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The role of CD4 T regulatory cells is well established in peripheral tolerance and the
pathogenesis of the murine model and human autoimmune diseases. CD4 T regulatory
cells (CD4 Tregs) have been investigated in common variable immunodeficiency (CVID).
Recently, additional members have been added to the club of regulatory lymphocytes.
These include CD8 T regulatory (CD8 Tregs), B regulatory (Bregs), and T follicular helper
regulatory (TFR) cells. There are accumulating data to suggest their roles in both human
and experimental models of autoimmune disease. Their phenotypic characterization and
mechanisms of immunoregulation are evolving. Patients with CVID may present or are
associated with an increased frequency of autoimmunity and autoimmune diseases. In
this review, we have primarily focused on the characteristics of CD4 Tregs and new
players of the regulatory club and their changes in patients with CVID in relation to
autoimmunity and emphasized the complexity of interplay among various regulatory
lymphocytes. We suggest future careful investigations of phenotypic and functional
regulatory lymphocytes in a large cohort of phenotypic and genotypically defined CVID
patients to define their role in the pathogenesis of CVID and autoimmunity associated
with CVID.
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INTRODUCTION

The major function of the immune system is to protect from foreign pathogens, allergens, and
intrinsic aberrant malignant cells and maintain tolerance to self-antigens (1). Immune tolerance is
maintained by central and peripheral tolerance (2, 3). Central tolerance occurs in the primary
lymphoid organs (thymus and bone marrow), where T- or B-cell clones that recognize autoantigens
with high affinity are deleted predominantly by apoptosis and by receptor editing in B cells.
Peripheral tolerance that occurs in the secondary lymphoid organs (spleen, lymph nodes) involved
suppression of effector functions of autoantigen-recognizing T or B cells that have escaped central
tolerance, and it is mediated by inducing anergy, deletion by apoptosis, or regulatory cells of self-
recognizing T and B cells. Genetic and epigenetic factors disturb immune tolerance (4). Loss of
immune tolerance to self-antigens results in the development of autoimmunity and autoimmune
diseases (5–8).
org May 2022 | Volume 13 | Article 8643071

https://www.frontiersin.org/articles/10.3389/fimmu.2022.864307/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.864307/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.864307/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:sgupta@uci.edu
https://doi.org/10.3389/fimmu.2022.864307
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.864307
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.864307&domain=pdf&date_stamp=2022-05-20


Gupta et al. Regulatory Lymphocytes in CVID
Though paradoxical, immunodeficiency and autoimmunity may
occur simultaneously. Recent studies of two rare monogenic inborn
errors of immunity (IEI) associated with immunodeficiency and
autoimmunity—autoimmune polyendocrinopathy-candidiasis-
ectodermal dystrophy (APECED) and immunodysregulation-
polyendocrinopathy-enteropathy-X‐linked (IPEX)—have
established the critical role of transcription regulators
[autoimmune regulator (AIRE)] that regulate the transcription of
numerous self-antigens in central tolerance and of Forkhead Box P3
(FoxP3), which is expressed in CD4 Treg, CD8 Treg, and T
follicular regulatory cells (TFR), in suppressing autoreactive T cells
in the periphery, which is called peripheral tolerance (9, 10).
Recently, plasma cells with regulatory properties have been
reported in experimental models of autoimmune and infectious
diseases (11–13). Shen et al. (12) demonstrated that CD138hi plasma
cells produce both IL-35 and IL-10. IL-35 limits experimental
autoimmune encephalitis via inhibition of pathogenic TH1 and
TH17 cells, and in the Samonella infection model, IL-10 inhibits
anti-Salmonella immunity. These regulatory plasma cells express
surface IgM, CD80, CD86, CD40, CD69, CD44, TACI, CXCR4,
MHC II, Tim1, and Blimp1. Lino et al., in a murine model of
Salmonella typhimurium infection, reported that IL-10-producing
CD138+ plasma cells express LAG-3, PD-L1, PD-L2, CD200, and
BLIMP1 (13). The role of regulatory plasma cells in humans has not
been explored. Furthermore, plasma cells are reduced in common
variable immunodeficiency (CVID); therefore, it is unlikely that
they play a significant role in the pathogenesis of CVID or
autoimmunity and autoimmune diseases associated with CVID.

Autoimmunity and autoimmune diseases are observed with
increased frequency in several IEI (14, 15). Autoimmunity and
autoimmune diseases are common complications in CVID,
affecting at least 25% of patients and may be the first
presenting non-infectious manifestations (16–22). Both organ-
and tissue-specific systemic autoimmune diseases are associated
with CVID, with autoimmune cytopenia (e.g., immune
thrombocytopenia, autoimmune hemolytic anemia) being the
most frequent autoimmune manifestations. Several mechanisms
have been reported to explain autoimmunity associated with
CVID. These include increased T helper type 1 (TH1), TFH cells,
and CD21low B cells and decreased CD4+CD25+FoxP3+

regulatory cells [reviewed in (23)].
Several investigators have studied CD4 Tregs in CVID (24–

33); however, only limited data are available for other members
of the regulatory lymphocyte club (33, 34). Here, we review them
in-depth and their possible role in the pathogenesis of CVID and
autoimmunity associated with CVID.
GERMINAL CENTER REACTION AND ITS
REGULATION

The two important events in effective immune response, the
class-switched recombination (CSR) and somatic hypermutation
(SHM) or affinity maturation, resulting in generating high-
affinity protective antibodies, occur in the dark zone of
germinal centers (35, 36). However, clones of self-reactive B
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cells that are not eliminated can initiate autoantibody production
in germinal centers (GCs) (35). There is evidence to support that
self-reactive B cells are generated by SHM in GCs (35). The
survival of these self-reactive B-cell clones depends upon the
location and concentrations of autoantigens in GCs. SHM-
mediated alteration of the antigen specificity of GC B cells can
also play an important role in preventing autoantibody
production in peripheral lymphoid tissues (36).

The regulation of the GC occurs at multiple levels and by
multiple mechanisms. Several mechanisms have been proposed
to explain B-cell autoimmunity, including chronic infection,
molecular mimicry, excess production of memory B cells with
a CD21lo phenotype, IL-21 produced by T follicular helper cells
(TFH), and regulatory lymphocyte dysfunctions. In this article,
we also reviewed the role of CD4 Treg, CD8 Treg, and TFR cells
in GC reaction.

TFH Cells and GC Reaction
CD4+ T cells that express high levels of the chemokine receptor
CXCR5 migrate to GCs and regulate GC formation, selection of
high-affinity antibody-producing B cells, isotype class switching,
and generation of long-lived memory B cells and plasmablasts
(37–40). In addition to CXCR5 expression, TFH cells also express
transcription factor B-cell lymphoma-6 (Bcl-6), programmed cell
death receptor-1 (PD-1), inducible T-cell co-stimulator (ICOS),
and CD40 ligand (CD40L/CD154) (41, 42). IL-21, the signature
cytokine of TFH cells, signaling the JAK and STAT pathway,
supports the proliferation, survival and SHM, and differentiation
of B cells to antibody-producing cells and long-lived memory B
cells. Martin and colleagues (43), based upon the expression of
CXCR3 and CCR6 markers, have divided TFH cells into TFH1
(CXCR5+CXCR3+CCR6−), TFH2 (CXCR5

+CXCR3−CCR6−), and
TFH17 (CXCR5

+CXCR3−CCR6+) cells. TFH2 and TFH17 cells are
able to help naive B cells to differentiate to produce antibodies;
however, all subsets of TFH cells can induce differentiation of
memory B cells to antibody-producing cells.

An increased TFH cell response in the GC is associated with
the expansion of low affinity and autoreactive B cells, and
overactive TFH cells are observed in a variety of systemic
autoimmune diseases (44–48). Therefore, balanced responses
of TFH and B cells are required to eliminate pathogens and
simultaneously prevent autoimmune disease.

CD4 Treg Cells and T Follicular Regulatory
Cells in GC Reaction
CD4 T cells with regulatory activity were originally described in
1982 by Damle and Gupta (49), who demonstrated that CD4+ T
cells upon activation in-vitro suppressed proliferative responses
of T cells to phytohemagglutinin and alloantigens in mixed
lymphocyte culture reaction. In 1995, Sakaguchi and colleagues
further defined CD25+ subsets of CD4 T cells with regulatory
activity and termed them as Treg cells (50). In 2003, Tregs were
further defined by the presence of transcription factor FoxP3
(51). The significance of the FoxP3 transcription factor in
immune tolerance was reported in IPEX in which mutation of
FoxP3 resulted in the development of autoimmunity.
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The role of CD4 Tregs in the suppression of T cells and
antibody responses is well established. Sakaguchi and colleagues
(50) reported that depletion of CD4+CD25+ T cells leads to
induction of antiparietal cell antibodies by gastric epithelia and
of antithyroglobulin antibodies by thyroid follicular cells.
Leonardo and colleagues (52) demonstrated the role of CD4
Tregs on germinal center formation and antibody response in a
mouse model in which CD4 Tregs express the primate diphtheria
toxin receptors. In these mice, depletion of specific CD4 Tregs
resulted in enhanced GC formation, TFR cell expansion, and
autoantibody responses. Strongly enhanced GC/TFH responses
are also observed in patients with IPEX (53). Lim et al. (54, 55)
reported that Foxp3+ Tregs can also directly suppress B-cell
response without the need to first suppress T helper cells.
Following activation, a subset of CD4 Tregs (CD4+CD25+

CD69−) acquires CXCR5 expression while losing CCR7,
allowing them to migrate to the B-cell follicle and suppress B-
cell responses including B-cell survival, expression of activation-
induced cytosine deaminase, and immunoglobulin production
(56). Therefore, a subset of CD4 Tregs (CD4+CD25+CD69–)
appears to transition to TFR cells, and this subset of CD4 Tregs
regulates antibody responses in GC by suppressing TFH cells. TFR

cells were not normally defined until 2011, when three groups
simultaneously defined TFR cells as CXCR5+PD-1+BCL6+Foxp3+

cells (57–59). TFR cells appear to have critical roles in controlling
both foreign antigen-specific and self-reactive B cells. TFR cell
differentiation and maturation are facilitated by DCs and B cells
(57). TFR cells prevent TFH cell-induced activation of autoreactive
B cells. TFR cells modify GC reaction by controlling the size of GCs
and the selection of antigen-specific TFH cells and B-cell clones
and by regulating immunoglobulin isotype switch and affinity
maturation of antibodies (60). The precise molecules that are
responsible for such effects are unknown; cognitive interactions
via CTLA-4 appear to mediate suppression (61, 62).

Fu and colleagues (63) studied the role of TFR cells in
autoimmunity in Bcl6fl/flFoxp3Cre KO mice. These mice, as they
age, develop spontaneous autoimmune diseases, associated with
increased number of TFH cells, production of autoantibodies, and
IgG deposition in the kidney, supporting the role of TFR cells in
germinal center formation and control of autoimmunity. TFR cells
have been studied in a variety of autoimmune diseases (64–71).
Increased TFR cells are associated with decreased autoantibodies
and stable disease in rheumatoid arthritis (66). An imbalance
between TFR/TFH cells correlates with disease activity in a number
of autoimmune diseases (67–71).

CD8 Treg Cells and GC Reaction
In addition to TFR cells, CD8 Tregs also regulate GC reaction via
regulation of TFH and B-cell responses. CD8 Tregs (suppressor
CD8) in humans were discovered in the early 1980s (49, 72). In
the last 10 years, the role of CD8 Tregs in immune tolerance and
experimental models and autoimmune diseases has been
reported (73–77). The TCR repertoire differs between CD4
Tregs and CD8 Tregs: oligoclonal in CD8 Tregs (78) and
diverse TCR repertoire in CD4 Tregs (79). In humans,
FoxP3+CD8+ Treg cells are present in the thymus and tonsils
and, in low frequency, in peripheral blood (80–83).
Frontiers in Immunology | www.frontiersin.org 3
Several subsets of CD8+ Treg cells have been described in mice
and humans [reviewed in (84–86)]. Shi et al. (87) reported that
human central memory CD183+CD8+ T cells contain regulatory
activity against T-cell responses mediated by IL-10. We further
characterized CD8 Tregs both phenotypically and functionally
(88–90). We examined the effect of CD183+CD45RA−

CCR7+CD8+ T cells on various subpopulations of cells and
observed that CD183+CD45RA−CCR7+CD8+ T cells suppress
plasmablasts only. Furthermore, they did not have any significant
effect on BAFF-R expression, suggesting that CD8 Tregs do not
regulate B-cell survival (88). We further examined the direct effect
of CD8 Tregs on B cells and demonstrated that CD8 Tregs as
defined by CD183+CD25highCD278+CD8+ have greater inhibitory
activity against B-cell proliferation and immunoglobulin
production than CD183+CD45RA−CCR7+CD8+ Tregs (89).
Kasahara and colleagues (90) demonstrated that CD8 Tregs
(CD8+CD25highICOS+CD183+) under TFH differentiation
conditions suppressed naive CD4 T-cell differentiation to TFH.
We have also observed that CD8 Tregs regulate the induction of
FoxP3 in CD4 T cells. CD8 Tregs appear to regulate GC reactions
and GC development via their influence on both TFH cells and
directly on B cells and possibly via regulating CD4 Tregs. It is
unclear if CD8 Tregs also regulate TFR cells and Bregs.

Breg Cells and GC Reaction
Regulatory B cells are immunosuppressive cells that
downregulate immune responses and maintain immunological
tolerance (91, 92). In 1974, Katz and colleagues (93) reported B
cells suppressing the delayed type of hypersensitivity. However, it
is in the last decade that Bregs have been investigated for their
role in immune homeostasis and tolerance. Following exposure
to the autoantigen, B cells mature into Breg cells that can express
PD-1 and PD-L1, and suppress inflammation in autoimmune
diseases via PD-1–PD-L1 interactions. In mice, B cells regulate
immune responses through the release of IL-10, TGFb, and IL-35
(91). In mice, IL-35 produced by plasma cells plays an important
role in the negative regulation of immunity during autoimmune
and infectious diseases (12). The role of IL-35 in B-cell-mediated
negative regulation of immunity in humans has not been studied
in detail. In a single report, Ye et al. (94) reported decreased
plasma IL-35 and IL-35+ plasma cells in early-onset SLE patients.
Bregs downregulate T- and B-cell immune responses via IL-10.
In addition, Bregs promote the generation of CD4 Tregs and
induce suppressive natural killer T cells [reviewed in (95)].

In humans, B cells regulate immune responses by secreting
IL-10 and TGFb (96, 97). Distinct subsets of B cells, namely,
CD24hiCD38hi (similar to transitional B cells) and CD24hiCD27+

(memory B cell, B10 cells), and CD25+CD71+CD73− display
regulatory activities. Although CD19+CD24hiCD38hi Bregs are
enriched in IL-10+ B-cell fraction in peripheral blood (95, 96),
CD24hiCD27+ Bregs (B10) are relatively more suppressive for T-
cell proliferation and IL-17/IFNg expression. Both subsets
produce IL-10; however, CD24hiCD27+ Bregs are enriched in
TGFb and granzyme B (96). Therefore, these two phenotypically
distinct Bregs mediate immunosuppression via distinct
mechanisms. Achour et al. (98) also reported that human
Bregs inhibit TFH cell differentiation and maturation and
May 2022 | Volume 13 | Article 864307
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inhibit TFH-mediated antibody production via the expression of
IL-10 and TGFb and the expansion of CD4 Tregs. In their study,
Bregs were CD19+CD24hiCD38hiCD25+CD71+/−CD73−PD-
L1+ICAM1+ICOS-L+IL-21R−CD80hiCD86hi. Therefore, Breg
cells regulate GC reaction via suppressing TFH cells and
promoting the generation of CD4 Treg cells.

The role of Breg cells has been reported in a variety of
autoimmune diseases (91, 92, 95, 99–101). Unlike other
regulatory lymphocytes that express FoxP3, Bregs do not
express FoxP3, and a specific transcriptional factor of Breg
cells has not been discovered.
GERMINAL CENTER REACTION IN CVID

CVID is characterized by severely reduced numbers of
circulating class-switched memory B cells and reduced levels of
SHM resulting in impaired pathogen-protective high-affinity
antibody response (102–108). Therefore, GCs as the primary
site for both CSR and SHM may be disturbed in CVID patients.

Unger and colleagues (109) studied lymph node biopsies from
CVID patients with lymphadenopathy. In the majority of cases,
varying degrees of ill-defined GC hyperplasia were observed that
correlated with the increased percentage of circulating CD21low B
cells. Class-switched plasma cells were severely reduced.
Therefore, large GCs and the reduction of circulating memory
B cells and class-switched plasma cells suggest a failure of GC
output rather than GC formation in CVID patients
with lymphadenopathy.

van Schouwenburg and colleagues (110) studied naive and the
antigen-selected BCR repertoire in CVID patients and were able
to identify the GC reaction as the process most often deregulated
in CVID patients. They also observed that some patients have
possible defects in early B-cell development or selection against
autoimmune features. Their study indicated that in the majority
of CVID patients, repertoire formation is intact, while repertoire
specification is often impaired. Therefore, CVID patients, in
addition to having a quantitative defect in B-cell development,
also had impaired quality of B cells.

TFH Cells in CVID
As discussed above, TFH cells play an important role in GC
reaction. CVID patients with ICOS deficiency show severely
impaired GC formation in lymphoid tissues and severely
decreased blood memory TFH cells, accompanied by a severe
deficiency of memory B cells. Bossaller et al. (111) and
Grimbacher et al. (112) reported decreased proportions of
CXCR5+CD4+ TFH cells in CVID patients with ICOS deficiency.
Cunill et al. (113) analyzed TFH cells in CVID patients. Patients
were divided into smB− (<2% switched memory B cells) and smB+

(switched B cells >2%). They observed an increased percentage of
CD4+CXCR5+ TFH cells in CVID as compared with controls;
however, these differences were observed only between smB−

CVID patients. These TFH cells have increased PD-1 expression.
Coraglia et al. (114) studied TFH cells in 21 CVID patients divided
into group I with autoimmune/granulomatous (AI/GD) diseases
and group II without AI/GD. They observed increased
Frontiers in Immunology | www.frontiersin.org 4
CD4+CXCR5+ TFH cells in group I as compared with group II
and healthy controls. Group II was not different from healthy
controls. When data were analyzed for CCR7 and PD-1
expression, CD4+CXCR5+CCR7loPD-1hi cells were universally
present in group I but not in group II. Kasahara et al. (115)
reported decreased TFH cells expressing PD-1 and ICOS-1 and
reduced IL-21 secretion but a normal function of TFH cells in
CVID patients suggesting intrinsic B-cell defect. Borte et al. (116)
reported that exogenous IL-21 restored immunoglobulin
production in CVID. They reported decreased IL-21 mRNA in
T cells; however, they did not find any mutation in IL-21. They did
not examine IL-21 secretion.

Several investigators have reported increased levels of the
TFH1 subset in CVID patients with splenomegaly and/or AI/GD,
when compared with CVID patients without AI/GD or
splenomegaly and healthy controls. Cunill et al. (113), Unger
et al. (117), and Kasahara et al. (115) have observed increased
cTFH1 cells in CVID. Cunill et al. (113) observed a significant
increase in TFH1 cells in smB− CVID patients. Unger et al. (117)
observed increased TFH1 in patients with autoimmune
manifestations, and the strongest shift in TFH1 cells was
observed in CVID with increased CD21low B cells.

Cuhill et al. (113) and Kasahara et al. (115) did not observe
any significant difference in TFH2 cells between CVID and
controls. Several investigators reported decreased TFH17 cells
in CVID patients (113, 115–118). Reduced production of IL-17
by CD4+ T cells has been associated with the reduced number of
CD27+IgD− B cells in CVID patients and healthy subjects (119,
120). Cunill et al. (113) observed reduced TFH17 cells and
increased TFH1/TFH17 ratio in smB− CVID patients. Berrón-
Ruiz and colleagues (119) observed decreased IL-17A production
in CVID. Barbosa et al. (120) also observed decreased IL-17 in
CVID that correlated with increased CD21low; however, they did
not observe any correlation in CVID with autoimmunity and
autoimmune disease.

TFR Cells in CVID
TFR cells appear to have critical roles in controlling both foreign
antigen-specific and autoreactive B cells. TFR cells suppress
antibody responses by suppressing TFH cells (57–61). Fu et al.
(6) reported an association between TFR cell deficiency and the
development of autoimmunity in mice. Cunill et al. (113)
reported a reduction in CXCR5+CD25hiCD127low TFR cells in
CVID patients as compared with controls. Furthermore, a
significant reduction was observed in smB− CVID but not in
smB+ CVID patients. They demonstrated that the sorted
CXCR5+CD25hiCD127low TFR cells from smB-1 CVID had
decreased regulatory activity. Kasahara et al. (115) investigated
TFR cells (CD4+CD45RA−CXCR5+CD25+FoxP3+) in CVID
patients with (n = 12) and without (n = 20) autoimmune
diseases. They observed a decreased percentage of TFR cells in
CVID patients; however, no significant difference was observed
between the autoimmunity and non-autoimmunity groups. They
also observed an increase in the TFH/TFR ratio in CVID patients
with autoimmune diseases as compared with controls but not
between CVID patients without autoimmune diseases and
controls. Coraglia et al. (114) reported similar proportions of
May 2022 | Volume 13 | Article 864307
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TFR cells (CD4+CXCR5+FoxP3+) in CVID patients and healthy
controls. Furthermore, no difference in TFR cells was observed
between CVID patients with or without AI/GD.

CD4 Treg Cells in CVID
A number of investigators have reported decreased CD4 Tregs in
freshly isolated mononuclear cells (nTregs) in patients with CVID
(24, 26–34, 119, 120). However, Kutukculer et al. (25) in 20 pediatric
CVID patients reported no change in CD4 Tregs regardless of the
severity of disease, and the presence of autoimmunity was not
associated with decreased CD4 Tregs. Melo et al. (30), using the
CD4+CD25high127lowFoxP3+ phenotype as criteria for CD4 Tregs,
reported decreased CD4 Tregs in CVID; however, they observed no
difference between those with and without autoimmunity. Romberg
et al. (34) also reported reduced frequency of CD4 Tregs
(CD4+CD25hiCD127lo) in CVID patients especially CVID with
autoimmune cytopenia. Furthermore, they reported that CD4
Tregs from CVID with autoimmune cytopenia were impaired in
suppressing allogeneic T cells of healthy controls. There was an
inverse relationship between the expansion of TFH and CD4 Tregs
in CVID with autoimmune cytopenia. Cunill et al. (113) examined
CD4 Tregs (CD4+CD25highCD127low) in 22 CVID patients (n = 22)
and observed decreased proportion in CVID as compared with
healthy controls. Furthermore, reduced CD4 Tregs were observed in
smB− CVID patients but not in smB+ CVID patients. They
demonstrated that CD4+ Tregs had regulatory activity; however,
they did not compare the functions of CD4 Tregs between controls
and CVID patients. Furthermore, they did not analyze their data in
relation to autoimmunity. Louis et al. (24) reported decreased CD4
Tregs in CVID patients with mutation of the inositol trisphosphate
kinase beta (ITPkb) gene. Horn et al. (31), using two different
phenotypic markers (CD4+CD25highCD127lowFoxP3 and
CD4+CD25highFoxP3+CTLA-4+), reported decreased CD4 Treg
cells in CVID patients with granulomatous disease and immune
cytopenia. Several other investigators have reported an association
between reduced CD4 Tregs and CVID with autoimmune diseases
(29, 31, 32). Kofod-Olsen et al. (32) reported an association between
decreased CD4+ Tregs and increased pro-B10 Breg cells and
autoimmune phenomenon in CVID. Carter et al. (28), using the
CD4+CD25+FoxP3+CTLA-4+ phenotype, reported decreased CD4
Treg cells in a small cohort of CVID patients with autoimmunity. In
contrast, Arumugakani et al. (29) observed decreased proportions
and numbers of CD4 Tregs in a CVID group with splenomegaly;
however, they observed comparable proportions and numbers in
CVID with or without autoimmunity. Fevang et al. (121) also
reported decreased CD4 Tregs in CVID patients with splenomegaly
as compared with those without splenomegaly; however, they did
not observe a significant difference in CD4 Tregs between CVID
patients with idiopathic thrombocytopenia or granuloma. Yu et al.
(122) examined both the numbers (CD4+CD25highCD127lo) and
functions of CD4 Tregs in 14 CVID patients (8 with and 6 without
autoimmunity) and 5 healthy controls. Patients with CVID both
had reduced numbers and function of CD4 Tregs. Furthermore, the
degree of CD4 Treg cell dysfunction correlated with the expression
of FoxP3, granzyme A, and pSTAT3. Klemann and colleagues (123)
reported decreased CD4 Tregs in CVID patients with pathogenic
mutation of NF-kB2; however, there was no correlation with
Frontiers in Immunology | www.frontiersin.org 5
autoimmunity. In none of the published reports have
investigators examined ex-vivo activated CD4+ Tregs (iCD4
Tregs). Yesillik et al. (33), using the CD4+CD25high127lowFoxP3+

phenotype to define CD4+ Tregs, observed decreased proportion of
both nCD4+ Tregs and iCD4+ Tregs (ex-vivo activation of T cells
with anti-CD3/CD28) in CVID; however, they did not observe any
significant difference between the autoimmune and non-
autoimmune disease groups. This could be due in part to the
small sample size of patients with autoimmunity.

CD8 Treg Cells in CVID
CD8 Tregs suppress the differentiation of TFH cells from naive
CD4 T cells and are shown to regulate both T- and B-cell
responses and GC reaction. CD8 Tregs regulate immune
response and development of several experimental models of
autoimmune diseases and in human autoimmune diseases (77,
124–126); however, CD8 Tregs have not been studied in detail in
patients with IEI. In humans, Shi and colleagues (87) have shown
that CD8 Tregs (CD8+CD183+CXCR3+) regulate T-cell
proliferation and effector functions. CD8 Tregs as defined
by CD8+CD25highFoxP3+ play an important role in the
maintenance of self-tolerance (125). Churlaud et al. (83),
Wang et al. (127), and Lu et al. (124) have demonstrated that
CD8+CD25+FOXP3+ Treg cells that have been expanded in vitro
inhibit the proliferation of CD4+ and CD8+ T cells. We have
reported alterations in iCD8 Tregs in patients with selective IgM
deficiency (128), Good syndrome (129), syndrome of selective
IgM deficiency, severe T-cell deficiency and Mycobacterium
avium complex infection (130), and hypogammaglobulinemia
associated with CMV colitis and deficiency of CMV-specific CD8
T cells (131). Yesillik et al. (33) recently analyzed both nCD8
Tregs (without in-vitro activation) and iCD8 Tregs (ex vivo
activated with anti-CD3/CD28) in 25 subjects with CVID. The
proportions of iCD8 Tregs were significantly reduced in CVID;
however, no significant difference was observed in nCD8 Tregs
between CVID and controls. Furthermore, they did not observe
any difference in the proportions of iCD8 Tregs between CVID
with or without autoimmunity. Therefore, CD8 Tregs need to be
studied both phenotypically and functionally in a large cohort of
CVID patients with and without autoimmunity to delineate their
role in autoimmunity-associated CVID.

Breg Cells in CVID
Breg cells regulate T- and B-cell responses including the
maintenance of CD4 Tregs (88, 89, 95). B regulatory cell
frequency and functions are decreased in a number of systemic
autoimmune diseases (92, 93, 95, 96). Barsotti et al. (132) studied
two subsets (CD19+CD24hiCD38hi and CD19+CD24hiCD27+) of
Bregs in 42 patients with CVID and healthy controls. Both these
populations with or without activation with CpG or LPS to
express IL-10 were significantly decreased in CVID as compared
with controls. Furthermore, IL-10 production by sorted B cells
was significantly lower in CVID as compared with controls. No
significant difference was observed in CVID patients with or
without autoimmune diseases. However, when data were
analyzed between CVID patients with autoimmune cytopenia
and gastrointestinal autoimmune disease, the frequency of
May 2022 | Volume 13 | Article 864307
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CD24hiCD38hi was significantly decreased in the cytopenia
group as compared with the gastrointestinal autoimmunity
group and healthy controls. Therefore, Bregs may have a
differential effect on autoimmune manifestations associated
with CVID. Furthermore, they did not observe any correlation
between the frequency of Breg and CD4 Treg cells. We also
observed decreased proportions of CD19+CD24hiCD38hi

regulatory B cells in CVID patients as compared with controls;
however, we did not observe any correlation with autoimmunity
in CVID (30). Vlkova et al. (133) investigated Breg cells by
stimulating peripheral blood B cells via stimulation of T cells by a
plastic-coated anti-CD3 monoclonal antibody for 72 h and
adding PMA and ionomycin for the last 4 h. They observed no
difference in the frequency of CD19+CD24hiCD38hi Breg cells.
However, they did observe a significantly reduced frequency of
CD19+CD24hiCD38hiIL-10+ Bregs in CVID as compared with
controls. No relationship was observed with the EUROclass
categories of CVID. Furthermore, they observed an impaired
Breg function in CVID as demonstrated by failure to suppress
IFNg and TNFa production by CD4+ T cells and an increased
number of CD4+IFNg+TNFa+ cells. In contrast, Arumugakani
et al. (29) used CpG + rhCD40L to stimulate B cells for 43 h and
analyzed Breg cells, which they termed pro-B10 cells, as
CD19+IL-10+. They observed an increased frequency of pro-
B10 Breg cells in total CVID patients as compared with controls.
Furthermore, they observed an even more significant increase in
pro-B10 cells in the CVID with autoimmunity group as
compared with controls, whereas the frequency of pro-B10
cells in the non-autoimmune group was similar in total
controls. In addition, they observed a correlation with
EUROclass categories. They also did not observe any
correlation with decreased CD4 Tregs. Different experimental
conditions and different phenotypic criteria to define Breg cells
may account for the discrepancies among these studies. An
increase in Breg cells has also been reported in patients with
primary selective IgM deficiency (126).
SUMMARY AND CONCLUDING
REMARKS

B-cell clones expressing self-reacting BCRs in GCs can initiate
autoantibody production. Peripheral tolerance is induced by
Frontiers in Immunology | www.frontiersin.org 6
CD4 Treg, CD8 Treg, TFR, and Breg cells that regulate GC
reaction by multiple mechanisms, including anergy, apoptosis,
and suppression of effector functions of self-reacting T and B
cells. Furthermore, these regulatory lymphocytes regulate
themselves (regulators of regulatory lymphocytes). In the
majority of CVID studies, regulatory lymphocytes have been
phenotypically examined, and their functions have been
examined in very few studies. There is a general consensus
with regard to decreased CD4 Tregs in CVID; however, there
are conflicting data regarding their relationship with
autoimmunity. A subset of CD4 Tregs (CD4+CD25+CD69−),
migrating to lymphoid organs and transitioning into TFR cells,
suppresses antibody response. Data on TFR cells are conflicting.
CD8 Tregs regulate directly both TFH and B-cell responses. There
are very little data about CVID. Similarly, Breg cells have not
been studied in detail. The role of regulatory lymphocytes in the
pathogenesis of low immunoglobulins in CVID remains to be
explored. Since regulatory lymphocytes regulate each other, this
poses another challenge to sort out the role of individual
regulatory lymphocytes in the pathogenesis of CVID. There
appears to be a phenotypic heterogeneity in subsets of CD8
Treg, Breg, and TFR cells. Perhaps a multicenter comprehensive
study of both the phenotypic and functional analyses of
regulatory lymphocytes in a well-categorized large cohort of
CVID patients is needed to delineate their role in the
pathogenesis of CVID and associated autoimmunity and
autoimmune diseases. Furthermore, additional studies are
needed to examine the effect of biologics on regulatory
lymphocytes in CVID patients with autoimmune diseases.
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119. Berrón-Ruiz L, López-Herrera G, VargasHernández A, Santos-Argumedo L,
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