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Reversibility and criticality in amorphous solids
Ido Regev1,2,3, John Weber4, Charles Reichhardt2,3, Karin A. Dahmen4 & Turab Lookman2,3

The physical processes governing the onset of yield, where a material changes its shape

permanently under external deformation, are not yet understood for amorphous solids that

are intrinsically disordered. Here, using molecular dynamics simulations and mean-field

theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing

cooperative rearrangements of displacements (avalanches) diverges. We compare this non-

equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that

has been used to describe steady-state avalanche behaviour in different materials. We

explain why a depinning-like process can result in a transition from periodic to chaotic

behaviour and why chaotic motion is not possible in pinned systems. These findings suggest

that, at least for highly jammed amorphous systems, the irreversibility transition may be a

side effect of depinning that occurs in systems where the disorder is not quenched.
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A
morphous solids such as plastics, window glass and
amorphous metals are an important and ubiquitous form
of matter. Industrial processing of such materials

commonly involves plastic deformation. An outstanding issue
in the amorphous plasticity community is defining and under-
standing yield1, the onset of irreversible behaviour, in terms of
underlying universal processes. There is increasing evidence to
suggest that the microscopic mechanism of plastic deformation is
a local rearrangement of particles involving a change of nearest
neighbours (so called shear transformation zones), which results
in an Eshelby-like elastic field2–5. However, it was recently shown
that these rearrangements can be repetitive or irreversible
depending on the strain amplitude6–18 (a similar phenomenon
has been observed in the shearing of colloidal suspensions,
granular systems, dislocations and super-conducting vortices19–28

and in the compaction of granular matter29).
We have previously studied highly condensed amorphous

solids (well above the jamming transition) under applied
oscillatory shear and showed that for small strain amplitudes
these systems evolve into periodic limit cycles during which
particles change their (mechanical) equilibrium positions but
follow the same trajectories for consecutive cycles (Fig. 1; ref. 6).
Above a critical strain amplitude, the system does not settle into a
limit cycle and the motion is chaotic with a positive maximal
Lyapunov exponent6.

The transition from jammed to flowing behaviour in systems as
diverse as earthquakes, charge density waves and disordered
magnets is accompanied by the occurrence of avalanches of
increasing sizes obeying power-law statistics, a signature of
critical behaviour. In this work, we show using molecular
dynamics simulations that in amorphous solids, at the same
critical strain amplitude where irreversibility occurs, the system
undergoes a non-equilibrium phase transition, which involves
avalanches of diverging sizes. We analyse the avalanche statistics
using a mean-field model for the depinning transition in plastic
deformation that was used previously to describe plasticity in
crystals and amorphous solids30,31. We show that large
avalanches exist even below the transition, as was also observed
in ref. 32, so that the existence of avalanches alone is not sufficient
to explain the irreversible behaviour (see Fig. 2 for an example of

the displacement field generated by an avalanche that is repeated
periodically under repeated cycles of subcritical strain). However,
we show that the cause of irreversible behaviour for strain
amplitudes that are larger than a critical value is rooted in the
changes of the energy landscape topology at depinning, which
suggests why depinning and irreversibility occur at the same
point.

Results
Simulations. The data used in this work were generated using
molecular dynamics simulations of systems of 1,024, 4,096 and
16,384 point particles in two dimensions interacting via an
isotropic attractive–repulsive pairwise potential. In each case,
we prepared an initial amorphous configuration and applied
oscillatory athermal quasi-static shear while controlling the
maximal strain amplitude in each run. The energy was kept at a
minimum after each straining step using the Fast Inertial
Relaxation Engine (FIRE) algorithm that reaches the steady state
more quickly than standard overdamped dynamics algorithms
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Figure 1 | Limit cycles. Repetitive particle trajectories in a period two limit cycle. (a) The entire system, (b) local environment and the trajectories that each

particle is undergoing and (c) the trajectory of one particle. (d) The strain applied using the Lees–Edwards boundary conditions (purple arrows show how

the Lees–Edwards boundaries move with respect to the simulation square when the system is sheared in the positive direction). Since the limit cycle has

period two the trajectories repeat themselves only after two shearing cycles (the blue and green lines in d). The particle starts from the orange initial

point and moves to the right on the blue trajectory, due to the external strain that shears the material to the right, then moves back to the centre and to the

left, when the strain is changed accordingly (blue curve on d). When the strain is set back to zero, the particle reaches the purple point. Then, when

the strain is applied again to the right, the particle moves accordingly, but this time on the green trajectory. The particle then moves to the centre and to the

left due to the applied strain (green curve in d). Eventually, the particle comes back to the orange point, the initial condition. The same two trajectories

repeat in the next two cycles and following cycles.

Figure 2 | Reversible (repetitive) Avalanches. An avalanche in a

subcritical limit cycle for a system with N¼ 16,384 particles and maximal

strain amplitude G¼0.1. Even though the avalanche spans a large part of

the system, it is repeated under repeating strain cycles of identical strain

amplitude. The arrows mark the displacement during the avalanche and the

colours represent the magnitude of the displacement (warm—large

displacement and cold—small displacement).
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(a more detailed discussion of the simulation methods can be
found in the methods section and in refs 6,33). In previous work6,
we have shown that when the strain amplitude is increased, the
system undergoes a transition from periodic to chaotic dynamics.
In Fig. 3a, we show the point of transition with respect to a stress–
strain curve obtained by applying a constant positive strain rate.
The point of transition is marked as a yellow line and the time to
reach steady state as red points. In Fig. 3b, we show the potential
energy per particle for three different strain amplitudes (top—low
amplitude, middle—medium and bottom—large amplitude). We
observe that as the amplitude becomes larger, it takes longer to
reach a periodic limit cycle and at a strain amplitude comparable
to the yield strain (whose system size dependence will be
discussed below), the typical time to reach a limit cycle diverges as
a function of the strain amplitude (Fig. 3a,d). This indicates a
kind of dynamical transition, whose nature is yet to be clarified.
Below we suggest that this behaviour is a result of a non-
equilibrium phase transition that is related to the well-studied
front depinning universality class.

Theoretical background. To understand the role of avalanches in
the transition-to-chaos/yield, we studied the avalanche statistics
for different maximal strain amplitudes and system sizes. Since
the simulations were athermal, we identified drops in the
potential energy (Fig. 3c) with plastic rearrangement events. For
each simulation, we extracted all of the energy drops in the last
shear cycle (to avoid transient effects), created a histogram of the
energy drops and calculated the average energy drop hDui for
each maximal strain amplitude. We observe in Fig. 4 a cusp at the
point at which the irreversibility transition occurs, followed by
saturation to a value that depends on the system size, at large
strain amplitudes. The cusp suggests that the irreversibility
transition is related to a change in the avalanche dynamics, and

the system size dependence of the saturation suggests that there is
a saturating correlation length. To understand the avalanche
statistics in this system, we invoke a simple model31 that belongs
to the same universality class as the theory of front depinning
(but with long-range interactions), which was originally
developed to explain the motion of an interface in random
media. This motion involves parts of an interface overcoming
local energy barriers due to pinning sites and neighbouring
locations in the interface ‘pulling’ the site back. The forward
motion of the interface occurs in avalanches. In the case of long-
range interactions, such as the ones that exist in elasto-plastic
systems, the notion of a ‘front’ becomes more abstract since sites
that are far apart affect each other and the notion of locality
becomes blurred (see Fig. 5 for illustration). This explains why the
same equations can also describe avalanche behaviour associated
with the plasticity of amorphous solids in which the dynamics
involves overcoming random energy barriers and long-range
interactions, even if an actual front may not exist. The equations
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Figure 3 | Transition to chaos at yield. (a) Stress–strain curve under linear shear (green line). The yellow line marks the transition to chaos and the red

points show the number of cycles to reach a limit cycle under oscillatory shear. (b) Three different potential energy time series for three different maximal

strain amplitudes growing from top to bottom. The red lines mark the onset of repetitive behaviour (limit cycle). (c) Typical behaviour of the potential

energy per particle of an amorphous solid under quasi-static oscillatory shear. Large drops in the energy are separated by elastic regimes. The large drops

correspond to rearrangements of particles. (d) Accumulated strain to reach a limit cycle as a function of the maximal strain amplitude minus the critical

strain amplitude Gc¼0.11.
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Figure 4 | Mean energy drops. The mean energy drop hDui as a function

of the maximal strain amplitude G for the largest system size. Note the

distinct cusp at the irreversibility point.
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of motion describing the time evolution of the plastic
displacement field u(r,t) controlled by overdamped dynamics
are31:

Z
@uðr; tÞ
@t

¼ Fþ
Z

d2r0J r� r0ð Þ u r0; tð Þ� u r; tð Þ½ � � fR u; rð Þ;

ð1Þ

where Z is the viscosity, F is an externally applied force, r is a
position of a deformable region (Shear transformation zone),
J(r� r0) is the Green’s function for the elastic interaction between
different ‘soft’ regions located at points r and r0 and fR(u,r) is a
random pinning potential representing the structural disorder
inherent to such systems. This model assumes that the nature of
the structure (the distribution of the random pinning forces
fR(u,r)) does not change as a function of time. In amorphous
solids, the randomness is self-generated and can (and typically
does) change under plastic deformation. However, when the
system is at a steady state under linear or cyclic shearing, one can
assume that the disorder is fixed. Also, the scaling behaviour of
the model predictions do not change if the pinning stresses
randomly change in time. This model shows a non-equilibrium
phase transition between a pinned, static state and a flowing state
as the stress is slowly increased past a critical force Fc (ref. 31).
The transition is a critical point involving correlated displacement
jumps. These correlations are described in terms of a scaling
theory, which was derived from a mean-field (infinite interaction
range) approximation and renormalization group theory30,31.
This theory was indeed shown to give a good description of the
statistics of avalanches during plastic deformation in crystals34–37

and is now also being applied to amorphous solids38–40. For an
applied external force, at zero velocity (quasi-static limit), it was
found that at a critical force Fc the avalanche size distribution
scales as:

DðSÞ�S� t; ð2Þ
where S is the avalanche size and t is a universal critical exponent.
Below Fc, the distribution follows the same power law but with a
maximal size (cutoff):

Smax� Fc� Fð Þ� 1=s; ð3Þ
where s is the cutoff exponent. Then, the distribution function
takes the form:

D S; Fð Þ�S� tD S=Smaxð Þ�S� tD S Fc� Fð Þ1=s
� �

; ð4Þ

where DðxÞ�Ae�Bx is a universal cutoff scaling function but the
constants A and B are system specific30,31. Below we will see how
depinning theory can help explain the observed changes in the
avalanche statistics as a function of the maximal strain amplitude.

Statistics under oscillatory shear. When applying the statistical
theory of front depinning for amorphous solids under oscillatory
shear, we have to modify the theory to take into account the
different factors that were not included in the theory described
above, which assumes a steady force. One issue is that the dis-
order in amorphous solids is not quenched, which can affect the
statistics. For example, there could be weakening effects during an
avalanche event, where the same site can be triggered more than
once. This has been addressed by Dahmen et al.31 and was shown
to affect the stress–strain curve but not the scaling exponents30.
The second effect of having dynamic disorder is that the
distribution that describes the random variable fR(u,r) can
change during a cycle. We avoid this problem by performing
statistics only for avalanches in ‘steady-state’ cycles, when the
avalanche statistics is stable. It is known that the exact
distribution of the disorder does not affect the avalanche
statistics so even if the disorder is different in different cycles,
that should not change the scaling functions. Another issue is that
the forcing is a ‘sawtooth’, periodic strain profile. To take that
into account, we have to rewrite equation (4) in terms of the
strain and integrate over the different strain amplitudes. The
relation between the stress and the strain shows hysteresis due to
the nonlinear nature of plastic deformation (Supplementary Note
1; Supplementary Fig. 2). Since the forward and reverse straining
branches of the hysteresis curve are statistically identical, we take
into account only the forward direction. For the forward branch,
we can model the relation between stress and strain using the
scaling relation (Supplementary Note 1):

�c��ð Þ� Gc�Gð Þd: ð5Þ
Where the critical strain Gc and critical stress Sc are related to the
critical force Fc, the shear modulus m and the system size L by:

Gc� b
ln L

L
þ�c=m ð6Þ

where b is a system-dependent constant. This expression is
explained and verified in Supplementary Note 2 and
demonstrated in Supplementary Fig. 3. By fitting to stress–
strain curves in the steady state, we find that dB1.25
(Supplementary Note 1; Supplementary Fig. 4).

We substitute (equation 5) into equation (4) and obtain a
scaling relation for the avalanche size distribution as a function of
the strain amplitude:

D S;Gð Þ�S� tD S Gc�Gð Þd=s
� �

; ð7Þ
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Figure 5 | Depinning theory in the amorphous plasticity context.

(a) Depinning theory describes the motion of an elastic interface (here a

one-dimensional front) in a random potential. The circles represent the

(plastic) displacement of each point in the front. The front is subject to an

applied force that causes it to move but elements of the front are pinned

locally and need to overcome energy barriers. The different elements of the

front are connected by springs so that if one pinned site overcomes the

energy barrier it is pulling its nearest neighbours (and only them). (b) If the

interactions are long range, different pinned elements of the front interact

with distant elements and the actual structure of the front becomes

immaterial. (c) In this case, there is no real difference between the

equations that describe a front and the equations that describe the

interaction of some collection of pinning sites distributed in the material. A

simple model of plasticity31, which belongs to the depinning universality

class, has been shown to describe the dynamics of an amorphous solid

under shear where ‘shear transformation zones’ or ‘weak spots’ are

dispersed in the material and affect each other with long-range elastic

interactions.
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which would be expected to describe the avalanche statistics close
to the critical strain amplitude. However, for oscillatory driving,
the scaling function D S;Gð Þ requires corrections since the
avalanche size distribution measured is a result of integration
over a varying amount of applied strain. Since the strain increases
and decreases periodically, the system spends time both below
and above the critical strain amplitude. Because we are averaging
over cycles, we need to integrate over the different strain
amplitudes. We also simplify the calculations by making some
approximations (Supplementary Note 3). Below the transition we
get the equation:

P S;Gð Þ�
Z G

0
deD S; eð Þ ¼

Z G

0
deS� tAe�BSðGc � eÞd=s ; ð8Þ

where P S;Gð Þ is the distribution of avalanche sizes at maximal
strain amplitude G, and e is the instantaneous strain amplitude
during a cycle eA[�G,G] (Supplementary Note 3 for a detailed
derivation). If the maximal strain amplitude G is larger than the
critical value, we have to average over the statistics both below
and above the critical strain amplitude. Due to the quasi-static
forcing (zero strain rate), for strains larger or equal to the critical
strain amplitude, the system is expected to be exactly at
criticality41, and the avalanche statistics is expected to behave
as a pure power law:

D S; e � Gcð Þ�S� t: ð9Þ
Substituting, we obtain:

P S;Gð Þ�
Z Gc

0
deS� tAe�BSðGc � eÞd=s þ G�Gcð ÞS � t;

where we have performed the integral over the last term. As
explained in the Supplementary Note 3, by changing the variable
of integration in equation (8) we can obtain a scaling function for
the fluctuations below the critical point (see Supplementary Note
3 for the derivation details):

P S;Gð ÞSl�F S Gc�Gð Þwð Þ; ð10Þ
where l¼ tþ s/d and w¼ d/s. The scaling function is generally
unknown. However, for mean field it was calculated to be
FðxÞ ¼ � gðs=d; � xÞ, where g(a,x) is the complementary
gamma function and seems to agree with the data collapse
(Figs 6 and 7; Supplementary Note 3). Avalanche sizes in
plasticity are usually associated with the amount of slip, which is
proportional to the stress drop. However, as was shown in
refs 33,42, in the steady state, the fluctuations of stress and
potential energy drops are proportional due to a sum rule. We
assume that to apply here as well (this is further explained and

verified from the simulations data in the Supplementary Note 4
and Supplementary Fig. 5). Using equation (10), we find data
collapses for five maximal strain amplitudes G¼ 0.05, 0.07, 0.08,
0.085 and 0.093 at system size N¼ 16,384 (Figs 6 and 7) from
which we extract l and w (see Supplementary Note 5 for an
explanation about the choice of G values). Since we have an
estimate of d, we can find the critical exponent values
t¼ 1.04[0.26], s¼ 0.59[0.04]. The exponents deviate from the
exponents found using mean-field theory, which are t¼ 1.5 and
s¼ 0.5. However, a recent study by Salerno et al.42, for
simulations under direct shear (not alternating), obtained
different critical exponents for overdamped, underdamped and
damped dynamics and the value of t ranged between t¼ 1
(critically damped), t¼ 1.25 (overdamped) and t¼ 1.5
(underdamped) depending on the dynamics. Since the FIRE
algorithm uses an inertia-like effect to minimize the energy, it is
possible that inertial effects contribute to the deviation from
mean-field theory, which was derived for overdamped dynamics
(see Supplementary Note 6 and Supplementary Fig. 6 for a
comparison of the algorithm relative to overdamped,
underdamped and critically damped dynamics applied to a
harmonic oscillator). Another possible reason for the deviation
from mean-field exponents, which has been suggested recently, is
the effect of anisotropic interactions43, at least for simulations in
steady state, under linearly increasing shear. Below we use the
critical exponents t and s to explain the observed cusp in the
energy fluctuations (Fig. 4).

Average fluctuations. From the relevant critical exponents, we
can obtain the average avalanche size introduced in Fig. 4 using
similar analysis as above (see Supplementary Note 7 for details):

Sh i�
ZSco

0

dS 2
G

ZGc

0

deS1� tAe�BSðGc � eÞd=s þ G�Gcð Þ
G

ZSco

0

dS S1� t;

ð11Þ

where Sco is a cutoff avalanche size that depends on the system
size in an unknown way, and we have divided the integral by G to
perform a cycle average. For the critical exponents t and s, we
used the values t¼ 1.04 and s¼ 0.59 that were obtained from the
data collapse shown in Figs 6 and 7. We also used Gc¼ 0.135 for
N¼ 1,024, Gc¼ 0.12 for N¼ 4,096 and Gc¼ 0.115 for N¼ 16,384
that are the values found for the transition to chaos. The maximal
cluster size Sco was assumed to be proportional to a power law of
the system size since at the steady state the correlations span the
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Figure 6 | Fluctuations. Energy drop distribution generated from log
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entire system (xBL):

Sco ¼ KND: ð12Þ
where K and D are constants. We found the parameter values
K� 0:4, AB4.547, BB30.51 and DB0.482 by minimizing the
normalized L2 norm of equation (11) with respect to the data
from simulations:

L2 ¼
1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

DUh isim;i� Sh itheory;i

� �2
s

ð13Þ

the best fit resulted in L2B0.114. Note that the value of DB0.482
is approximately consistent with avalanches concentrated
along a shear band and thus proportional to the linear system size
LBN1/2. Figure 8 shows the first moment of the potential energy
fluctuations DUh i obtained from the simulations as a function of
the maximal strain amplitude G, compared with equation (11) for
three different system sizes. The most obvious features of DUh i as
a function of the maximal strain amplitudes is the crossover
(cusp) in behaviour at the critical point (Figs 8 and 9), which was
mentioned above, and the system size-dependent saturation of
DUh i for very large strain amplitudes. As one can see in the

figures, both of these features are described by the theory. The
saturation, and dependence on system size can be explained by
noting that for very large maximal strain amplitudes G-N,
the normalized distribution function converges to the usual
power-law statistics PðSÞ�S� t and, respectively,
DUh i� hSi ! S2�t

co . One feature that we observed in the simu-
lations that is not explained by the current theory is that Gc

changes slightly with the strain amplitude due to structural
rearrangements. In the theory (equation 1), structural rearran-
gements will amount to a change in the properties of the dis-
tribution of the random pinning fR(u,t). However, this effect is
small (changes in Gc are o5%) and we did not take that into
account when fitting the data to the theory. By analysing the
avalanche statistics using scaling forms predicted by depinning
theory, we have shown that there is a critical point at a critical
strain amplitude G¼Gc, which is the same strain amplitude at
which the system undergoes an irreversibility transition. How-
ever, this raises the question of why the two occur at the same
point. Below we explain this intriguing concurrency.

Connection between dynamics and critical behaviour. Here we
discuss the connection between depinning and the observed
dynamics in the reversible and irreversible regime. The essence of
this connection is that at depinning, the external force F sup-
presses all the energy barriers (Fig. 10a,b), which changes the

topology of the energy landscape—instead of a set of dis-
connected energy minima, we have a fully connected set of energy
minima in terms of strain. This affects the dynamics and rever-
sibility of the system (a related explanation was suggested for the
dynamics of supercooled liquids, see ref. 44).

Limit cycles. Since the system is dissipative, it will always flow to
an attractor occupying a limited part of phase space (Fig. 10c; ref.
45). This attractor will be composed of a finite or infinite set of
configurations of the system connected to each other by elastic or
plastic displacement (Fig. 10d). For a system under linear shear,
when the external forcing is below depinning, it is guaranteed that
after some amount of strain the system will find a local minimum
of the potential energy (will become pinned). For cyclic strain, if
the maximal strain amplitude is below depinning, the system will
find, after transient dynamics, a set of configurations all below the
critical stress. Since the stress is lower than the critical depinning
stress, this set of states is guaranteed to be linearly stable or non-
linearly stable. In the case that is nonlinearly stable, if the stress is
increased, the system will overcome a close-by energy barrier but
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Figure 8 | First moment. Average potential energy drops versus maximal

strain amplitude for different system sizes: N¼ 16,384 (blue circles),

N¼4,096 (purple squares), N¼ 1,024 (green triangles). The yellow lines

are the theoretical results equation (11) where the integral was calculated

numerically. The red-dashed line marks the transition to chaos point for

N¼ 16,384.
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will ‘fall’ into an adjunct energy barrier (Fig. 10a), which means
that the next configuration in the attractor is separated by a finite
energy barrier. Therefore, in this case, the attractor is not chaotic
and it must be a limit cycle (periodic). This situation is not so
different to an absorbing phase transition, which was suggested as
an explanation for similar phenomena14,21, although we suggest
that depinning provides greater physical insight into the reason for
the system to reach an absorbing state.

Chaotic attractor. When the stress is close to depinnig values, a
small increase in stress, due to a strain step will overcome all of
the energy barriers (Fig. 10b). In this case, the system will be
completely unstable, for a short time. In the quasi-static shearing
scenario, the system will reach another minimum of the potential
energy when the minimization algorithm or dissipation lowers
the energy again but before that happens it will spend some time
in boundless motion. Since there are effectively no energy barriers
in this time, there are no retrieving forces and chaotic motion is
possible (in some systems with quenched disorder and with a ‘no
passing’ property fulfilled46, such as charge density waves and
certain random magnets, chaotic motion is not possible and there
always is a limit cycle47, but this is not the case in plasticity in
amorphous solids in which disorder is not strictly quenched and
for which the no passing rule is broken.).

Period doubling. When the system is close but still not exactly at
criticality, there are less and less stable ‘pinned’ configurations.
Therefore, the likelihood of the system being able to ‘construct’ a
limit cycle that returns to the same point after one period is
smaller and it may be required to have more than one cycle before
the system can return to the initial configuration.

To summarize, if the strain amplitude is below depinning, the
system can always self organize into cycles composed of states in
which the stress fluctuations never reach depinning values. In that
case the dynamics will always be bounded, either linearly or
nonlinearly (overcoming one energy barrier). If the strain
amplitude is large enough, there are always states in which the
stress is very close to depinning. In that case small increase in the
stress, due to straining, will generate stresses that are larger than
the depinning value, and thus will cause unbounded motion that
can lead to sensitivity to initial conditions and chaos.

Relaxation dynamics. Depinning mean-field theory predicts that
close to a depinning transition, the system will ‘slide’ for a long
time (displace) before it becomes pinned (this is a type of non-
equilibrium critical slowing down). Therefore, the accumulated
strain to reach a steady state (the number of cycles times 4G) is
expected to diverge as a function of the applied force:

Eacc� Fc� Fð Þ� zv; ð14Þ
with mean-field depinning theory, which was derived for linear
shear, predicting a value of zv¼ 1 (ref. 31). Since the steady state
is a limit cycle composed of a set of pinned states, we expect that
also under oscillatory shear, the accumulated strain to reach a
steady state will scale in the same way as the strain needed to pin
one state. Since we control the maximal strain amplitude, we
obtain on substituting:

Eacc� Gc�Gð Þ� zvd: ð15Þ
In the simulations, we find power-law scaling with zvB2.4 for a
choice Gc¼ 0.11 (Fig. 3d), and zvB1.38 for a slightly smaller
Gc¼ 0.1 for the largest system that we studied (N¼ 16,384). Note
that previously6 we calculated the dynamical exponent by
considering the number of cycles required to reach a periodic
cycle, whereas here we consider the accumulated amount of strain

required to reach the limit cycle, which is more compatible with
the theory. The dynamical exponent zv¼ 1 predicted by mean-field
theory is in rough agreement with the scaling of the time to reach
steady state measured in the experiments of Nagamanasa et al.14

on colloidal glasses which gave zvB1.1/dB0.88.
From the arguments presented above, it is clear why the

depinning and irreversibility transitions are inherently connected.
Since depinning is a relatively well-studied theory, this connec-
tion provides a basis for a deeper understanding of plasticity in
amorphous solids.

Discussion
We have studied the avalanche statistics of amorphous solids
under oscillatory shear and have shown that there is a critical
maximal strain amplitude at which the correlation length diverges
and the avalanche statistics follow theoretical mean-field scaling
laws developed for the depinning transition. A key result is that
the non-equilibrium critical point occurs at the same maximal
strain amplitude as a dynamical reversibility–irreversibility
transition, which was recently identified in the same system. We
have explained why the depinning transition causes a topological
change in the structure of the energy landscape, thereby
facilitating a transition from periodic to chaotic dynamics.
Furthermore, we have shown that the observed dynamical scaling
close to the irreversibility transition is connected to the one
obtained by a depinning mean-field theory31.

Experiments on shearing of colloidal suspensions7,8,14 have
found an irreversibility transition. Similarly, experiments on
granular piles have also shown that the onset of irreversible
behaviour is associated with the appearance of system spanning
events24, consistent with our findings. It would be interesting to see
if the avalanche statistics that we reported here can also be
observed in experiments such as the ones performed by
Nagamanasa et al.14 and Keim et al.8 on jammed colloidal glasses.

An important issue that was not addressed in our current work
is the effect of the dynamics on the structure of the material. For
dilute colloidal suspensions13 and granular matter29, it has been
observed that the structure changes during the irreversibility
transition. Structural changes in amorphous solids are very subtle
and will be harder to observe48–50. An implication of the current
results is that the onset of plastic failure may be detected from
power-law scaling of the power spectra or the slip size
distributions of the slip avalanches.

Methods
Molecular dynamics simulations. The data used in this work were generated
using molecular dynamics simulations of systems of 1,024, 4,096 and 16,384 point
particles in two dimensions interacting via an isotropic attractive–repulsive pair-
wise potential (described in detail in refs 33,6) where the effective radius of half the
particles is 1.4 times larger than the other half. We use the mass m of the particles,
the typical interaction distance s and the typical interaction energy e to define
reduced units for the energy (E-E/e), the stress S-S/(es� 3), the number
density r-r/(s� 3) and the time t-t/(em� 1s� 2)1/2. Positions of particles are
given in terms of q-q/L, where L is the system size. The sample is kept at a
constant volume and number of particles (NVT) with a number density r¼ 0.75 in
the reduced units that are significantly higher than the jamming transition. Initial
frozen amorphous configurations are generated by equilibrating systems of
particles at the fluid phase and then quenching them to zero temperature using a
minimization algorithm51. To verify that the structure is amorphous, we calculated
the pair-correlation function. In Supplementary Fig. 1, we show the pair-
correlation function for the small particles that shows the typical structure of a
frozen liquid and no long-range order. The material is subject to small steps of
shear strain (De¼ 10� 4) using the Lees–Edwards boundary conditions52. The
dynamics under shear is quasi-static (after each shearing step the energy was
minimized using the FIRE minimization algorithm51). The strain is applied in a
periodic manner: first, positive strain steps are applied. When a maximal
predecided strain G is reached, the strain is reversed by applying strain steps in the
opposite direction. This proceeds until the strain reaches the negative value of the
maximal strain �G. At this point, the strain steps are reversed until the system
returns to zero strain, completing the cycle. The cycle is then repeated.
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21. Corté, L., Chaikin, P., Gollub, J. & Pine, D. Random organization in periodically
driven systems. Nat. Phys. 4, 420–424 (2008).

22. Pine, D., Gollub, J., Brady, J. & Leshansky, A. Chaos and threshold for
irreversibility in sheared suspensions. Nature 438, 997–1000 (2005).

23. Franceschini, A., Filippidi, E., Guazzelli, E. & Pine, D. J. Transverse alignment
of fibers in a periodically sheared suspension: an absorbing phase transition
with a slowly varying control parameter. Phys. Rev. Lett. 107, 250603 (2011).

24. Slotterback, S. et al. Onset of irreversibility in cyclic shear of granular packings.
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85, 021309 (2012).

25. Zhou, C., Olson Reichhardt, C., Reichhardt, C. & Beyerlein, I. Random
organization in periodically driven gliding dislocations. Phys. Lett. A 378, 1675
(2014).

26. Mangan, N., Reichhardt, C. & Reichhardt, C. Reversible to irreversible flow
transition in periodically driven vortices. Phys. Rev. Lett. 100, 187002 (2008).

27. Royer, J. R. & Chaikin, P. M. Precisely cyclic sand: self-organization of
periodically sheared frictional grains. Proc. Natl Acad. Sci. 112, 49–53 (2015).

28. Paulsen, J. D., Keim, N. C. & Nagel, S. R. Multiple transient memories in
experiments on sheared non-Brownian suspensions. Phys. Rev. Lett. 113,
068301 (2014).

29. Farhadi, S., Behringer, R. P. & Zhu, A. Z. Stress relaxation for granular
materials near Jamming under cyclic compression. Preprint at http://
arXiv:1309.7147 (2013).

30. Fisher, D. S., Dahmen, K., Ramanathan, S. & Ben-Zion, Y. Statistics of
earthquakes in simple models of heterogeneous faults. Phys. Rev. Lett. 78,
4885–4888 (1997).

31. Dahmen, K. A., Ben-Zion, Y. & Uhl, J. T. Micromechanical model for
deformation in solids with universal predictions for stress-strain curves and slip
avalanches. Phys. Rev. Lett. 102, 175501 (2009).

32. Fiocco, D., Foffi, G. & Sastry, S. Encoding of memory in sheared amorphous
solids. Phys. Rev. Lett. 112, 025702 (2014).

33. Lerner, E. & Procaccia, I. Locality and nonlocality in elastoplastic responses of
amorphous solids. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79, 066109
(2009).

34. Chan, P. Y., Tsekenis, G., Dantzig, J., Dahmen, K. A. & Goldenfeld, N. Plasticity
and dislocation dynamics in a phase field crystal model. Phys. Rev. Lett. 105,
015502 (2010).

35. Friedman, N. et al. Statistics of dislocation slip avalanches in nanosized single
crystals show tuned critical behavior predicted by a simple mean field model.
Phys. Rev. Lett. 109, 095507 (2012).

36. Dimiduk, D. M., Woodward, C., LeSar, R. & Uchic., M. D. Scale-free
intermittent flow in crystal plasticity. Science 312, 1188 (2006).

37. Csikor, F. F., Motz, C., Weygand, D., Zaiser, M. & Zapperi, S. Dislocation
avalanches, strain bursts, and the problem of plastic forming at the micrometer
scale. Science 318, 251 (2007).

38. Antonaglia, J. et al. Tuned critical avalanche scaling in bulk metallic glasses. Sci.
Rep. 4, 4382 (2014a).

39. Antonaglia, J. et al. Bulk metallic glasses deform via slip avalanches. Phys. Rev.
Lett. 112, 155501 (2014).

40. Lin, J, Lerner, E., Rosso, A. & Wyart, M. Scaling description of the yielding
transition in soft amorphous solids at zero temperature. Proc. Natl Acad. Sci.
USA 111, 14382–14387 (2014).

41. Sethna, J. P., Dahmen, K. A. & Myers, C. R. Crackling noise. Nature 410, 242
(2001).

42. Salerno, K. M., Maloney, C. E. & Robbins, M. O. Avalanches in strained
amorphous solids: does inertia destroy critical behavior? Phys. Rev. Lett. 109,
105703 (2012).

43. Lin, J., Saade, A., Lerner, E., Rosso, A. & Wyart, M. On the density of shear
transformations in amorphous solids. Europhys. Lett. 105, 26003 (2014).

44. Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 476, 51–124 (2009).
45. Ott., E. Chaos in Dynamical Systems (Cambridge Univ. Press, 2002).
46. Sethna, J. P. et al. Hysteresis and hierarchies: Dynamics of disorder-driven first-

order phase transformations. Phys. Rev. Lett. 70, 3347 (1993).
47. Middleton, A. A. & Fisher, D. S. Critical behavior of charge-density waves

below threshold: Numerical and scaling analysis. Phys. Rev. B 47, 3530 (1993).
48. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass

transition. Nature 410, 259 (2001).
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