Chiu et al. BMC Systems Biology 2013, 7(Suppl 6):512

http://www.biomedcentral.com/1752-0509/7/56/512 BMC

Systems Biology

RESEARCH Open Access

Missing value imputation for microarray data: a
comprehensive comparison study and a web tool

Chia-Chun Chiu, Shih-Yao Chan, Chung-Ching Wang, Wei-Sheng Wu"

From 24th International Conference on Genome Informatics (GIW 2013)
Singapore, Singapore. 16-18 December 2013

Abstract

Background: Microarray data are usually peppered with missing values due to various reasons. However, most of
the downstream analyses for microarray data require complete datasets. Therefore, accurate algorithms for missing
value estimation are needed for improving the performance of microarray data analyses. Although many
algorithms have been developed, there are many debates on the selection of the optimal algorithm. The studies
about the performance comparison of different algorithms are still incomprehensive, especially in the number of
benchmark datasets used, the number of algorithms compared, the rounds of simulation conducted, and the
performance measures used.

Results: In this paper, we performed a comprehensive comparison by using (I) thirteen datasets, (Il) nine
algorithms, (lll) 110 independent runs of simulation, and (IV) three types of measures to evaluate the
performance of each imputation algorithm fairly. First, the effects of different types of microarray datasets on
the performance of each imputation algorithm were evaluated. Second, we discussed whether the datasets
from different species have different impact on the performance of different algorithms. To assess the
performance of each algorithm fairly, all evaluations were performed using three types of measures. Our results
indicate that the performance of an imputation algorithm mainly depends on the type of a dataset but not on
the species where the samples come from. In addition to the statistical measure, two other measures with
biological meanings are useful to reflect the impact of missing value imputation on the downstream data
analyses. Our study suggests that local-least-squares-based methods are good choices to handle missing values
for most of the microarray datasets.

Conclusions: In this work, we carried out a comprehensive comparison of the algorithms for microarray missing
value imputation. Based on such a comprehensive comparison, researchers could choose the optimal algorithm for
their datasets easily. Moreover, new imputation algorithms could be compared with the existing algorithms using
this comparison strategy as a standard protocol. In addition, to assist researchers in dealing with missing values
easily, we built a web-based and easy-to-use imputation tool, MissVIA (http://cosbi.ee.ncku.edu.tw/MissVIA), which
supports many imputation algorithms. Once users upload a real microarray dataset and choose the imputation
algorithms, MissVIA will determine the optimal algorithm for the users’ data through a series of simulations, and
then the imputed results can be downloaded for the downstream data analyses.
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Background

Gene expression microarray (DNA chip) technology is a
powerful tool for modern biomedical research. It could
monitor relative expression of thousands of genes under
a variety of experimental conditions. Therefore, it has
been used widely in numerous studies over a broad
range of biological disciplines, such as cell cycle regula-
tion, stress responses, cancer diagnosis, functional gene
discovery, specific therapy, and drug dynamic identifica-
tion [1-9]. Although microarray technology has been
used for several years, expression data still contain miss-
ing values due to various reasons such as scratches on
the slide, spotting problems, poor hybridization, inade-
quate resolution, fabrication errors and so on.

Basically, microarray data contain 1-10% missing
values that could affect up to 95% of genes [10]. The
occurrence of missing values in microarray data disad-
vantageously influences downstream analyses, such as
discovery of differentially expressed genes [11,12], con-
struction of gene regulatory networks [13,14], supervised
classification of clinical samples [15], gene cluster analy-
sis [10,16], and biomarker detection.

One straightforward solution to solve the missing
value problem is to repeat the microarray experiments,
but that is very costly and inefficient. Another solution
is to remove genes (rows) with one or more missing
values before downstream analysis, but it is easily seen
that part of important information would be lost.
Hence, advanced algorithms must be developed to accu-
rately impute the missing values.

Using modern mathematical and computational tech-
niques can effectively impute missing values. Early
approaches included replacing missing values by zero,
row average or row median [17]. Recently, many studies
found that merging information from various biological
data can significantly improve the missing values estima-
tion. Liew et al. categorized the existing algorithms into
four different classes: (1) local algorithms, (2) global
algorithms, (3) hybrid algorithms, and (4) knowledge
assisted algorithms [18,19].

The first category includes k nearest neighbors (KNN)
[17], iterative k nearest neighbors (IKNN) [20], sequen-
tial k nearest neighbors (SKNN) [21], least squares adap-
tive (LSA) [22], local least squares (LLS) [23], iterative
local-least-squares (ILLS) [24], sequential local-least-
squares (SLLS) [25], and etc. The second category
includes Bayesian principal component analysis (BPCA)
[26], singular value decomposition (SVD) [17], partial
least squares (PLS) and so on. The third category
includes LinCmb [11]. The fourth category integrates
domain knowledge (Gene Ontology [27] and multiple
external datasets [18]) or external information into the
imputation process. Projection onto convex sets (POCS)
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[28], GOimpute, histone acetylation information aided
imputation (HAIimpute) [29], weighted nearest neigh-
bors imputation (WeNNI) [30] and integrative missing
value estimation (iMISS) [31] belong to the knowledge
assisted approach algorithms. In this study, we did not
use the hybrid algorithms and the knowledge assisted
algorithms because their programs are not freely avail-
able or cannot be easily modified.

In the past few years, several papers have preliminary
and objective analyses for the systematic evaluation of
different imputation algorithms [32-35]. The weaknesses
of these studies are as follows. First, few microarray
datasets were used [32]. Second, few independent
rounds of the imputed procedure were performed
(usually 10 times). Third, single performance measure
was used [33,34]. Here, we present a fair and compre-
hensive evaluation to assess the performances of differ-
ent imputation algorithms on different datasets using
different performance measures.

Methods

Datasets

Considering that datasets from different species and
types of datasets may have different effects on the per-
formance of imputation algorithms, we chose thirteen
different datasets from two species (Saccharomyces cere-
visiae and Homo sapiens), which could be categorized
into three different types (time series, non-time series
and mixed type), for our analyses.

For time series datasets, we selected the yeast cell
cycle data (including the alpha factor arrest and elutria-
tion datasets) from [36], and Shapira04A and Sha-
pira04B datasets, which were two different time series
datasets (both measured the effect of oxidative stress on
the yeast cell cycle) from [37]. We also chose the
human cell cycle data called Human HeLa from [38].
For non-time series datasets, we chose the datasets
(Ogawa, BohenSH and BohenLC) from [39] and [40].
Ogawa’s data was retrieved from the study of phospho-
phate accumulation and poly-phosphophate metabolism
and the BohenSH was retrieved from follicular lym-
phoma lymph node and normal lymph node and spleen
samples on SH microarrays and the BohenLC was
retrieved from 24 independent follicular lymphoma
lymph node samples on LC microarrays. For mixed type
datasets, we chose the datasets from Lymphoma [41]
(focused on two experimental subsets corresponding to
Blood B cells and Thymic T cells), Baldwin [42], Yoshi-
moto02 [43], Brauer05 [44] and Ronen05 [45].

Before analyses, we removed all genes with missing
values to create complete matrices. And then multiple
entries with different missing rates (1%, 5%, 10%, 15%
and 20%) were randomly introduced into these complete



Chiu et al. BMC Systems Biology 2013, 7(Suppl 6):512
http://www.biomedcentral.com/1752-0509/7/56/512

Table 1 Benchmark datasets.

Datasets

Name Full Dim. Used Dim. Category Species
Ogawa 6263*8 3069*8 Non-time series  S.cerevisiae
Brauer05 6133%60 706*60 Mixed type S.cerevisiae
Ronen05 6987%26 2998%26 Mixed type S.cerevisiae
Yoshimoto02  6166%24 4380*24 Mixed type S.cerevisiae
Spahira04A 4771%23 2970723 Time series S.cerevisiae
Spahira048 4771%14 3340*14 Time series S.cerevisiae
Spellman ELU ~ 6178*14 5766%14 Time series S.cerevisiae
Spellman AFA  6178*18 4489*18 Time series S.cerevisiae
BohenSH 2364%24 623*24 Non-time series  H.sapiens
BohenlLC 13121%24 615%24 Non-time series  H.sapiens
Lymphoma 4026*16 2209*16 Mixed type H.sapiens
Baldwin 16838*39 6850%39 Mixed type H.sapiens
Human Hela 1134*19 920*19 Time series H.sapiens

matrices. A brief information of these datasets is pre-
sented in Table 1.

Collection of missing value imputation algorithms

In this paper, we present a comprehensive evaluation on
the performance of nine imputation algorithms on a
wide variety of types and sizes of microarray datasets.
We assessed the performance of different algorithms on
each dataset. Algorithms used can be divided into two
categories: local imputation algorithms and global impu-
tation algorithms.

Local imputation algorithms select a group of genes
with the highest relevance (using Euclidian distance
[17,23], Pearson correlation [22,23], or covariance esti-
mate [46]) to the target gene to impute missing values.
For local imputation algorithms, we used k-Nearest-
Neighbors (KNN), iterative k-Nearest-Neighbors (IKNN),
sequential k-Nearest-Neighbors (SKNN), least squares
adaptive (LSA), local least squares (LLS), iterative LLS
(ILLS) and sequential LLS (SLLS). For global imputation
algorithms, we used singular value decomposition
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(SVDimpute) and Bayesian principal components analysis
(BPCA). The KNN and SVD algorithms were run with
the parameter k = 15, the SKNN algorithm was run with
the parameter k = 10 for time series data and k = 15 for
non-time series data. The automatic parameter estimator
was used for LLS, SLLS and BPCA. The LS, IKNN and
ILLS methods do not contain any free parameters. A
brief information of these algorithms being used is pre-
sented in Table 2.

Performance indices
We used three performance indices (normalized root
mean squared error, cluster pair proportions and bio-
marker list concordance index) to assess the perfor-
mance of imputation algorithms. Based on the type of
information used in the index, we categorized these
three indices into three different types: (i) statistic index,
(ii) clustering index and (iii) differentially expressed
genes index.
(i) Statistic index
For the statistic index, we used the normalized root
mean squared error (NRMSE) to evaluate the perfor-
mance of the imputation algorithms. Lower the value of
the statistic index, better the algorithm performs.
Normalized root mean squared error (NRMSE):
NRMSE is a popular index used to evaluate the similar-
ity between the true values and the imputed values [33].

2
NRMSE = \/mean[(}.,guess — Yanswer) | (1)
variance[y ygwer|

where Ygyess and Yanswer are vectors, the elements of
Yguess are the imputed values, the elements of yanswer
are the known answer values, and variance[yanswer] 1S
the variance of Yanswer-
(i) Clustering index
An important data analysis in the microarray data is the
gene clustering. In this study, k-means was used to do
gene clustering for the complete datasets and the

Table 2 Missing value imputation methods used in this study

Methods Author Programming Language Year
Local algorithm
K-nearest neighbors (KNN) Troyanskaya O. C 2001
[terative K-nearest-neighbors (IKNN) Bras L.P. R 2007
Sequential K-nearest-neighbors (SKNN) Kim K.. R 2004
Least squares adaptive (LSA) Bo TH. Java 2004
Local least squares (LLS) Kim H. Matlab 2005
[terative local least squares (ILLS) Cai Z. Matlab 2006
Sequential local least squares (SLLS) Zhang X R 2008
Global algorithm
Bayesian principal component analysis (BPCA) Oba S. 2003
Singular value decomposition (SVD) Troyanskaya O. R 2001
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imputed datasets. We used cluster pair proportions
(CPP) [10] as a clustering index to evaluate the perfor-
mance of the algorithms. The numbers of clusters for
each dataset was 10. Higher the value of the clustering
index, better the algorithm performs.

Cluster Pair Proportions (CPP): A schematic illustra-
tion of CPP is showed in Figure 1.

(iii) Differentially expressed genes index

An important data analysis in the microarray is the
identification of differentially expressed genes. In this
study, SAM was used to identify differentially expressed
genes for the complete dataset and the imputed dataset.
We used biomarker list concordance index (BLCI) [47]
as the differentially expressed genes index to evaluate
the performance of the algorithms.

Biomarker list concordance index (BLCI): A high
BLCI value indicates that the list of the significantly
differentially expressed genes of the complete data is
similar to that of the imputed data. And it also means
that the imputed data does not significantly change the
result of downstream analysis, so the algorithm has
excellent performance. We expect that a good algo-
rithm has a high BLCI value. The BLCI is defined as
follows:

”(BED n B?D
”(BED)

where Bcp is the significantly differentially expressed
genes from the complete data, and Byp, is the significantly

Tl(BCD N B[D)

BLCI(Bcp, Bip) = n(Bep)
CD

-1,

(2)
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differentially expressed genes from the imputed data. BS,,
is the complement set of B¢ p, and BY, is the comple-
ment set of Byp.

Results and Discussion

We used (i) thirteen different datasets coming from two
organisms (human and yeast), (ii) 110 independent
rounds per experiment, and (iii) three kinds of indices
to assess nine different algorithms. We thought that the
performances of algorithms should be evaluated using
measures which can reflect the impact of imputation on
downstream analysis. The cluster pair proportions (CPP)
is used to assess the results of clustering analysis and
the biomarker list concordance index (BLCI) is used to
assess the results of identifying differentially expressed
genes. Therefore, we used not only normalized root
mean squared error (NRMSE), but also CPP and BLCI
to evaluate the performance of each algorithm. Such a
comprehensive comparison can provide an explicit
direction for practitioners and researchers for advanced
studies.

Simulation setting
In our numerical experiments, thirteen real microarray
datasets were used as benchmark datasets and nine
algorithms including KNN, SKNN, IKNN, LS, LLS,
ILLS, SLLS, BPCA and SVD were used.

First, we removed genes with one or more missing
values from the original datasets to generate complete
data matrices. Second, multiple entries with different

Imputed

)
»)

(XE

oj|o|O0 W
olo|w o
o|lw|o|C |w=

Imputed dataset

Figure 1 CPP. G,,G,, .., Gi¢ are genes in the microarray data. CC, .
four clusters for the imputed dataset.

, Cff are the four clusters for the complete dataset. ct P

, Cfl are the
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missing percentages (1%, 5%, 10%, 15% and 20%) were
randomly introduced into these complete data matrices.
And then, the data with missing values was imputed by
nine algorithms, respectively. The three steps mentioned
above are repeated 110 times for each algorithm. Finally,
downstream analysis results from the complete data are
compared to the results from the imputed data using
three kinds of indices. The workflow of numerical
experiments is shown in Figure 2.

The performances of imputation algorithms

We present a distinct illustration that can point out the
optimal method for the microarray datasets used. The
x-axis means the algorithms used and the y-axis means
the average rank of each algorithm. For example, if we
perform an experiment with 5 independent rounds, in
which ranks of an algorithm are 1, 2, 2, 1 and 2 respec-
tively. The average rank of the algorithm in this experi-
ment is (1 + 2 + 2 + 1 + 2)/5 = 1.6. Thus, in Figure 3a,
the average rank of SLLS is 1.4, which is the result from
110 rounds in an experiment. The error bar for each
algorithm is the standard error of the rank.

In this paper, we compared the performances of impu-
tation algorithms using microarrays of various data types
to determine the optimal algorithm. Time series, non-
time series and mixed type datasets were used as bench-
mark datasets, and the performance of each algorithm
was evaluated using different measures mentioned above.
Furthermore, robustness of an imputation algorithm was
also disscussed. We compared robustness of an algorithm
between various conditions, such as types of datasets and
datasets from samples of different organisms.

The ranking of imputation algorithms for different data
types

Performance of imputation algorithms on time series data
In Figure 4, LLS-like algorithms (based on local least
squares methods, such as LLS [23], ILLS [24] and SLLS

a.)Statistic

a.)Statistic
b.)Gene clustering b.)Gene clustering output
Differentially expressed | ™
) genes identcation e zﬁf“""’ ly expressed

a.JNRMSE '
b,) CPP
c.) BLCI Performance index

a.)statistic
b.)Gene clustering

:

omplete
dota
Miss Rote:
15% 5% ,10% ,15% , 209

Run 110 times
=

b.)Gene dlustering output

a.)statistic
- )
*/ genes identification

Figure 2 The diagram of the experiment design. (a) is the
evaluation using the statistic measure to compare the degree of
difference between the complete entries and the imputed entries.
(b) and (c) are evaluations using indices with biological meanings to
compare the impact of imputation on downstream analysis.
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[25]) outperform the others on NRMSE. ILLS is the
algorithm with the best performance among the LLS-
like algorithms (the average rank = 2.12). The average
rank of LS and LLS-like algorithms are around 3.8 using
the CPP. SLLS is the optimal method using BLCI (aver-
age rank = 2.04).

The performances (average rank) of algorithms are esti-
mated by different indices. The optimal algorithm is ILLS
using NRMSE (average rank = 2.12), the optimal algo-
rithms are ILLS and LLS using CPP (average rank = 3.56)
and the optimal algorithm is SLLS using BLCI (average
rank = 2.04). To precisely understand the performances of
the algorithms on time series datasets, we averaged each
average rank of the algorithms using the different indices
as the average rank of the algorithms using the average
index on time series datasets. The performance of LLS-like
algorithms perform well using the average index. The top
two of LLS-like algorithms are SLLS and ILLS. The average
rank of SLLS is 2.76 and the average rank of ILLS is 2.79.
Performance of imputation algorithms on non-time series
data
For non-time series datasets (Figure 5), it is prominent
that the performance of LS is the best using NRMSE.
The average rank of LS is 1.17. Using BLCI, the three
algorithms (SKNN, KNN and LS) have the best perfor-
mance. The average rank of SKNN is 3.23, the average
rank of KNN is 3.37 and the average rank of LS is 3.37.
The top performing algorithm is SKNN using CPP. The
average rank of SKNN is 3.67. In Figure 5, LS is the
optimal algorithm using the average index and then is
KNN-based algorithms, such as KNN [17], IKNN [20]
and SKNN [21]. We can clearly see that LLS-like algo-
rithms have better performance on time series datasets
than on the non-time series datasets.

Performance of imputation algorithms on mixed type data
In Figure 6, we can obviously see that LS has a low
average rank (1.68) using NRMSE. However, the perfor-
mance of LLS-like algorithms is better than that of LS
using BLCI. Using CPP, the average rank of LS is 3.7,
the average rank of ILLS is 3.9, the average rank of
KNN is 4.08 and the average rank of SLLS is 4.54. The
top three performing algorithms (ILLS, LS and SLLS)
are all very competitive with each other. The top per-
forming algorithm is ILLS, followed by LS and SLLS.
Performance of imputation algorithms on all data
Performance of each algorithm using the three kinds of
indices and the average index on all datasets is given in
Figure 7. It can be clearly seen that the performances of
LLS-like algorithms and LS are better than the perfor-
mances of KNN-like algorithms. We noted that no algo-
rithm can perform well on all kinds of datasets.
Therefore, the best algorithm cannot be found, but we
can find the optimal algorithm for each data type
(shown in Table 3).
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Robustness of each imputation algorithm

Tuikkala et al. demonstrated that BPCA is the best
imputation method on most of datasets [33], while de
Brevern et al. indicated that KNN constitutes one effi-
cient method for restoring the missing values with a low
error level [10]. According to our experiences, BPCA
does not always perform well on all benchmark datasets,

Table 3 The optimal algorithm determined by using
various indices for different types of datasets.

Index Data Best algorithm
NRMSE Time series ILLS
Non-time series LS
Mixed type LS
All Data LS
CPP Time series ILLS, LLS
Non-time series SKNN
Mixed type LS
All data ILLS
BLCI Time series SLLS
Non-time series SKNN
Mixed type ILLS
All data SLLS
Average index Time series SLLS
Non-time series LS
Mixed type ILLS
All data ILLS

and the performance of KNN is usually worse than that
of other methods for most of time, which means that
KNN cannot accurately estimate missing values to
improve downstream analysis. Integrating the results of
the previous studies with our experiences, it strongly
suggests that the optimal imputation algorithms for dif-
ferent types of datasets may be different. Therefore, it is
necessary to compare the robustness of each imputation
method, which is useful for choosing an optimal algo-
rithm for most of the researchers, especially when they
cannot ensure the type of their dataset.

Robustness against different data types

LS outperforms other algorithms using NRMSE (in
Figure 8d) and the average index (in Figure 8a). In
Figure 8a and 8d, ILLS and SKNN are more sensitive
than the other algorithms. When illustration has no
explicit trend, we set a threshold ¢ (o = |(non-time ser-
ies average rank) - (mixed type average rank)|). When o
is less than 1.5, it indicates that the performance of an
algorithm is not much different between datasets. In
Figure 8c, the performance is not much different
between LLS-like algorithms and KNN-like algorithms
in mixed type dataset against non-time series dataset. In
Figure 8b, LS, LLS, IKNN, KNN and SLLS are also not
much different. On the other hand, ILLS, SKNN, BPCA
and SVD are sensitive algorithms. Therefore, in Figure
8b and 8c, we suggest that LS can be used when
researchers cannot ensure the type of their dataset.
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There is an obvious trend in Figure 9a and 9d. Hence,
we recommend that LS can be used when researchers
cannot ensure whether their dataset belongs to time ser-
ies dataset or non-time series dataset. In Figure 9¢, LS is
the optimal algorithm (o is less than 1.5 and the algo-
rithm is close to left-down) when researchers cannot
ensure the type of their datasets. In Figure 9b, LS is still
the best one when the type of the dataset is unknown. In
Figure 9d, it can be obviously seen that ILLS and LS are
more sensitive than the other algorithms. In Figure 9a,
LLS-like algorithms prefer time series datasets but not
non-time series datasets. SKNN prefer non-time series
datasets but not time series datasets. In Figure 9b, ILLS,
SLLS and LLS prefer time series datasets but not non-
time series datasets. KNN and SKNN prefer non-time
series datasets but not time series datasets. In Figure 10c,
LLS is more sensitive than the other algorithms. In Figure
10b, SVD prefers mixed type datasets but not time series
datasets. In Figure 10a and 10b, ILLS is considered as the
optimal algorithm, which can be used when the type of
the dataset is either time series or mixed type. In Figure
10d, the performances of all algorithms are similar
between LS and LLS-like algorithms, but LS is still more
sensitive than other algorithms. In Figure 10c, ILLS and
LS have better performances than the other algorithms.
Robustness against data from different species
From Figure 11a to 11d, we can see that o is almost less
than 1 for each point (0 = |Human average rank - Yeast

average rank|). This indicates that the performance of
each algorithm between different organisms is very similar.

An easy-to-use web tool for missing value imputation

In addition to a comprehensive comparison between
imputation algorithms, we developed a web-based impu-
tation tool-MissVIA to help researchers, who do not
have good programming skills, to deal with missing
values in their datasets. In MissVIA, many existing
imputation algorithms were integrated together. Mis-
sVIA is built up based on the easy-to-use principle, so
every imputation task could be completed with only
three steps: (a) upload the dataset with missing values,
(b) choose the imputation algorihtms and (c) click the
“Submit” button. Once MissVIA receives the request of
an imputation task, it will send an e-mail notice with
the link of the job to users. Subsequently, MissVIA will
initiate a simulation procedure for performance compar-
ison to find out the optimal algorithm (see Figure 12).
Finally, the results of performance comparison would be
presented with a missing rate-to-NRMSE plot (see
Figure 13). According to the plot, MissVIA would deter-
mine the optimal algorithm, and then users can use the
imputed result for the downstream analysis.

Conclusions
To find an optimal method to solve the missing value
problem efficiently, we conducted a comprehensive
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Figure 11 The coordinate of a point means that the average rank of each algorithm on two organisms (yeast and human).

performance comparison of various missing value impu-
tation algorithms in this work. First, we investigated the
impact of different types of microarray data on the per-
formance of imputation methods. Three types of micro-
array data (time series, non-time series and mixed type)
were used as benchmark datasets, and the performance

Real microarray data

Remove the genes

with MVs

Intreduce MVs into the
complete dataset randomly to
produce artificial missing data

Testing dataset
with MVs

Complete dataset

Calculate NRMSE

Estimate MVs with
each imputation algorithm

Imputed dataset /

/

Figure 12 The workflow of performance comparison in
MissVIA.

\

of each algorithm was evaluated using three kinds of
measures (NRMSE, CPP and BLCI) and the average of
these measures (called the average index). These mea-
sures are originally used for different purposes. NRMSE
is for estimation of deviation between the estimated
values and the real values, CPP is for evaluation of clus-
tering results, and BLCI is for assessing the results of
finding differentially expressed genes. Our results sug-
gest that, for time series data, ILLS and SLLS have bet-
ter performances if one wants to do clustering analysis
or find differentially expressed genes. For non-time

.......

Performance Simulation
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Figure 13 The plot of various missing rates vs. NRMSE
generated by MissVIA through the procedure of performance
comparison.
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series data, LS is the best algorithm when the perfor-
mance is evaluated using NRMSE, while SKNN is better
than the others if one wants to conduct downstream
microarray data analysis. For mixed type data, ILLS is
the best choice if one wants to find differentially
expressed genes, but LS would be better for the other
two purposes.

Then we investigated whether the microarray data
from different species would affect the performance of
various imputation methods or not. Our results indicate
that what kind of species a dataset comes from does not
have any obvious effect on the performance of imputa-
tion methods. This means that when one is dealing with
missing values, what he needs to consider is not the
species that the dataset comes from, but the type of the
dataset. Besides, we used a distinct illustration to display
the relationship between different types of datasets,
which is helpful to reveal the robustness of these impu-
tation methods and is useful for researchers to choose
an optimal algorithm for their datasets. Besides, to assist
experiment practioners in solving missing value pro-
blems directly before data analysis, we developed a web-
based imputation tool. In this web tool, only 3 steps are
needed, and then users could easily obtain a complete
dataset imputed by the optimal algorithm.
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