–species-dependent technology.
Raman spectroscopy was used to determine the carot-

enoid profile in snow algae and cyanobacteria
(Osterrothov�a et al., 2019; Nekvapil et al., 2021). Both
works show promising results to quantify carotenoids,
although the method was applied for single-cell analyses
and not as a cultivation sensor. Also, the exact identifica-
tion of the carotenoids still required calibration with an off-
line method. This technique was also used to monitor Phaf-
fia rhodozya, a carotenoid-producing fermentative yeast,
by direct coupling of an optical probe into the fermentation
vessel. The authors took advantage of the high fluorescent
signal of the carotenoids in the Raman spectra and did not
use chemometric models (Cannizzaro et al., 2003).

Lipids

Several microalgae are reported for their potential to
accumulate high content and/or high-quality lipids. When
cultivated under optimal growing conditions, most of the
lipids in microalgae are present in the cellular and plastid
membranes (Li-Beisson et al., 2019). However, under
stress growing conditions, some microalgae, like Nanno-
chloropsis species, can accumulate up to 45% of their
dry weight in triacylglycerol (TAG) (Fig. 5) (Ma et al.,
2016; Janssen et al., 2019).
According to the cell location where the lipid is accu-

mulated and its profile, the final destination of the lipid-
enriched biomass can vary from feed or food supple-
ments to biodiesel production (Caballero et al., 2003;
Draaisma et al., 2013; Li-Beisson et al., 2019). Fatty
acids can be classified into saturated and unsaturated,
according to the absence or presence of chemical dou-
ble bonds. Biomass produced for the feed or food sup-
plement industries is desired to be rich in unsaturated
fatty acids, such as omega-3 fatty acids such as EPA
(eicosapentaenoic acid) or DHA (docosahexaenoic acid)
(Janssen et al., 2019; Li-Beisson et al., 2019). For bio-
fuel applications though, the biomass has to fulfil ignition
and combustion performance quality parameters, directly
correlated with saturated and unsaturated content (Nas-
cimento et al., 2014; Ma et al., 2016).
Due to the potential of fluorescence spectroscopy to

identify natural fluorophores (intra or extracellular) and
the relations between these and non-fluorophores, such
as lipid molecules (S�a et al., 2020a, 2020b) reported the
use of this technology to monitor the lipid content in N.
Oceanica not only lipid classes (saturated and unsatu-
rated) but also specific fatty acids such as EPA.

Fig. 4. Tisochrysis lutea: different biomass concentrations, from more diluted (left) to more concentrated (right), in pilot-scale outdoor production
at AlgaePARC (Green Wall Panel� III, F&M Fotosintetica & Microbiologica S.r.l., Italy).
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Additionally, it was shown that fluorescence-based
models could also be relevant to EPA location between
the neutral and polar fractions (S�a et al., 2020), indicat-
ing once more the potential to assess lipid quality in
microalgae.
The degree of lipid unsaturation and TAG accumula-

tion was also studied using other spectroscopic
methods. For example, oil content in A. protothecoides
was monitored online by Raman spectroscopy, directly
in the fermentation vessel (Nadadoor et al., 2012).
Detailed information about the use of Raman, FTIR, and
NIR spectroscopy can be found somewhere else (Han et
al., 2011; Laurens and Wolfrum, 2011; Wu et al., 2011;
Nadadoor et al., 2012; Wang et al., 2014; Jaeger et al.,
2016; Esther Elizabeth Grace et al., 2020). However,
most of these studies were performed at single-cell
level.

Future perspectives

Fluorescence spectroscopy, unlike other spectroscopy
technologies, is still mainly confined to the lab environ-
ment. Its direct use outside academia is only a reality for
chlorophyll content measurement through a narrow pair
of excitation–emission wavelengths. And, as is shown in
this review, fluorescence spectroscopy has a much

higher potential than just using a few excitation–emission
wavelength pairs. The possibility of obtaining an
excitation–emission matrix increases the amount of infor-
mation acquired, working as a fingerprint technique for
the presence of natural fluorophores abundant in micro-
algae. Also, with the ability to take advantage of interfer-
ences, it is possible to infer non-fluorescent compounds,
increasing the range of applications of fluorescence
spectroscopy as an online monitoring tool. Since each
measurement can take up to 5 min, it is adequate for
real-time process control. This technique is a promising
solution for monitoring up and downstream processes,
different biological parameters simultaneously, and can
be used in the production of specific added-value com-
pounds from different microalgae species. Compared
with other spectroscopic methods, fluorescence spec-
troscopy can detect milli- to-micromolar concentrations of
some analytes in liquid samples without the need for
sample pre-treatment.
To impulse the transfer to an industrial scenario, sev-

eral suggestions are here proposed:

1. Calibrate the monitoring tool focusing on the product
of interest instead of the microalgae of origin:
although some initial work is already reported in the
literature, the most common approach is still species-

Fig. 5. Nannochloropsis oceanica: biomass with low lipid content (left) vs. high lipid content (right) (Labfors 5 Lux, Infors HT, Switzerland).
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centered. The development of models able to predict
the same product or physiological parameter in differ-
ent microalgae would be of great interest to the indus-
try. It is common practice in several microalgae-
producing companies to cultivate different species
according to the season of the year, known as “win-
ter” and “summer” species. Nevertheless, the target
compounds of the microalgae biorefinery do not
always change. Therefore, the prediction tool could
be developed having in consideration the final prod-
uct, the value-added metabolite of interest, or a spe-
cific physiological parameter, such as cell
concentration.

2. Simplification of the spectrofluorometer and adaptation
to industrial scale production: Fluorescence spectros-
copy could be applied today in microalgae production if
some improvements are made. After identifying the
regions of the spectra that are relevant to monitor the
target parameters, it would be a great advantage to sim-
plify the acquisition equipment by selecting and tuning
only the wavelengths needed. Not only the time per
analysis would decrease but also the cost of the equip-
ment acquisition andmaintenance.

For small-scale cultivation systems, coupling several
optical fibers from different PBRs to the same spectro-
photometer could be a solution. However, the optic
fibers currently available have up to 2 m length, decreas-
ing the flexibility of this solution.
The adaptation of fluorescence spectroscopy will

depend on the main goal of the company. For example,
if the goal is to monitor cell concentration and specific
metabolites during one step of the process, only one
optical fiber per cultivation system would be needed.
For small-scale cultivation systems, coupling several
optical fibers from different PBRs to the same spectro-
photometer could be a solution. A switch-box needs to
be developed and optimized to allow the acquisition of
signals from different PBRs simultaneously, and the
overall cost increases per price of each optical fiber.
The price of the spectrofluorometers and the optical
fiber probes is highly dependent on the technology used
to generate the fluorescence signal and the sensitivity
of the signal acquisition. If the equipment works with a
wide range of wavelengths, the complexity of the equip-
ment increases as well as the price. The same can be
said for the optical fiber probes. A lab-bench size spec-
trofluorometer, equipped with a monochromator, the
most complete and sensitive system, can cost between
15.000 € and 20.000 €. An optical fiber with 1.5 m can
cost around 2.000 €, and the system to connect the
fiber to the spectrofluorometer around 8.000 €. The
price and sensitivity of an optical fiber are also depen-
dent on its length.

A better approach, also more adequate for larger-
scale production PBRs, would be to develop simpler
individual spectrofluorometer per PBR. Developments on
miniturizing spectroscopy have been accelarating, open-
ing new opportunities for online monitoring. An example
of that, is the development of smaller OD sensors
described in Sandnes et al. (2006) (Sandnes et al.,
2006). Nevertheless, it is important to consider that an
adaptation of the spectrophotometer sensors to the
PBRs still needs to be designed.
There are advantages and disadvantages for each

solution, and each microalgae production facility should
carefully consider them according to their monitoring
needs.
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