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Abstract

Model reduction is a central challenge to the development and analysis of multiscale physiology models. Advances in model
reduction are needed not only for computational feasibility but also for obtaining conceptual insights from complex
systems. Here, we introduce an intuitive graphical approach to model reduction based on phase plane analysis. Timescale
separation is identified by the degree of hysteresis observed in phase-loops, which guides a ‘‘concentration-clamp’’
procedure for estimating explicit algebraic relationships between species equilibrating on fast timescales. The primary
advantages of this approach over Jacobian-based timescale decomposition are that: 1) it incorporates nonlinear system
dynamics, and 2) it can be easily visualized, even directly from experimental data. We tested this graphical model reduction
approach using a 25-variable model of cardiac b1-adrenergic signaling, obtaining 6- and 4-variable reduced models that
retain good predictive capabilities even in response to new perturbations. These 6 signaling species appear to be optimal
‘‘kinetic biomarkers’’ of the overall b1-adrenergic pathway. The 6-variable reduced model is well suited for integration into
multiscale models of heart function, and more generally, this graphical model reduction approach is readily applicable to a
variety of other complex biological systems.
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Introduction

Biological systems are inherently complex, with regulation and

feedback at numerous spatial, temporal and functional scales. As a

result, multiscale computational models are essential for under-

standing systems properties not attributable to any individual

component [1]. Multiscale models such as those in the Physiome

Project [2,3] have been developed for many areas including the

cardiovascular system, respiratory system, cancer and angiogenesis

[4]. Recent models now also span from protein structure to

cellular function [5,6]. One of the most formidable challenges now

facing multiscale modeling efforts is model reduction [7]. Model

reduction will be crucial for computational feasibility [8], but may

also play important roles in easing model implementation,

reducing the number of free parameters [1], and extracting

conceptual insights from complex systems.

Most model reduction approaches use a form of timescale

decomposition, which has its foundation in singular perturbation

theory [9]. Timescale decomposition is used in a wide range of

fields including chemical kinetics [10,11,12] , flight guidance [13],

structural dynamics [14], and weather forecasting [15]. If fast

species are well separated from slow species, fast timescale species

can be assumed to be at quasi-steady state and replaced with

algebraic equations, while the slow species are retained in the

reduced model [12,16]. However, this approach raises a challenge:

how does one determine whether there is sufficient timescale

separation, and which species are ‘‘fast’’ or ‘‘slow’’? In most cases

these decisions require significant a priori knowledge, restricting the

use of timescale decomposition to compact and well-studied

systems [12].

To address this challenge, a number of systematic timescale

decomposition approaches have been developed that involve

linearizing the system and performing decompositions of the

Jacobian matrix [9,11,12,16,17,18,19]. Jacobian analysis is

scalable, can be performed quickly, and provides the distribution

of timescales and the species that participate at each timescale

[19]. However, Jacobian-based approaches also have limitations:

they most often analyze a linearized steady-state rather than

overall nonlinear dynamics; they involve complex matrix decom-

positions in which biological relevance may be obscured; and a

given timescale may involve many different species that are not

functionally related. A second challenge to model reduction is

raised after timescale decomposition is performed. The reduced

model is a differential-algebraic system, where algebraic equations

are implicit and may have multiple roots, complicating numerical

solution [7,9].

Here, we introduce a graphical approach to timescale

decomposition based on phase-plane hysteresis. This approach

allows for intuitive yet systematic identification of timescale

separation, accounting for nonlinear dynamics of the system. We

pair this analysis with a ‘‘concentration-clamp’’ approach for

estimating explicit steady-state relationships among rapidly

equilibrating species, avoiding the numerical difficulties of implicit

algebraic equations. We tested this graphical model reduction

approach using a 25-variable differential-algebraic model of

cardiac b1-adrenergic signaling [20,21]. This signaling network
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plays a central role in cardiac regulation and disease [22], but the

complexity of the original model limits its inclusion into multiscale

models of the heart. The model reduction approach was used to

obtain a 6-variable reduced b1-adrenergic model that retains good

predictive abilities even to new perturbations not used in the

model reduction. Thus these 6 signaling species are ‘‘kinetic

biomarkers’’ whose measurement captures the overall dynamics of

the overall b1-adrenergic pathway. In addition, we expect that the

graphical model reduction approach will be readily applicable to a

variety of other complex biological systems.

Results

A Toy Model Example
To illustrate the basic principles of graphical timescale

separation, we built a toy reaction model consisting of a linear

irreversible pathway with 3 species (A, B and C) and 4 reactions

(see Figure 1A). The model was implemented as 3 ordinary

differential equations using first-order mass action kinetics:

dA

dt
~k1{k2A ð1Þ

dB

dt
~k2A{k3B ð2Þ

dC

dt
~k3B{k4C ð3Þ

where k1 = 100(u(t)-u(t-10)) mM21 s21, k2 = 1 s21, k3 = 10 s21,

k4 = 1 s21, and u(t) is the unit step function. As shown in Figure 1B,

setting k1 = 100 stimulates coincident increases in A and B, while

C increases more slowly. These species decay with a similar kinetic

pattern when t.10 sec, when k1 is returned to 0 mM21s21.

Phase portraits for each pair of variables were computed,

normalizing each variable by xnorm(t) = (x(t)-xmin)/(xmax-xmin). The

corresponding normalized phase portrait for A vs. B (Figure 1C)

encloses a fairly small area, with little hysteresis. The steady-state A

vs. B relationship (dashed line) can be determined by a

concentration clamp procedure (see Materials and Methods) where

A is fixed and steady-state B is determined. Because the A vs. B

phase loop is well approximated by the steady-state concentration

clamp, the A vs. B relationship can be considered to be ‘‘fast’’. In

Figure 1. Phase portraits reveal timescale separation in a toy model. (A) Schematic of toy model, showing both the species and the reaction
constants. Input parameter ‘‘k1’’ is set to 100 mM21s21 between 0–10 seconds. (B) Predicted time-courses of the toy model. The relationship between
A and B is ‘‘fast’’; they equilibrate quickly so that the concentration of B is always close to one-tenth of A. The relationship between B and C is slow,
evidenced by the time lag between the two time-courses. (C) Normalized phase plane of B vs. A. Here the area between the phase plots is small as
their trajectories stay close to their steady-state relationship (the dotted line). (D) Normalized phase plane of C vs. B. The phase trajectories exhibit
greater hysteresis, creating a large area in between plots.
doi:10.1371/journal.pone.0023795.g001
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Figure 2. Schematic of 25-Variable b1-adrenergic signaling model. The opaque species in this schematic are state variables requiring either
ordinary differential equations or implicit algebraic equations. The faded species are calculated by explicit algebraic equations based on state
variables.
doi:10.1371/journal.pone.0023795.g002

Figure 3. Global phase portrait of the b1-adrenergic network. While the global phase portrait is a 25-variable dimension space, 2D slices can
be taken that illustrate timescale separation between pairs of state variables. Here, 21 illustrative normalized phase portraits are shown, with all 210
portraits shown in Figure S1. Above each portrait, a normalized area of the enclosed loop is calculated that quantifies the degree of timescale
separation. The phase portrait area can range from 0 to 1, with 0 indicating no timescale separation.
doi:10.1371/journal.pone.0023795.g003
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contrast, the phase portrait for B vs. C (Figure 1D) exhibits a larger

area (greater hysteresis) and is therefore considered ‘‘slow’’. We will

attempt to discriminate between ‘‘fast’’ and ‘‘slow’’ relationships to

guide model reduction. To simplify this toy model, the ‘‘fast’’

dynamics between A and B can be replaced by their steady-state

relationship without significantly affecting the overall system

dynamics. Thus Equation 2 reduces to B = (k2/k3)A.

Timescale Separation in the b1 Adrenergic Signaling
Network

To evaluate this graphical timescale separation approach for a

more realistic system, we examined a well-validated model of the

cardiac b1 adrenergic signaling network [20,21]. The b1 adrenergic

signaling network regulates key aspects of heart rate and contractility

[22], primarily via cyclic AMP (cAMP), protein kinase A (PKA) and

PKA substrates such as phospholamban (PLB) and troponin I (TnI).

This model is a differential-algebraic system of equations with 25 state

variables (12 ODEs and 13 implicit algebraic equations), shown

schematically in Figure 2. Parameters and initial conditions are

provided in Table S1 and Table S2. Full equations are provided in

the supplement to reference [21]. Model code is available in

MATLAB and CellML formats (Dataset S1). The CellML code was

generated using Cellular Open Resource [23] by modifying the

version from the CellML repository [24,25]. While this model is only

of moderate size, the number of parameters and difficulty solving

implicit algebraic equations indicates that a reduced model would be

useful for embedding in large-scale models of heart physiology. In

addition, model reduction may make nonlinear dynamic analyses

more tractable, potentially leading to additional systems insights. The

aim of model reduction was twofold: to eliminate the fast ODEs and

make the implicit algebraic equations explicit.

Similar to the toy model, the b-adrenergic model was stimulated by

a transient input, in this case isoproterenol (Iso). The time-course for

each variable was normalized from zero to one using xnorm(t) = (x(t)-

xmin)/(xmax-xmin), and a global phase portrait was created of all

pairwise combinations of state variables. Normalizing timecourses

allows quantitative comparisons between individual phase portraits,

independent of the magnitude of a particular signal. Figure 3 shows

21 representative normalized phase portraits, while Figure S1 shows

all 210 phase portraits. For each individual phase portrait, the

encompassed area (hysteresis) was computed (see Methods) and

displayed above each individual portrait. Again, large phase portrait

areas correspond to greater timescale separation between the two

variables, and smaller areas correspond to less timescale separation.

As shown in Figure 4A, a histogram of phase portrait areas

reveals a trimodal distribution of timescale separation in the

network. The ‘‘fast’’ mode contains areas of 0.05 or less. The

medium-speed mode has areas between 0.05 and 0.5, and the

slow-speed mode contains areas greater than 0.5. But these

portraits contain many indirect relationships that, while physio-

logically relevant, are not needed for model reduction (e.g. A vs. C

in the toy model above). Figure 4B shows a histogram including

only the 30 direct relationships where one species concentration

was used to directly calculate the other. The trimodal distribution

of timescales is still evident in the direct relationships.

Reduced-order models of b1-adrenergic signaling
Because Figure 4 shows clear separation between the timescales,

this provides a guideline for which relationships in the system can

be reduced. Figure 5 shows example phase portraits and their

corresponding steady-state relationships determined by a compu-

tational procedure termed a ‘‘concentration clamp’’ during 1 mM

Iso (see Materials and Methods). PKA2 vs. LCCbp (Figure 5A)

and cAMPtot vs. PKA1 (Figure 5B) both have small phase portrait

areas and are well-approximated by their steady-state relation-

ships. In contrast, PKA1 vs. TnIp (Figure 5C) has an intermediate

area (‘‘medium’’ timescale separation), suggesting that reduction of

this relationship may not be appropriate.

Direct relationships in the fast mode (‘‘low’’ timescale separation)

were converted from differential equations or implicit algebraic

equations to explicit algebraic relationships, reducing from 25 state

variables to 6 (Figure 6A). For each of the reduced relationships,

parameter estimation was used to fit an explicit algebraic equation

to the corresponding concentration clamp. To evaluate the

sensitivity of this approach to the choice of timescale separation

threshold, we also chose a second threshold that reduces both ‘‘fast’’

and ‘‘medium’’ relationships. This second reduced model eliminates

differential equations for TnIp and PLBp, resulting in 4 differential

equations (Figure 6B). MATLAB code and CellML files for both 6-

variable and 4-variable models are provided in Dataset S1.

Parameters and initial conditions for 6-variable and 4-variable

models are provided in the Table S3 and Table S4.

Figure 4. Histogram of phase portrait areas reveals timescale
separation. (A) Histogram of phase portrait areas for all relevant
species against each other (210 portraits). The histogram reveals 3
distinct modes representing fast (area ,0.05), medium (0.05, area
,0.5) and slow (area .0.5) relationships. (B) The 3 distinct timescales
are still apparent when examining only adjacent relationships, in which
one species is used directly to calculate another. These 30 phase
portraits are the most biologically relevant. The fast relationships from
this second histogram were reduced to obtain a simplified 6-variable
model. Both fast and medium relationships were reduced when
creating a further simplified 4-variable model.
doi:10.1371/journal.pone.0023795.g004
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To test the prediction accuracy of the 6-variable and 4-variable

reduced models, timecourses were computed under transient

application of 1 mM Iso. Six variables were excluded from this

analysis, either because they were fixed during this simulation

protocol (forskolin, IBMX, phosphodiesterase) or they were

removed in the reduced models (b1ARfree, Gsagdp, Gsbc).

Prediction error for each variable is shown in Table 1. For the 6-

variable reduced model, the variable with the highest average error

was PLBp with 3.8%, and the overall average error was 1.5%. The

4-variable model included the reduction of the calculation of PLBp

and TnIp, increasing their mean errors to 11.5% and 24.5%

respectively. The other concentrations did not significantly change

between the 6-variable and 4-variable reduced models, but the 4-

variable model’s average error increased to 3.0%.

Example timecourses for the original (25-variable) and reduced

(6 and 4-variable) models are shown in Figure 7. For all

timecourses, the 6-variable model was quite consistent with the

dynamics from the original 25-variable model. Time-courses for

the 4-variable model show that PLBp and TnIp were overesti-

mated during drug application and underestimated during drug

withdrawal, consistent with the deviation from steady-state

observed in their respective phase portraits (e.g. Figure 7).

To test the performance of the model under perturbations not

used during model reduction, the models were run using four

additional conditions. The first involved the transient application of

10 mM forskolin (absent from the previous runs) instead of b1AR

ligand (Figure 8A). Similarly, the next perturbation was transient

exposure of 100 mM IBMX, which inhibits phosphodiesterase

(PDE) (Figure 8B). The third perturbation tested the model under

the application of a smaller concentration of 0.05 mM Iso, as

opposed to 1.0 mM (Figure 8C). The fourth perturbation involved

inhibiting phosphatase-1 (Figure 8D). For the first three perturba-

tions, the 6-variable model performed very well while the 4-variable

model exhibited modest error, as expected. But during phosphatase

inhibition, the 4-variable reduced model did not respond because

phosphatase-1 was no longer used to predict PLBp in this model.

Most current timescale decomposition methods involve analysis

of the Jacobian matrix at a particular model steady-state [19]. To

compare our graphical phase-portrait approach to the Jacobian

approach, we computed the 25x25 Jacobian of the original model

at steady-state (1 mM Iso). Eigenvalue decomposition was

performed, and the eigenvectors for each timescale were analyzed

to identify the most prominent species in each eigenvector (see

Materials and Methods). The species of greatest magnitude are

shown in Table 2. Certain species deemed to be ‘‘fast’’ using our

phase plane method (LCCap, LCCbp, Gsagdp, and Inhib1ptot)

were also identified using the Jacobian. However, the tri-modal

distribution of timescales (Figure 4) is not observed with the

Jacobian approach, because at intermediate timescales each

eigenvector is composed of a linear combination of all species.

At the same time, some species contribute strongly to several

eigenvectors (e.g. B1ARtot). This issue prevents the Jacobian

approach from identifying species acting on ‘‘medium’’ timescales

(e.g. TnIp, PLBp) that were critical for the 4-variable model

Figure 5. Concentration clamps used to approximate steady-state relationships. One species was held constant for while the steady-state
value of the other was recorded. This was repeated for a range of concentrations. (A) Phase portrait for a fast relationship between PKA2 and LCCbp,
used to create the 6-variable model. The area between phase plots is relatively small and thus can be reduced algebraicly by performing a steady-
state concentration clamp. (B) Phase portrait for a medium relationship between PKAI and TnIp, which was retained in the 6-variable model but
reduced in the 4-variable model. There is more disparity between the concentration clamp curve and the phase plots, creating more error. (C) Phase
portrait for an implicit algebraic relationship between cAMPtot and PKAI. Concentration clamps were used to determine an explicit relationship
between these variables.
doi:10.1371/journal.pone.0023795.g005
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reduction. In addition, the Jacobian eigenvectors do not reveal a

clear threshold between species found to be ‘‘fast’’ and ‘‘medium’’

by the graphical phase portrait approach.

Discussion

Here, we developed a graphical approach to model reduction

based on analysis of hysteresis in phase plane trajectories. This

approach has the advantage of incorporating the nonlinear

dynamics of the system while being graphically intuitive. While

timescale decompositions generally produce implicit algebraic

equations with numerical difficulties [18], we used ‘‘concentration-

clamps’’ to estimate explicit algebraic relationships as part of the

model reduction. To test the practical utility of these approaches,

we simplified a 25-variable model of b1-adrenergic signaling to

obtain reasonably accurate 6- or 4-variable reduced order models,

Figure 6. Schematics of A) 6-variable and B) 4-variable reduced models. The species calculated with differential equations are opaque, while
the rest are faded. Compare with the 25-variable schematic (Figure 2). The 4-variable model has two less differential equations, represented by the
further fading of TnI and PLB. Reduced (faded) species from the original 25-variable model are still predicted in the reduced models, but using explicit
algebraic rather than differential or implicit algebraic equations.
doi:10.1371/journal.pone.0023795.g006
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even under new perturbations. The 4-variable model was

somewhat less accurate than the 6-variable model, consistent with

the lesser degree of timescale separation of the last 2 species, TnIp

and PLBp. This analysis suggests that overall dynamics of the b-

adrenergic signaling pathway can be captured experimentally

using a limited number of existing fluorescent reporters focusing

on the b-adrenergic receptor [26], Gs protein [27], cAMP [28]

and certain PKA substrates [29].

Most past work on timescale analysis of biochemical systems has

focused on decomposition of the Jacobian matrix. Jacobian-based

approaches do have advantages, such as using a single set of

calculations for a given steady-state and their scalability to large

systems [19]. But the matrix decompositions can be quite complex

and vary significantly from one variant of this approach to the next

[9,10,17,30,31]. On the other hand, not all disadvantages

previously attributed to dynamic timescale approaches (such as

described here) necessarily hold. While dynamical approaches do

require simulation and depend on initial conditions [19], resting

steady-state initial conditions are quite a reasonable choice,

requiring only a single simulation (as performed here). The main

advantages of the graphical timescale approach described here are:

1) analysis of the system’s nonlinear dynamics rather than a

particular linearized steady-state; and 2) intuitive graphical nature,

easing both implementation and analysis. Indeed, the graphical

timescale decomposition approach does not require a model per se; it

could be applied directly to high-throughput kinetic data [32,33].

While Jacobian-based approaches are focused on identifying

timescales, the phase-plane approach introduced here instead

identifies timescale separation between particular variables. The

area of the phase-plane loop is sensitive to both the timescale itself

and delays between variables acting on the same timescale. While

a limitation for timescale identification, this turns out to be an

advantage for model reduction. Indeed, recent Jacobian ap-

proaches that have been adapted for dynamic timescale analysis

[16,31] have not shown such substantial model reduction with

fully retained network dynamics as shown here.

Kaufmann et al. previously used phase plane analysis together

with correlation coefficents to examine timescale separation in

the red blood cell metabolic network [34]. However, these

correlation coefficients miss nonlinear relationships (as were

common in the b1-adrenergic signaling model), and the

metabolite pools were not used to obtain a reduced-order model

as shown here. Here, our analysis used transient inputs,

generating closed phase-loops enabling quantification of hyster-

esis between the species of interest. The current graphical model

reduction approach should be equally applicable to oscillating

systems such as cardiac pacemaking [35] or cell cycle [36], in

which case an external input is not required to form a closed

phase-loop. Some nonlinear systems exhibiting multistability may

not exhibit closed phase-loops; this indicates that algebraic

reduction of certain variables may not be appropriate. Indeed,

observation of non-closed phase portraits would be a simple way

to identify some multi-stabilities.

Model reduction is a central challenge to multiscale modeling in

biology [7]. It will be important to integrate the proposed

timescale reduction approach with spatial model reduction, such

as moment-closure and probability density approaches used for

excitation-contraction coupling [37]. Singular perturbation anal-

ysis can be applied in space rather than time when certain species

diffuse more quickly others [38]. Therefore, it is possible that

extensions of the current graphical phase-plane reduction

approach may apply to spatial problems as well, where species

are plotted against not only other species but also the same species

in different subcellular or tissue regions. Finally, complex multi-

scale models will ultimately need to switch automatically between

complex and reduced models at various scales [8], striking a

balance between computational requirements and accuracy where

appropriate. These advances will undoubtedly be important for

multiscale models to reveal fundamental multiscale biological

insights and achieve clinical application.

Materials and Methods

Timescale Separation Using Phase Portraits
The b-adrenergic model [20,21] was simulated starting from

resting initial conditions and applying a transient 1 mM Iso

stimulus for 400 seconds and then 400 additional seconds where

Iso = 0 mM. The timecourse for each species was normalized using

xnorm(t) = (x(t)-xmin)/(xmax-xmin), which makes the normalized

variable vary between 0 and 1. The purpose of normalization

was to standardize the data for measurement of reaction speed, as

the species concentrations varied widely in order of magnitude.

Concentrations of most species increased during Iso application

and decreased after withdrawal. Phase portraits could then be

constructed by graphing the various species pairs against each

other. In many of the differential equation relationships, one

species increases faster than another due to a lag between reaction

steps, until the other species catches up at steady-state. With the

removal of the ligand, the lag now occurs in the opposite direction;

this causes the phase plots for the ‘‘drug on’’ and ‘‘drug off’’

simulations to exhibit hysteresis, with more enclosed area during

greater timescale separation. A normalized phase portrait area of 1

Table 1. Mean error of 6- and 4-variable reduced models
compared with original model.

Species Name Mean Error (%)

6-Variable Model 4-Variable Model

Ligand 0.4 0.4

Gs 0.1 0.1

b1ARtot 0.2 0.2

b1ARd 0.9 0.9

b1ARp 0.5 0.5

Gsagtptot 0.3 0.3

Gsagtp 1.7 1.7

AC 0.1 0.1

cAMPtot 1 1

cAMPfree 1.7 1.6

PKA1 2.6 2.6

PKA2 1.3 1.3

PLBp 3.8 11.5

Inhib1ptot 2.7 2.7

Inhib1p 3.1 3.1

PP1 0.2 0.2

LCCap 2.2 2.2

LCCbp 2 2

TnIp 3.6 24.5

Mean 1.5 3

Errors for 19 of the original 25 state variables are shown. Not shown are
Forskolin and IBMX (set to 0 mM for most conditions), PDE, b1ARfree, Gsagdp, and
Gsbc (which were removed from or no longer necessary for the models).
doi:10.1371/journal.pone.0023795.t001
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corresponds to complete timescale separation, while an area of 0

indicates no timescale separation.

For each pair of variables X and Y, the phase portrait area for

the combined ‘‘drug on’’ and ‘‘drug off’’ simulation is computed

using the midpoint integration rule as:

AXY ~
1

2

X

i

(Yiz1zYi)(Xiz1{Xi)

�����

����� ð4Þ

Note that this simple integration approach does not require

uniform spacing of data points in X, Y or time, as long as the

shape of the phase loop is accurately characterized. This

integration also accounts for situations where the phase loop

switches concavity, as occurred for several species that exhibited

adaptive responses to isoproterenol (e.g. cAMPtot vs. GsaGTPtot).

Reducing Differential Equations
Several relationships determined to have a phase portrait area

less than the desired timescale separation threshold were simplified

using a ‘‘concentration clamp’’ procedure, followed by fitting to an

explicit algebraic relationship. Fitting relationships to the original

phase portrait alone was often insufficient, because the dynamic

range of a given species may be limited for that simulation.

Therefore, we performed concentration clamps, where one species

was held constant while the other 24 species were run to steady-

state. The concentration clamp procedure was repeated for a

range of concentrations, each time recording the steady-state value

of a species of interest, until the steady-state relationship between

the two species was well-characterized. Concentration clamps

were compared with the original phase portraits and monitored

for conservation of mass to ensure accurate determination of

steady-state relationships. Once a suitable concentration clamp

curve was obtained, an explicit algebraic relationship between two

species was obtained by nonlinear least squares fitting (lsqnonlin in

MATLAB). Although the concentration clamp procedure was

largely automated, intervention was required to select the

appropriate equation for fitting (e.g. linear, Hill, exponential

etc.). This could be automated as well by fitting to multiple curves

and selecting the fit with the least error.

Table 2 summarizes how each variable in the original 25-

variable model was reduced or retained, but additional details are

provided here. Three differential equations (LCCap, LCCbp, and

Inhib1ptot) and 3 implicit algebraic equations (PKA1, PKA2,

Inhib1p) were reduced by fitting to a Hill equation [39]:

Figure 7. Accurate time-courses from 6-variable and 4-variable reduced models. (A), (B) Predictions of PKA2 and Gsagtp in response to
transient 1 mM isoproterenol (0–7 minutes), plotted for original (25-variable) and reduced (6 or 4-variable) models. (C), (D) Predictions of PLBp and
TnIp to transient isoproterenol exposure. Note that PLBp and TnIp were reduced in the 4-variable model. These reductions were less accurate,
although the time-courses are still similar for all three models. Note that model reductions were performed with 1 mM ISO, so this is not an
independent test of predictive capability.
doi:10.1371/journal.pone.0023795.g007

Graphical Approach to Model Reduction

PLoS ONE | www.plosone.org 8 August 2011 | Volume 6 | Issue 8 | e23795



Y~
(Ymax{Ymin)X n

Km
nzX n

zYmin ð5Þ

Two other species (Gsagtp and cAMPfree) were fitted to

concentration clamps using linear and exponential equations,

respectively.

Other species were reduced by combining phase portrait areas

with additional approximations. For example, b1ARtot rapidly

equilibrated with b1ARtot and could be eliminated by conserva-

tion of mass. Reassociation of Gsagdp with Gsbc was found to be

very fast and in the original model, Gsagdp ,, Gstot. Therefore

this reaction was assumed to be instantaneous. Similarly, Gsbc was

also eliminated, assuming Gsbc<Gsagtptot. Four state variables

were removed by assuming that their free concentration was well

approximated by their total concentration, which is a parameter.

For example, in a typical cell culture experiment the amount of

ligand bound to receptor is very small compared with the total

amount of ligand, justifying the assumption that [L] < [L]tot. This

same assumption was also applied to Gs, IBMX, and forskolin.

Some explicit algebraic equations in the original model needed to

be adjusted to account for reductions in other variables. For example,

the equation for ligand-receptor complex was changed from

L : b1AR~L � b1ARfree
�
KL

to

L : b1AR~
L � b1ARtot

KLzLz
Gs � L

KR

z
KL � Gs

KG

.

This allowed the equation for b1ARfree to be eliminated as it

was no longer necessary in the reduced models. Equations and

parameters are listed in Text S1.

In the 4-variable reduced model only, two additional differential

equations were reduced: TnIp and PLBp. Concentration clamps

were used to determine their steady-state relationships with PKA1,

but since the relationships were not fast, the steady-state

concentration clamp departs somewhat from the corresponding

phase portrait (see Figure 5C). These relationships were fit using

Hill curves. Equations and parameters are listed in Text S1.

Timescale Separation by Jacobian Analysis
A similarity transform was applied to decompose the Jacobian

into a diagonal matrix L, consisting of eigenvalues, and the matrix

of eigenvectors M, where J~MLM{1
. M21 is known as the

modal matrix [30]. Each row contains a mode which travels along

Figure 8. Predictive accuracy of 6-variable model retained during new prturbations. (A) Time-courses of phosphorylated phospholamban
(PLBp) in response to transient exposure to 10 mM forskolin, which directly activates adenylate cyclase (AC). (B) Time-courses of each model with
transient exposure to 100 mM IBMX, which directly inhibits PDE. (C) Time-course of each model with ISO = 0.05 mM instead of 1.0 mM. (D) Time-course
of each model when PP1 is completely inhibited (PP1tot = 0) transiently. The 4-variable model did not respond to PP1 perturbation since the
parameter representing total PP1 was eliminated during the reduction of PLBp.
doi:10.1371/journal.pone.0023795.g008
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its respective eigenvalue at the corresponding time scale. A

negative eigenvalue represents a relaxing mode [30,31]. The time

scales may be found by taking the inverse of the real part of the

eigenvalues: ti = -1/Real(li).

The time scales and their respective rows in the modal matrix may

be rearranged to order the modes from slowest to fastest (see Table 3).

The modes are linear combinations of different variables. The

variables of small magnitude were ignored to see which metabolites

were responsible for each mode. Modes for timescales #1 msec

correlated with implicit algebraic relationships in the original model.

Supporting Information

Figure S1 Global phase portrait of the b1-adrenergic
network. While the global phase portrait is a 25-variable

dimension space, 2D slices can be taken that illustrate timescale

separation between pairs of state variables. Here, all 210 portraits

are shown. Above each portrait, a normalized area of the enclosed

loop is calculated that quantifies the degree of timescale

separation. The normalized phase portrait area can range from

0 to 1, with 0 indicating no timescale separation.

(EPS)

Table S1 Parameters in Original Model (from Saucer-
man et al. [20,21]).
(DOC)

Table S2 Initial conditions for 25-variable model.
(DOC)

Table 2. Summary of state variable reductions.

Variable Reduction Process

(1) L (Iso) (alg) Converted to parameter with assumption L<Ltot

(2) b1ARfree (alg) Solved analytically using conservation of mass

(3) Gs (alg) Converted to parameter with assumption Gs<Gtot

(4) b1ARtot (ode) Solved analytically using conservation of mass

(5) b1ARd (ode) Equation not reduced

(6) b1ARp (ode) Equation not reduced

(7)Gsagtptot (ode) Equation not reduced

(8) Gsagdp (ode) Removed with assumption Gsagdp ,,Gs

(9) Gsbc (ode) Removed with assumption Gsbc < Gsagtptot

(10) Gsagtp (alg) Converted to an explicit linear equation based on Gsagtptot using conc. clamps

(11) Fsk (alg) Converted to parameter with assumption Fsk<Fsktot

(12) AC (alg) Solved analytically using conservation of mass

(13) PDE (alg) Solved analytically using conservation of mass

(14) IBMX (alg) Converted to parameter with assumption IBMX<IBMXtot

(15) cAMPtot (ode) Equation not reduced

(16) cAMPfree (alg) Converted to an explicit power equation based on cAMPtot using conc. clamps

(17) PKA1 (alg) Converted to a Hill equation based on cAMPtot using conc. clamps

(18) PKA2 (alg) Converted to a Hill equation based on cAMPtot using conc. clamps

(19) PLBp (ode) Reduced to a Hill equation based on PKA1 using conc. clamps (4-var model only)

(20) Inhib1ptot (ode) Reduced to a Hill equation based on PKA1 using conc. clamps

(21) Inhib1p (alg) Converted to a Hill equation based on PKA1 using conc. clamps

(22) PP1 (alg) Analytically solved by rearranging parameters

(23) LCCap (ode) Reduced to a Hill equation based on PKA2 using conc. clamps

(24) LCCbp (ode) Reduced to a Hill equation based on PKA2 using conc. clamps

(25) TnIp (ode) Reduced to a Hill equation based on PKA1 using conc. clamps (4-var model only)

doi:10.1371/journal.pone.0023795.t002

Table 3. Timescales and eigenvectors determined from the
Jacobian matrix.

Timescales (seconds) Species in Eigenvector

454.6 B1ARd,B1ARp

157.7 B1ARd,B1ARp,B1ARtot

46.11 B1ARd, B1ARp, B1ARtot

2.16 cAMPtot, B1ARtot, B1ARp, B1ARd, TnIp, Gsagtp

tot

1.95 B1ARtot,Gsagtptot, PLBp, cAMPtot

1.25 B1ARdfree,Gsagtptot

0.72 LCCbp

0.66 LCCap

0.036 Inhib1ptot

0.006 Gsagdp , GsBy

#0.001 Algebraic Relationships

All eigenvectors in the modal matrix were linear combinations of all state
variables. However, the variables with a magnitude greater than 0.09 for each
timescale are depicted below. The timescales are the reciprocals of the real
parts of the eigenvalues.
doi:10.1371/journal.pone.0023795.t003
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Table S3 Parameters derived for reduced models.
(DOC)

Table S4 Initial conditions for reduced 6-variable and
4-variable models.
(DOC)

Dataset S1 MATLAB and CellML code for 25-, 6-, and 4-
variable b-adrenergic models.
(TAR.BZ2)

Text S1 Equations for the 6- and 4-variable reduced b-
adrenergic models.

(DOC)
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