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Abstract

and populations.

Background: Japanese flounder (Paralichthys olivaceus) is one of the most economically important marine species
in Northeast Asia. Information on genetic markers associated with quantitative trait loci (QTL) can be used in
breeding programs to identify and select individuals carrying desired traits. Commercial production of Japanese
flounder could be increased by developing disease-resistant fish and improving commercially important traits.
Previous maps have been constructed with AFLP markers and a limited number of microsatellite markers. In this
study, improved genetic linkage maps are presented. In contrast with previous studies, these maps were built
mainly with a large number of codominant markers so they can potentially be used to analyze different families

Results: Sex-specific genetic linkage maps were constructed for the Japanese flounder including a total of 1,375
markers [1,268 microsatellites, 105 single nucleotide polymorphisms (SNPs) and two genes]; 1,167 markers are
linked to the male map and 1,067 markers are linked to the female map. The lengths of the male and female
maps are 1,147.7 ctM and 833.8 cM, respectively. Based on estimations of map lengths, the female and male maps
covered 79 and 82% of the genome, respectively. Recombination ratio in the new maps revealed F:-M of 1:0.7. All
linkage groups in the maps presented large differences in the location of sex-specific recombination hot-spots.

Conclusions: The improved genetic linkage maps are very useful for QTL analyses and marker-assisted selection
(MAS) breeding programs for economically important traits in Japanese flounder. In addition, SNP flanking
sequences were blasted against Tetraodon nigroviridis (puffer fish) and Danio rerio (zebrafish), and synteny analysis
has been carried out. The ability to detect synteny among species or genera based on homology analysis of SNP
flanking sequences may provide opportunities to complement initial QTL experiments with candidate gene
approaches from homologous chromosomal locations identified in related model organisms.

Background

Genetic linkage maps have been developed for several
species. Microsatellite markers have been commonly
chosen in linkage maps because they exhibit codominant
inheritance, have high degrees of heterozygosity, are
widely distributed throughout the genomes, and provide
comparative information between closely related species
[1]. In aquaculture species, first generation, low resolu-
tion genetic linkage maps have been developed for many
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species, including tilapia (Oreochromis niloticus) [2,3],
channel catfish (Ictalurus punctatuts) [4], rainbow trout
(Oncorhynchus mykiss) [1,5], Atlantic salmon (Salmo
salar) [6], brown trout (Salmo trutta) [7], European sea
bass (Dicentrarchus labrax L.) [8], gilthead sea bream
(Sparus aurata L.) [9], turbot (Scophthalmus maximus)
[10], Atlantic halibut (Hippoglossus hippoglossus L.) [11],
half-smooth tongue sole (Cynoglossus semilaevis) [12],
pacific abalone (Haliotis discus hannai) [13,14] and
oyster (Crassostrea gigas) [15,16]. Recently, second gen-
eration maps that span the genomes at higher resolution
have been constructed. These maps contain several hun-
dred of markers with microsatellites and single nucleo-
tide polymorphisms (SNPs) associated with candidate

© 2010 Castano-Sanchez et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:nokamoto@kaiyodai.ac.jp
http://creativecommons.org/licenses/by/2.0

Castano-Sanchez et al. BMC Genomics 2010, 11:554
http://www.biomedcentral.com/1471-2164/11/554

genes. They have been constructed for tilapia [17], rain-
bow trout [18,19], Atlantic salmon [20]and channel cat-
fish [21].

Japanese flounder, Paralichthys olivaceus, is widely
distributed along the coast of Northeast Asia and is one
of the most economically important marine species in
the region. P. olivaceus is successfully cultured in Japan,
China and Korea. Like other aquaculture species, Japa-
nese flounder is susceptible to several viruses, bacteria
and protozoan pathogens, and may also show pigmenta-
tion abnormalities, which decrease its market price [22].
Some economically important traits like disease resis-
tance and growth are quantitative phenotypes and their
genetic basis relies on the combined effects of quantita-
tive trait loci (QTL) [23]. Information on genetic
markers associated with QTL can be used in marker-
assisted selection (MAS) breeding programs to identify
and select individuals carrying desired traits. Commer-
cial production of Japanese flounder could be increased
by developing disease-resistant fish and improving com-
mercially important traits. Fuji et al. [24,25] found a sin-
gle major genetic locus associated with lymphocystis
disease resistance in Japanese flounder and succeeded in
commercially producing a lymphocystis disease-resistant
strain by marker-assisted selection (MAS).

Linkage maps are essential tools to study QTL, there-
fore, sex-specific genetic linkage maps were first con-
structed for Japanese flounder by Coimbra et al. [26]
included a total of 111 di-nucleotide microsatellite mar-
kers and 352 AFLP fragments and contained thirty
linkage groups. That map was arbitrary named BA map,
since it was based on a family bred out of strains “KP-
A” and “KP-B” from Kanagawa prefecture fisheries tech-
nology center. Linkage maps need to be built mainly
with codominant markers, which are representative of
the same loci across studies. Maps built with codomi-
nant markers can be used in different families and
populations. Therefore, new sex-specific maps (named
A2 maps) were constructed using 230 di-nucleotide
microsatellite [27]. Markers in those maps were distribu-
ted in 24 linkage groups; the number of linkage groups
was in accordance with the haploid chromosome num-
ber of the Japanese flounder [28]. Moreover, gynogenetic
diploids derived from the dam of the A2 map were used
to estimate the centromeric regions in the map. Addi-
tionally, a sex-averaged map was constructed based on
180 microsatellites from BA maps as well as other pre-
viously isolated markers and 31 newly developed EST-
derived microsatellites [29].

Haldane [30] established that when meiotic recombina-
tion rates vary between sexes it is usually the heteroga-
metic sex that has lower recombination. The sex with
lower recombination rates is expected to transmit mar-
ker-QTL associations in tighter linkage. Thus, the study
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of differences in recombination rates between sexes
could be of great importance in MAS programs [26].
Though the sex determination systems of fish are vari-
able, most fish species for which linkage maps have been
developed exhibit male heterogamety. In these species,
linkage mapping indicates that recombination rates in
males are greatly reduced compared to females [10,11].
However, in a preliminary study of Japanese flounder,
males appeared to have higher recombination rates than
females [26]. In this study, further analyses were per-
formed using a larger number of markers. These analyses
were performed with segregating data of the A2 family
used for a construction of the A2 map, as well as the
BACE family of the improved genetic linkage map. This
family was a hybrid from four strains from the Kanagawa
Prefecture Fisheries Center, strains “KP-A”, “KP-B”,
“KP-C” and “KP-E” [24] and has been named BACE.

In this report, we present significantly improved
female and male maps (BACE map), which contain
1,375 markers, including microsatellites, SNPs (Single
Nucleotide Polymorphisms) and two genes. These maps
will facilitate the genome mapping efforts in Japanese
flounder and other related species. The mapping data
could be compared to reference species and utilized for
QTL analyses and further MAS.

Results

Microsatellite markers

Hybridization and sequencing results detected 5,930
positive clones, containing 7,791 microsatellite regions.
A total of 1,808 primer pairs were designed, and poly-
morphism was checked; 34% of the clones were poly-
morphic in both parents of the BACE family and 21% of
the clones were polymorphic in either the male or
female of the family. Among those markers, 746 micro-
satellites were selected and genotyped in the BACE
family. Sequence data of the newly developed microsa-
tellites have been deposited with the GenBank Data
Library under the accession nos: EF112585-EF113072
and AB458899-AB459282. A list of the 1,268 microsatel-
lite markers included in the map is presented in addi-
tional file 1.

SNP markers

Seventeen new “AB” SNP marker, derived from new
EST sequences of Japanese flounder were polymorphic
in either the male or female of the BACE family and
were included in the map (Additional file 2). They are
represented in the BACE map with their respective Gen-
Bank accession numbers; AB275460, AB275461,
AB275463-AB275466 and AB275468-AB275478. The
analysis of the EST sequences obtained from the NCBI
database resulted in 88 polymorphic SNP markers
(Additional file 2).
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Markers in the BACE map

A total of 1,375 markers including 1,268 microsatellites,
105 SNPs and 2 genes were mapped in sex-specific link-
age groups. The male map contains 1,167 markers and
the female map contains 1,067 markers (Figures 1 and
2; additional files 3, 4 and 5). In accordance with the 24
haploid chromosome number of the families confirmed
by a karyotype study [28], markers were distributed
along 24 linkage groups. The chromosomes of P. oliva-
ceus are all acrocentric [28] and centromeric regions
have been estimated by centromere-mapping using
gynogenetic diploids derived from a dam [27]. The link-
age groups in Figures 1 and 2 are represented with their
predicted centromeric regions from the top of the
group.

Previous versions of the BA and A2 maps were built
with only di-nucleotide microsatellites. The BACE map
includes di-, tri-, and tetra-nucleotide microsatellite
markers as well as SNP markers. As a general rule, the
different kinds of markers appeared to be equally dis-
tributed along the linage groups. The microsatellite
locus derived from the sequence of the MHC class Ia
genes in P. olivaceus was linked to JF13. By means of
fluorescence in situ hybridization (FISH), the locus in
JF13 was identified in chromosome 17 among Japanese
flounder karyotypes characterized by C-band staining
(data not shown). MHC genes play an important role in
the immune system. The genetic information developed
in this work, together with the information of its loca-
tion on chromosome 17, could be of importance in the
study of disease resistance. Furthermore, other immune-
related genes that have already been isolated for this
species, like the immunoglobulin genes [31] could be
included in the map. In addition, the 5 S rRNA gene
was only polymorphic for the sire in the BACE family
and was placed in the linkage group JF24 m. By in situ
hybridization, this gene was reported to be physically
located on chromosome 1 [28].

Map length and coverage

The total length of the male map is 1,147.7 cM. Linkage
group sizes ranged from 4.4 cM (JF21m) to 65.2 cM
(JF12m). The female map spanned 833.8 cM. JF19f is
unexpectedly short (2.2 ¢cM) and the longest linkage
group (JF18f) extends to 60.2 cM. The maps contained
several co-segregating loci. Thus, the average resolution
of the maps was estimated by collapsing those loci into
“bins” and calculating the average inter-marker distances
for all adjacent “bins” and single markers (framework
markers). The male and female maps had 235 and 184
unique positions, respectively, with average intervals of
5.0 cM. and 4.4 cM, respectively. The average estimated
genome size of the male map (1,394.2 cM) is longer than
the speculated 1,155 ¢cM length found by Coimbra et al.
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[26]. On the other hand, the female map (1,055.7 cM) is
in closer agreement with the length found by Coimbra et
al. [26] (1,176 cM). Based on recent estimations of map
lengths, the genome coverage of the male and female
maps were 82% and 79%, respectively. The male map is
1.3 times longer than the female map. However, this dif-
ference is not consistent along all linkage groups. Some
groups (JF10; JF18; JF21; JF22) are longer in the female
map (Figures 1 and 2). A similar pattern was observed in
turbot [10] and Atlantic halibut [11].

Over the entire length of the linkage groups, the dis-
tribution of the markers is not uniform. All linkage
groups tend to be compressed in the estimated centro-
meric region in the male map and in the telomeric
region in the female map (Figure 3). In females, a
higher rate of recombination occurred in the centro-
meric regions across linkage groups. On the other
hand, in males, a higher rate of recombination was
observed in the telomeric regions. Accordingly, a
higher clustering of markers is observed in the telo-
meric regions of female maps and near the centro-
meric regions of male-specific linkage groups. Despite
the extremely large differences in the chromosomal
localization of the sex-specific recombination spots in
Japanese flounder, when averaged over all markers in
the genetic map, only small difference in female:male
recombination ratios was observed (i.e., F:M ratio
1:0.7).

Annotation and synteny

A hundred and five ESTs showed high similarity to
known protein (E-values < 1 x 10%). Thirty-two of these
ESTs significantly matched (E-values < 1 x 107
sequences against T. nigroviridis, and 35 also matched
D. rerio sequences (Additional file 6). Sixteen linkage
groups (JF LGs: Japanese flounder Linkage Groups) in
the BACE map could be associated with T. nigroviridis
chromosomes, and nineteen JF LGs with D. rerio chro-
mosomes. Among JF LGs with at least two ESTs, seven
JE LGs (JF1, JF7, JF10, JF11, JF14, JF21, JF24) were syn-
tenic with individual T. nigroviridisn chromosomes, five
of them (JF1, JF10, JF20, JF21, JF24) were also syntenic
with individual D. rerio chromosomes and JF1, JF10 and
JE24 were associated to a single chromosome of both
T. nigroviridis (Chromosomes 9, 8 and 3, respectively)
and D. rerio (Chromosomes 22, 16 and 3, respectively).
ESTs in JF3, JF9, JF11 and JF16 were associated with dif-
ferent chromosomes of D. rerio (JF3: Chromosomes 9
and 23, JF9: Chromosomes 22, 6 and 2, JF11: Chromo-
somes 25, 18 and 19, JF16: Chromosomes 6 and 11). No
ESTs in a single JF LG were associated with more than
one chromosome of T. nigroviridis. Two T. nigroviridis
chromosomes (Nos. 2 and 3) and 6 chromosomes (Nos.
2,6, 9, 16, 22 and 23) of D. rerio were associated with
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Figure 1 Japanese flounder male (left) and female (right) maps, Linkage groups JF1 - JF12. Total lengths of linkage groups are expressed
in Kosambi cM. Assigned names of loci and linkage groups are consistent with the map published by Coimbra et al. 2003. Microsatellites are
TN . . . . . .
coded “Poli” followed by a number and the laboratory designation (TUF, MHFS). SNP markers are labeled either with their respective GenBank
: : upyn u " n :
accession numbers or with the letters "H" and “Hzm" followed by their corresponding number.
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Figure 2 Japanese flounder male (left) and female (right) maps, Linkage groups JF13 - JF24. Total lengths of linkage groups are
expressed in Kosambi cM. Assigned names of loci and linkage groups are consistent with the map published by Coimbra et al. 2003.
. . PP . . . . .
Microsatellites are coded “Poli” followed by a number and the laboratory designation (TUF, MHFS). SNP markers are labeled either with their
N . . up g uy " . . . f .
respective GenBank accession numbers or with the letters “H” and “Hzm" followed by their corresponding number. The Poli9-8TUF in JF15f is
associated with lymphocystis disease resistance of Japanese flounder, reported by Fuiji et al. (2007).
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Figure 3 Evidences of differences in recombination regions in male and female maps, Linkage group 2 as an example. The distance
from marker “Poli88MHFS” placed in the bin closer to the estimated centromeric region in the male map, to marker “Poli1762TUF", in the
second bin, is 2.3 cM. However, in the female map, marker “Poli1762TUF" locates at 36.0 cM from the first bin from the centromeric region.
Conversely, .marker “Poli1413TUF" is located at 2.2 cM from the closest bin ("Poli99MHFS") from the telomeric region, but it is 33.6 cM apart in

ESTs from different linkage groups of the JF map (Addi-
tional file 7).

Discussion

Recombination events in fish species usually occur once
per chromosome arm, indicating the existence of inter-
ference after the formation of a single chiasma [32].
Japanese flounder is a male-determined gonochoristic
species [33] and presents the same pattern of recombi-
nation as other fish species, in which the male presents
a higher recombination rate closer to the putative telo-
mere, and the female presents a higher recombination

rate closer to the centromere. Evidence of this phenom-
enon was reported in rainbow trout [1]; brown trout [7],
zebrafish [34] and Atlantic halibut [11]. The A2 map
[27] and BACE map of Japanese flounder present the
same pattern of recombination as other fish species. Fig-
ure 3 is a schematic representation of linkage group 2,
and shows a clear example of this phenomenon, where a
set of markers (bin) is separated by 2.3 cM from the
centromeric region in the male map and 36.0 cM in
the male. In contrast, the first recombination point in
the female map is located at 2.2 cM from telomeric
regions and 33.6 ¢cM in the male map. Even though the
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lengths of the female and male maps were similar,
Coimbra et al. [26] found an unexpected F:M 1:7.4. In
that study, because the male was gynogenetically pro-
duced, it is unclear whether the ratio was influenced by
the genetic origin of the male. In addition, only a few
markers from 16 linkage groups were used to perform
the analyses. The actual positions of those markers in
the chromosomes were determined in the marker-cen-
tromere map built by Castafio-Sanchez et al. [27]. All
marker pairs analyzed by Coimbra et al. [26]were placed
far from the estimated centromeric regions, which are
characterized by less recombination activity in the Japa-
nese flounder male map and higher recombination rates
in the female map. Reid et al. [11] reported the recom-
bination rate in female Atlantic halibut to be twice that
of the male, and observed a significant difference of F:-M
1.6:1. Analysis of overall recombination rates between
males and females in the BACE map confirmed a F:M
ratio of 1:0.7. The improved male map is 1.4 times
longer than the female map. Conversely, the male sheep
map (Ovis aries) is 1.2 times longer than the female
map and cattle (Bos taurus) maps present a very similar
rate between sexes [35,36]. While all chromosomes in
Japanese flounder are acrocentric, the cattle karyotype
contains 29 acrocentric autosomes and the sheep has 23
acrocentric and 3 metacentric autosomes [36]. In
humans, there is evidence that recombination along the
chromosomes depends on the chromosome structure
[37]. The presence of acrocentric karyotypes in sheep
and Japanese flounder could explain the fact that the
male map is slightly longer than the female map in
those species, and accordingly, similar in length in the
cattle map. These findings, together with the reported
existence of gaps longer than 20 cM between adjacent
markers in some linkage groups, might indicate poor
coverage in certain regions of the female map. Incom-
plete female maps might reflect that a higher proportion
of crossovers in female generated maps will be missed,
causing an underestimation of recombination rates in
females relative to males, and therefore artificially
decreasing F:M recombination ratios.

Synteny among species or genera may provide opportu-
nities to complement initial QTL experiments with candi-
date gene approaches from homologous chromosomal
locations identified in related model organisms [38]. Based
on the sequence homology analysis, more of Japanese
flounder chromosomes were associated with T. nigroviridis
chromosomes than D. rerio chromosomes; accordingly,
Japanese flounder is phylogenetically more closely related
to T. nigroviridis than to D. rerio [39]. In addition, analysis
results suggest that, during evolution, some chromosomes
and regions have remained intact and others have been
broken up. Ancient Actinopterygii (ray-finned fish) were
postulated to have a 13 chromosome karyotype, composed
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of 52 A’-]' segments. Those blocks were mosaically arrayed
within the proto-Actinopterygian karyotype and subse-
quently designated A-M (reviewed by [20]). Based on
Danzmann et al. [20], the association of JF9 to D. rerio
chromosomes Dr2, 6 and 22 and JF16 with Dr6 and 11,
might indicate a relation of those linkage groups to “M”
ancestral grouping of Actinopterygians. Moreover, the
association of JF11 to Dr18, 19 and 25 might suggests its
relation to the “J” ancestral linkage groups, while JF3 is
associated with Dr9 and 23 and could be related to either
ancestral “C” or “L” lineages, being “L” more likely. This
data indicates that those linkage groups are likely rem-
nants of regions that share a high degree of 3R duplicated
segments.

Low-density genetic linkage maps have been published
for P. olivaceus [26,27,29]. The map developed in the
present study was built with 1,375 markers including
1.268 microsatellites, 105 SNPs and two genes, which
makes it more portable to other strains and families.
This facilitates its application to QTL analyses as well as
comparative mapping to reference animals. The average
inter-marker distances (5.0 cM and 4.4 cM in the male
and female maps, respectively) offer sufficient marker
density for QTL studies [23].

The improved maps, in addition to being useful for
improving aquaculture strains, could be of assistance in
the study of wild stocks in Japan, where cultured P. oli-
vaceus are being released into the wild. Maintaining
genetic variability is essential for the conservation of the
species, not only to prevent inbreeding and bottleneck
effects, but also to protect the genetic structure of nat-
ural stocks. Several microsatellite markers included in
the improved maps have been previously used in popu-
lation studies, genetic tagging, parentage determination
and genetic diversity [40-44].

With 1,375 markers, the new map is presently the
densest flatfish linkage map. The number of genetic
markers available for other flatfish species is relatively
limited. In this report, we describe the production of a
large number of polymorphic microsatellite markers for
P. olivaceus which could be amplified in other closely
related species. Japanese flounder markers have already
been used in the construction of the Atlantic halibut
linkage map [11]. Despite the limited number of com-
parison points between Japanese flounder and Atlantic
halibut, Reid et al. [11] found evidences of conserved
syntenic regions as well as regions of chromosome rear-
rangements. The markers mapped in this study, could
be an important tool for future comparative map studies
and to establish the correspondence between linkage
groups of different flatfish species.

The microsatellite markers included in previous ver-
sions of the map [26,27,29] were consistently assigned
to the same linkage groups in the newly developed
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maps. The order of those markers was conserved in
most of the linkage groups. However, several markers
co-segregate in clusters, preventing the determination of
their precise order. Several regions in the maps remain
poorly covered. JF19 in both female and male maps is
short and has only a small number of markers. The A2
map presented several gaps, which tended to occur
towards the putative telomere in the male map and cen-
tromere in the female [27]. By adding more markers,
several gaps were filled, but there is still the need to
improve the centromeric regions of some linkage groups
in the female map (Figure 1: JF3f, JF6f, JF16f). Further
studies with segregating data from different families and
larger number of progeny will be necessary to enhance
the distribution of the markers in the linkage maps.
Physical maps could be constructed based on an existing
BAC (Bacterial Artificial Chromosome) library [45] and
they could be useful to determine the precise distribu-
tion and order of the markers in the genome.

Conclusion

The new high density genetic linkage map of Japanese
flounder indicated large differences in the location of
sex-specific recombination hot-spots and produced
comparative results against 7. nigroviridis and D. rerio
in synteny. This map could be of extreme importance
for QTL analysis and MAS breeding programs for eco-
nomically important traits in Japanese flounder as well
as for comparative studies for related species and/or
model fishes. The linkage maps have already been used
in a MAS breeding project to increase lymphocystis dis-
ease resistance [24]. The map is currently being used in
QTL studies of Edwardsiellosis, an infectious disease
caused by Edwardsiella tarda. QTL data will be even-
tually used to develop a new strain of Japanese flounder
with complex disease resistant traits.

Methods

Reference family

The improved maps were created using a hybrid popula-
tion (BACE family) generated by a cross between four
strains of P. olivaceus that had been bred for several
generations at Kanagawa Prefectural Fisheries Technol-
ogy Center. The dam (KP-BA) is a hybrid between
strains KP-B and KP-A used in the linkage mapping and
disease QTL studies of [26] and Fuji et al. [24], and the
sire (KP-CE) derives from the strains KP-C (used for
pseudo albinism studies, unpublished) and KP-E (more
recently domesticated). The map was constructed by
genotyping the parents and 45 of their F; offspring.

Microsatellite markers
To develop resources for linkage mapping, two small
insert DNA libraries had been previously constructed by
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digesting genomic DNA with either Tsp5091 or Sau3Al
and approximately 200,000 recombinant clones were
placed in high density filter membranes [46]. The filters
were screened for microsatellites with a radiolabeled
(CA)1o probe, following the procedures previously
described. Hybridization and washing were performed at
50°C. Clones putatively containing microsatellites were
sequenced and those containing perfect, imperfect or
compound repeats with at least 10 repeats in length
were chosen for primer design. When more than one
microsatellite region was found in the same clone, only
one region was used; redundant sequences were dis-
carded. Primer (20-27mer) pairs flanking the microsatel-
lite regions were designed using Primer3 [47]. All
primers were designed for a 62°C annealing tempera-
ture, a total amplicon size of 100-150 bp and 45-60%
GC content. PCR reactions (total volume of 12 pl) con-
tained 50 ng of genomic DNA; 0.7 pmol of forward pri-
mer; 0.3 pmol of reverse primer end labeled with g->*P
[ATP]; 0.5 U of Taq polymerase; 1x PCR buffer; 100
uM of each ANTP and 1% BSA. Thermal cycles were
carried out as follows: initial denaturing step (2 min at
95°C); 35 cycles (95°C for 30 s, 1 min at 62°C, 72°C for
1 min) and a final extension step (3 min at 72°C). PCR
products were electrophoresed on 6% acrylamide gels
and were identified with a Bio-Image Analyzer (Fujifilm
Co.). Marker polymorphisms were checked using DNA
of eleven individuals of five different families. Seven
hundred forty-six microsatellites that proved to be poly-
morphic for the map family were genotyped. Mapping
data was obtained by visual scoring of autoradiograms.

In addition, 522 microsatellites that were previously
published or registered were used for a high density
map (BACE map). A set of 164 tri- and tetra-nucleotide
microsatellites isolated by Castafio-Sanchez et al. [46]
were included in the map (DQ888908-889074), as well
as other loci previously cloned in this laboratory [48].
The map also included 184 markers from the previous
maps (BA and A2), 124 new markers that had not been
mapped in the previous maps (GenBank accession no;
DQ865460-865479, DQ868392, EF112607-112700,
AB459284-459473) and 50 markers that were developed
and genotyped by other authors [29,40-42,44,49].

Genes

Major histocompatibility complex (MHC) class Ia, which
plays an important role in the immune system, was pre-
viously sequenced from Japanese flounder (AB490772)
and a microsatellite was identified in that region (Mar-
ker name: JFMHC]1, Forward primer: GGCCTGGAT
AATGTGGACAC, Reverse primer: GAGTGTTGGGCC
TTGGTG). The 5 S rRNA gene, which is a conserved
component of the large ribosomal subunit, was isolated
from Japanese flounder by [28] (AB154836-AB154839),
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and a microsatellite marker was isolated from the vari-
able non-transcribed spacer (NTS) region (Marker
name: JF5SrRNA, Forward primer: TGCACCTTGA-
GATTGATTTTGGAACA, Reverse primer: CACCCA-
CAATACCTCCTTTCAGTCTT). Those microsatellites
were also genotyped in the BACE family.

SNP markers

SNP markers whose names begin with “AB” were
derived from new EST sequences of P. olivaceus. RNA
was isolated from Japanese flounder embryos, using a
FastPure RNA kit (Takara Bio). cDNA strands were
synthesized with the SuperScript Lambda System for
cDNA Synthesis and Cloning (Gibco BRL) and then
ligated to the derived phage ZIPLOX and packaged in
vitro using the Packagene Gigapack III Gold (Strata-
gene). The phage vector was transformed to the plasmi-
dial form by in vivo excision with E. coli DH10BZIP,
following the manufacturer’s instructions. Sequencing
templates were prepared from positive clones using a
TempliPhi DNA Amplification kit (Amersham Bios-
ciences) and BcaBEST Primer RV-M 5-GAGCG
GATAA CAATT TCACA CAGG -3’ (Takara Bio). Puta-
tive SNPs from the ESTs were prepared as described
below.

SNP markers whose names begin with “H” and “Hzm”
were developed from P. olivaceus ESTs registered in the
GenBank database, 498 unique EST consensus
sequences were selected for SNP discovery. PCR primer
pairs were designed by DYNACLUST (DYNACOM Co.)
and annealing temperature was 60°C for all primers.
Reactions were performed using parent DNA (KP-BA
and KP-CE) as follows: 30 s at 93°C; 30 s at 54-60°C
and 45 s at 72°C. When single and clear PCR products
were confirmed by electrophoresis with 1% agarose gel,
they were purified with AMpure kits (BECKMAN). Sub-
sequently, sequencing was carried out with a Big Dye
terminator kit ver3.1 (ABI).

All contigs were screened for SNPs using the software
Namihei (Mitsui Knowledge Industry) and 25 bp
sequences just before SNP sites were used for SNaPshot
primers. All putative SNPs were genotyped in the BACE
family. Annealing temperature was 58°C for all PCR pri-
mers, PCR amplifications were performed and products
were purified with AMpure kits (BECKMAN). Genotyp-
ing reactions were carried out in 10 pl reactions, using
an ABI Prism SNaPshot ddNTP Primer extension kit (1
pl of SnaPshot mixture; 1 pM of primer; 10-50 ng of
template PCR product) and the following thermal cycles:
25 cycles at 96°C for 10 s, 50°C for 5 s, 60°C for 30 s.
SNaPshot products were treated with 1 U CAP (calf
intestinal phosphatase) at 37°C for 1 h and the enzyme
was heat-inactivated at 75°C for 15 min. Genotyping
results were visualized on an ABI 3100 genetic analyzer.
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Annotation and synteny

EST sequences used for linkage mapping were used as
queries for NCBI-BLASTX under default settings. Hits
with E-values < 1 x 10™* were considered significant.
The genome location information for the corresponding
genes was obtained from Tetradon nigroviridis and
Danio rerio ENSEMBL.

Linkage analysis for map construction
Segregation data were considered independently for male
and female in the BACE family. Marker genotypes were
analyzed with LINKMFEX. Pairwise analyses were per-
formed and markers were sorted in linkage groups at a
minimum LOD score of 4.0. Double recombination events
were checked with MapManagerQTX version 2.0 [50] and
a final marker order was determined. Graphic map files
were generated using MapChart version 2.2 [51].
Estimates of the differences in sex-specific recombina-
tion rates along the linkage groups were performed
using the RECOMDIF application of LINKMFEX.

Estimated Genome size

Genome sizes were estimated for the male and female
maps by two different methods. First, Genome Estima-
tion size 1 (Gel) was calculated to account for chromo-
some ends by adding two times the average spacing of
framework markers to the length of each linkage group
[52]. Genome Estimation Size 2 (Ge2) was determined
using method 4 of [53], in which the total length of the
linkage groups is multiplied by the factor (m+1)/(m-1),
where m is the number of framework markers on the
linkage groups. The estimated genome size for each sex
was taken as the average of the two estimates.

Additional material

Additional file 1: Microsatellites in the BACE map. Linkage groups for
males and females, marker names, primer sequences, GenBank accession
numbers and annealing temperatures.

Additional file 2: SNPs derived from ESTs in the BACE map. Linkage
groups for males and females, SNPs ID, Blast top hit data, primer
sequences, nucleotide-permutation sites of SNPs, SNP and flanking
sequences.

Additional file 3: Female genetic map data. Includes number of
recombinant progenies, distance between markers and LOD scores.
Numbered spreadsheets correspond to linkage group numbers.

Additional file 4: Male genetic map data. Includes number of
recombinant progenies, distance between markers and LOD scores.
Numbered spreadsheets correspond to linkage group numbers.

Additional file 5: MapChart data. Genetic map data, it can be used to
recreate map figures.

Additional file 6: Annotation of SNPs in the BACE map against
Tetradon and zebrafish, genomes. SNPs D, linkage groups in Japanese
flounder, hypothetical proteins and their map positions of Tetraodon and
zebrafish.

Additional file 7: Oxford plot comparing the linkage maps of
Japanese flounder and Tetradon/zebrafish. The observed
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correspondences of SNP markers derived from ESTs of Japanese flounder
are indicated. Numbers indicate the number of Japanese flounder
markers with NCBI-BLASTX hits to particular Tetradon and zebrafish
chromosomes.
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