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Phenotypic switch: The enigmatic white‑gray‑opaque 
transition system of Candida albicans
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INTRODUCTION

Candida albicans represents the most permeative fungal 
pathogen colonizing humans. C. albicans is an unicellular 
yeast of  the Cryptococcaceae family with a single bud.[1] 
As a member of  the normal microflora, it is present on 
the skin and the mucous membranes of  the upper 
respiratory tract, gastrointestinal tract and female genital 
tracts. It is, therefore, not transmitted. It reproduces by 
asexual budding and grows rapidly at 25–37°C and within 
a pH range of  2–8. There are several medically important 
Candida species, of  which C. albicans, Candida tropicalis, 
Candida glabrata, Candida parapsilosis and Candida krusei 
are the most frequently isolated. Among these, C. albicans 
is the far most common species present in health and 
disease.[2‑4]

C albicans exists in two forms – pseudohyphae and yeast 
forms – a trait known as dimorphism (grows as either yeast 
or hyphal cells). The yeast form is believed to be innocuous, 
but the hyphae form is usually associated with invasion 
into the host tissue. The hyphae are approximately 2 µm in 
diameter and showed a large population of  mitochondria 
localized at the tip region. This organization is due to large 
energy required for hyphae extension.[5] This transition 
from a benign yeast type to highly invasive hyphae type 
depends on changes in the host defenses, i.e., elude the 
immune system by altering the surface antigens and on 
environmental signals that allow it to express pathogenic 
factors which are normally repressed including changes in 
the fungal response to antifungal agents.

Candida albicans represents the most common commensal and opportunistic fungal pathogen colonizing humans.  
As a member of the normal microflora, it is present on the skin and the mucous membranes of the upper respiratory 
tract, gastrointestinal tract and female genital tracts. It is therefore not transmitted. It lies in wait for a change 
in some aspect of the host physiology that normally suppress growth and invasiveness through an enigmatic 
phenomenon called Phenotypic Switch System or White-Opaque Transition. This system involves reversible and 
heritable switching between alternative cellular phenotypes. White–opaque switching in Candida albicans was 
first discovered in 1987. This was initially identified in strain WO-1. Switching has been demonstrated to occur 
at sites of infection and to occur between recurrent episodes of infection in select cases esp. AIDS and diabetes.
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occur at sites of  infection and between recurrent episodes 
of  infection in selected cases, especially AIDS and diabetes.[8]

PHENOTYPIC SWITCHING IN CANDIDA 
ALBICANS AND IT’S HISTORICAL BACKGROUND

C. albicans is a commensal that colonizes the human host in 
various niches. Three different switching systems were first 
described by Soll et al.[14,15] The first candida model switching 
strain, 3153A switching system, discovered in 1985, 
demonstrated that common strains of  C. albicans switched 
reversibly between a number of  variant phenotypes[16,17] 
that were quite heterogeneous and produced at least 
seven different phenotypes including “original smooth,” 
“star,” “irregular wrinkle,” “ring,” “mottled,” “fuzzy,” 
and “revertant smooth.”[8,16,18] Another system included 
strains that switch between colonies with and without 
dense myceliation.[14] Finally, the classically studied strain 
is white‑opaque switching, first discovered in 1987 was 
isolated from the bloodstream of  a bone marrow transplant 
patient at The University of  Iowa Hospitals and Clinics.[19] 
This strain consists of  two phases, one that grows as smooth 
white colonies called the white cells and one that is rod‑like 
and grows as flat gray colonies called the opaque cells.

In yesteryears, most research has been performed on the 
white‑opaque switching strain.[7] A novel morphological 
phenotype of  C. albicans, referred to as the ‘‘gray’’ phenotype 
was identified. This phenotype is heritable, but distinct from 
the previously identified white and opaque phenotypes 
in cellular and colony appearance, global gene expression 
profiles, secreted aspartyl proteinase  (SAP) activities and 
virulence characteristics. The gray phenotype, together with 
the white and opaque phenotypes, forms a novel tristable 
and heritable switching system in C. albicans.[6]

The various distinguishing features between white and 
opaque cells are as follows:
•	 White cells are round with smooth, domed colonies, 

whereas opaque cells are bean‑shaped, flatter with 
translucent colonies[20,21]

•	 The interaction of  white and opaque cells with the 
immune system also differs, i.e., white cells secrete a 
chemoattractant for leukocytes, whereas opaque cells do 
not. In addition, white and opaque cells are phagocytosed 
by macrophages, suggesting that white‑opaque switching 
may be an adaptive mechanism to favor C. albicans cells 
escape the host immune system[21]

•	 Opaque cells differed from white cells in their 
sensitivity to neutrophils and reactive oxygen species, 
adhesion to human cells and plastics, secretion of  
proteinases and resistance to antifungals[21]

The factors involved its pathogenicity are – mannoprotein 
component, i.e.,  the extracellular polymeric material that 
coats the surface of  C. albicans plays a role in adherence. 
Second, C. albicans produces a range of  proteinases and 
phospholipases which are particularly concentrated on the 
tips of  the fungal hyphae that disrupts the cell membrane 
and results in invasion of  the pathogen into host tissue. 
Third, to be a successful pathogen, C. albicans has developed 
the capacity to vary phenotype by spontaneously generating 
variants within infecting populations. This empirical 
axiomatic phenomenon is called as Phenotypic Switching 
System.[2] It is also known as phenotypic plasticity or bistable 
switching system (white to opaque) or tristable (white to 
gray to opaque) switching system.[6]

WHAT IS PHENOTYPIC SWITCHING: EVOLUTION 
OF IT’S TERMINOLOGY

Phenotypic switching is defined as “an in vitro reversible 
phenomenon with spontaneous emergence of  colonies with 
altered colony morphology at rates higher than somatic 
mutation rates.”[7,8] This insidious strategy allows them to 
undergo rapid adaptation in response to environmental 
challenges such as individual body locations that may exhibit 
drastic differences in temperature and pH. The ability to 
grow in different morphological forms is critical for both 
its commensal lifestyle and its existence as a pathogen.[6,9,10]

The ‘‘white‑opaque’’ transition is a well‑known bistable 
phenotypic switching system in C.  albicans.[11] Recently, 
it has been observed that an intermediate phase between 
the white and opaque phenotypes does exist and proposed 
that the phenotypic switching system in this species may 
be tristable; the so‑called ‘‘white‑gray‑opaque’’ tristable 
phenotypic switching system in C. albicans[12] as illustrated 
in Figure 1. Switching can also be seen in C. glabrata[13] and 
Candida neoformans.[7] Switching has been demonstrated to 

Phenotypic switch system

Bistable switch
(white-opaque)

  Tristable switch
  (white-gray-opaque)

Figure 1: Diagrammatic illustration of phenotypic switch system with 
its terminology
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•	 One of  the most fascinating differences observed 
between white and opaque cells was the expression 
of  genes involved in glucose metabolism. White cells 
specially expressed genes involved in fermentative 
metabolism, whereas opaque cells expressed genes 
involved in oxidative metabolism. This difference 
occurred under both aerobic and anaerobic conditions[21]

•	 White and opaque cells also differ in their gene 
expression profiles, mating competency and virulence 
characteristics.[19,22] Opaque cells can mate more 
efficiently and are better at cutaneous infections than 
white cells, whereas white cells are more virulent in 
systemic candidiasis.[19,23] as illustrated in Figures 2 and 3.

MOLECULAR PATHOGENESIS OF SWITCHING 
SYSTEM

Antigenic variation, a common adaptive strategy of  
microbial pathogens, is mechanisms used by these 
pathogens to stochastically change their cell surface 
composition. Strains of  C. albicans, the most important 
fungal pathogen of  humans, are able to spontaneously and 
reversibly switch phenotypes that affects the size and shape 
of  cells, their ability to form hyphae, their surface properties 
of  adhesion and permeability, membrane composition, 
range of  secretory products, sensitivity to neutrophils 
and oxidants, antigenicity and drug susceptibility. These 
traits are transcriptionally controlled by expression of  
various genes such as SAP genes SAP1 and SAP3,[24‑28] a 
glucose‑lipid‑regulated protein gene WH11,[29,30] membrane 
protein gene OP4,[26] two component regulator gene 
CaNIK1,[31] transcription factor gene EFG1[32] and a 

transporter gene CDR3.[33] Studies using high‑density 
oligonucleotide microarray analysis to profile global 
gene expression ratified that these genes were associated 
with wide range of  functional identification that inferred 
metabolic preferences and concluded that switching 
extends beyond antigenic variation to include metabolic 
pathways, which itself  may reflect inherent differences in 
the efficiency with which each switch phenotype is able to 
exploit available nutrients and adapt to ambient conditions. 
For example, opaque cells expressed a transcriptional 
profile consistent with oxidative metabolism and white cells 
expressed a fermentative one. Furthermore, the virulence 
of  W‑ and O‑cells depends on the site of  infection; W‑cells 
were more virulent in disseminated infections and O‑cells 
were more virulent in cutaneous ones, which is consistent 
with the availability of  glucose in the bloodstream and 
interstitial spaces, but its absence in the skin.[34] This bias 
was obtained regardless of  carbon source, suggesting a 
connection between phenotypic switching and metabolic 
flexibility, where metabolic specialization of  switch 
phenotypes enhances selection in relation to the nutrients 
available at different anatomical sites.

HOST PATHOGEN INTERACTION

C.  albicans is a communistic microorganism, in which 
phenotypic switching play an important role in the biology 
of  C. albicans and in the interactions of  this fungus with 
its host. In response to various environmental signals, 
C.  albicans changes its growth mode from the budding 
yeast form to filamentous growth, which facilitates tissue 
invasion.[35] The various strains of  C. albicans as described 
previously are homozygous at the mating type locus (MTL) 
and can spontaneously and reversibly switch from the 

Figure  3: Photomicrograph of white cells phase and opaque 
cells.  (Courtesy: Judith Berman and Peter E. Sudbery Candida 
albicans: A molecular revolution built on lessons from budding yeast. 
Nature Reviews Genetics 3, 918‑932; December 2002)

Figure 2: Photomicrograph of white hemispherical colony morphology 
referred to as the “white phase and a grey flat colony morphology, 
referred to as the “opaque phase as shown from (a-g). (Courtesy : Judith 
Berman and Peter E. Sudbery Candida albicans: A molecular revolution 
built on lessons from budding yeast. Nature Reviews Genetics 3, 918-
932 ; December 2002)
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normal yeast morphology  (white) to an elongated cell 
type (opaque), which is the mating‑competent form of  the 
fungus. This influences the ability of  C. albicans to colonize 
and proliferate in specific host niches and its susceptibility 
to host defense mechanisms. It is currently not understood 
why C. albicans has integrated a morphological switch into 
its life cycle to undergo sexual development. C. albicans cells 
that have become homozygous for the MTL first have to 
switch from the normal yeast morphology to the opaque 
cell form to become mating competent.[1,36] This again is 
influenced by various environmental signals,[21,37] and once 
these signals are dominated, the switch is turn on and causes 
superficial infections of  skin, mucosa as well as life‑treating 
disseminated infections, especially in immunocompromised 
individuals.

As we all know in humans, the two important cells that 
act as the first line of  defense in innate immunity are 
the neutrophils and the dendritic cells. Earlier work by 
eminent researchers has shown that opaque cells do not 
readily undergo filamentation under most conditions that 
promote hyphal formation in white cells, which may result 
in a reduced ability to invade tissues.[38] Geiger et  al.[39] 
in his study showed that opaque cells do not produce a 
chemoattractant for neutrophils that is secreted by white 
cells pointed to the possibility that opaque cells can also 
avoid detection by these important first‑line host defense 
cells. Kolotila and Diamond[40] hypothesized that opaque 
cells are in fact more susceptible than white cells to killing 
by neutrophils and also stimulate the production of  reactive 
oxygen species, which is one mechanism by which these 
phagocytes destroy invading pathogens, more strongly 
than do white cells.

Soloviev et  al.,[41] in 2007, said that there was another 
attractive candidate, the pH‑regulated antigen Pra1, which 
is predominantly expressed in a highly glycosylated form 
on the surface of  C. albicans hyphae, but not yeast cells 
and bound by the αmβ2 receptor on PMNs. Pra1 also acts 
as a chemoattractant for PMNs, and deletion of  PRA1 
decreased PMN migration and PMN adhesion to and killing 
of  C.  albicans. In 2011, he also reported that dendritic 
cells can recognize C.  albicans by an αmβ2 independent 
mechanism, which would explain our finding that dendritic 
cells phagocytosed opaque cells under conditions, in which 
they were not attacked by neutrophils. Dwivedi et al.,[42,43] 
in 2011, concluded that the hyphae express many other cell 
surface proteins that are not found on yeast cells. One of  
these, Hyr1, confers even increased resistance to killing by 
neutrophils and other phagocytes. Hence, by ratification 
of  various studies, this conflicting bias remains to be 
established to know which hypha‑specific antigens and 

corresponding receptors on neutrophils are responsible 
for the selective phagocytosis of  germinating C. albicans.

CONCLUSION

Understanding the regulatory mechanisms of  phenotypic 
switching system will provide insights into several 
fundamental questions such as how pathogens adapt to 
the host and survive and propagate under diverse niches. 
This treatise review explores phenotypic switching in the 
most common pathogenic fungi, C. albicans and describes 
the various traits involved, molecular pathogenesis of  this 
switching system and its role in immune cells.
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