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Survival analysis is used in the medical field to identify the effect of predictive
variables on time to a specific event. Generally, not all variation of survival time
can be explained by observed covariates. The effect of unobserved variables on
the risk of a patient is called frailty. In multicenter studies, the unobserved cen-
ter effect can induce frailty on its patients, which can lead to selection bias over
time when ignored. For this reason, it is common practice in multicenter studies
to include a random frailty term modeling center effect. In a more complex event
structure, more than one type of event is possible. Independent frailty variables
representing center effect can be incorporated in the model for each competing
event. However, in the medical context, events representing disease progres-
sion are likely related and correlation is missed when assuming frailties to be
independent. In this work, an additive gamma frailty model to account for corre-
lation between frailties in a competing risks model is proposed, to model frailties
at center level. Correlation indicates a common center effect on both events and
measures how closely the risks are related. Estimation of the model using the
expectation-maximization algorithm is illustrated. The model is applied to a data
set from a multicenter clinical trial on breast cancer from the European Organi-
sation for Research and Treatment of Cancer (EORTC trial 10854). Hospitals are
compared by employing empirical Bayes estimates methodology together with
corresponding confidence intervals.
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1 INTRODUCTION

Survival data arises where interest lies on the time from a specific time origin until occurrence of an event of interest.
Prominent applications are found in the medical field, where, eg, time from diagnosis of disease until death could be
studied. What distinguishes survival analysis from other types of statistical analysis is the type of data it deals with: it is
generally incomplete. Since it takes time to observe an event, it is usually not possible to collect complete information.
A popular method to model the effect of covariates on risk of event occurrence is through the semiparametric Cox pro-
portional hazards model.1 In some situations, more than one type of endpoint are possible, when, eg, different causes of
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death are studied. Analogous to the single endpoint situation, the Cox model can be used to model the effect of covariates
on the cause-specific transition hazards2 of each cause of failure. A more complicated event structure with intermediate
states can be modeled by a multistate model.2 Dependence in survival data can be modeled by a random frailty term,
which models heterogeneity between observations or between clusters of observations. The frailty term represents unob-
served covariates on the individual or cluster level that act on the risk of event occurrence. The frailty variance can be
interpreted as a measure of heterogeneity between clusters or individuals; however, it can also be seen as a measure of
dependence within a cluster.

Multicenter studies are a common strategy to collect sufficient data for a clinical study. Patients are clustered within
treatment centers and possible correlation between patients within a center can be modeled by using a shared frailty
model. Shared frailty models are able to model dependence; however, these models limit the unobserved covariates mod-
eled by the frailty to have the same effect within a cluster. In the presence of competing events, the use of one frailty per
center acting on all causes of failure is questionable. Similarly, using J independent frailties per center one for each cause
of failure does not yield a complete picture of the data structure. Frailties for different competing events within a center are
likely to be correlated, since they represent the same unobserved covariates on cluster level. Yashin et al3 first introduced
a correlated gamma frailty model to analyze twin survival data. They decompose a twin's frailty into a sum of two inde-
pendent frailties, one of which is shared by both twins. Petersen et al4 use this idea of adding frailty components, which
act multiplicatively on the individual hazard and describe more complex variance components models for survival data.

Clustered data in the presence of competing risks further complicate possible dependence structures and different
approaches are taken. Extensions of Fine and Gray's subdistribution hazard model5 incorporate a frailty term to model
cluster dependence on the cumulative incidence function of the event of interest in the presence of competing events.6-9

Wienke et al10,11 analyze correlated frailty models in the presence of competing risks, however, assuming independence
between risks. The assumption of independence is questionable since related events (eg, events representing disease pro-
gression) might be influenced similarly by the same unobserved covariates. Wienke et al12 extend the bivariate correlated
gamma frailty model of Yashin et al3 to model dependence among competing risks based on parametric marginal sur-
vival functions. Gorfine and Hsu13 combine frailty components multiplicatively to model dependence between competing
risks for clustered survival data. Liquet et al14 analyze hospital heterogeneity in multistate models using independent and
joint frailty models to model dependence between transition intensities. Rotolo et al15 propose to incorporate correlated
frailties in multistate models acting on the transition-specific hazard functions. They construct frailties by combining a
common cluster component and a transition-specific component multiplicatively.

In this paper, we propose an additive gamma frailty model that acts multiplicatively on the cause-specific hazard
to model dependence within clusters and between two competing events. The method can be used to investigate hos-
pital heterogeneity in a competing risks setting. An elegant estimation procedure using the expectation-maximization
algorithm (EM algorithm) is outlined as well as a strategy to calculate the standard error of the estimates. In contrast to
Wienke et al12 who model dependence among competing risks by using a parametric approach, our method is based on
the semiparametric Cox model.1 Compared to methods suggested by Gorfine and Hsu13 and Rotolo et al,15 which combine
frailty components multiplicatively, in this article, a gamma decomposition is proposed to model dependence between
risks. The advantage of our method is its simplicity in construction and estimation, which is based on the mathemati-
cal properties of the gamma distribution. Additionally, estimation through the EM algorithm provides empirical Bayes
estimates for each center's frailty, which can be used to compare centers.

In Sections 2 and 3, the cause-specific hazards model and frailty model will be reviewed briefly. The proposed competing
risks frailty model is presented in Section 4. In Section 5, the method is applied to a data example and corresponding
results are presented. A simulation study to investigate the performance of the correlated frailty model is discussed in
Section 6. A discussion follows in Section 7.

2 COMPETING RISKS MODEL

Competing risks models are used when more then one type of failure is possible. An example is the study of different
causes of death. A fundamental concept in competing risks is the cause-specific hazard. It is the hazard of failing from a
particular cause given still event free at that time.

For right-censored survival times, the cause-specific hazard of cause j for a subject i with covariate vector Xi is as follows:

𝜆𝑗(t|X i) = 𝜆𝑗0(t)e𝜷
T
𝑗

X i , (1)
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where 𝜆j0 is the cause-specific baseline hazard for cause j and 𝜷 j assesses the effect of the covariates Xi on the progression
rate to cause j.2 Here, the effects of covariates are quantified on the cause-specific hazard and not on the marginal hazard.
Only if the censoring due to the competing risks is noninformative conditionally on the covariates in the model, the
estimates can also be interpreted as effects on the marginal hazard.

3 FRAILTY MODEL

The concept of frailty introduces random effects in survival models, which represent the presence of unobserved hetero-
geneity. The variance of this random component is a measure used to quantify heterogeneity in the data. Vaupel et al16

discussed univariate frailty models with a gamma distribution and applied this concept to survival. Clayton17 used frailties
in the multivariate analysis of chronic disease incidence in families.

A frailty is an unobserved random factor varying over the population of individuals, which is assumed to have a multi-
plicative effect on the hazard of a single individual or a group or cluster of individuals. In univariate frailty models, each
individual has its own independent frailty, while in shared frailty models, clustered individuals share a common frailty.

For subject i with covariate vector Xi belonging to cluster k with frailty Wk, the hazard is given as

𝜆(t|X i,Wk) = Wk𝜆0(t)e𝜷
T X i

= 𝜆0(t)e𝜷
T X i+log(Wk).

(2)

A convenient choice for the frailty distribution is the gamma distribution, since its posterior distribution given survival
data stays in the gamma family.4

4 COMPETING RISKS FRAILTY MODEL

Heterogeneity between centers in a competing risks setting can be modeled by assigning each center J frailties, one for
each cause of failure. The J frailty terms within a center may be chosen to be independent; however, the effects within a
center are likely to be related, which is ignored in such a model. In a more realistic model, frailties within a center are
correlated. A model for the dependence structure was first proposed by Yashin et al3 in a twin study, decomposing the
frailty of each twin as a sum of two independent frailties one of which is shared. Petersen et al4 use an additive variance
components structure on multiplicative gamma frailty models and outline its estimation. The correlated frailty model
proposed in this article follows their approach.

4.1 Frailty decomposition
In the following, let Wk1,Wk2 denote the frailty variables corresponding to two causes of failure within hospital k (k =
1, … ,K). Correlation between frailties is constructed by decomposing each frailty as the sum of two independent gamma
distributed variables, one of which is common in both frailties.18,19 For cause j ( j = 1, 2), frailties are given as

Wk𝑗 =
Zk0 + Zk𝑗

𝜈0 + 𝜈𝑗
, (3)

where
Zk0 ∼ Γ(𝜈0, 1), Zk𝑗 ∼ Γ(𝜈𝑗, 1). (4)

The random variables Zk0,Zk1,Zk2 are independent and, from now on, referred to as the independent frailty components
of hospital k. This results in the following frailty distribution:

Wk𝑗 ∼ Γ(𝜈0 + 𝜈𝑗, 𝜈0 + 𝜈𝑗). (5)

The expectation of the frailty variables is equal to one, which corresponds to no hospital effect or the average hospital
effect. Their variance and correlation are given as

Var(Wk1) =
1

𝜈0 + 𝜈1
= 𝜉1, Var(Wk2) =

1
𝜈0 + 𝜈2

= 𝜉2, (6)

Cor(Wk1,Wk2) = 𝜈0(𝜉1𝜉2)1∕2 = 𝜌. (7)
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This construction allows for positive correlation only. In many practical situations, however, it may be justified to dis-
regard negative correlation, eg, when competing events describe disease progression. A further restriction is that not all
variance correlation combinations are possible in this construction. A large correlation does not allow the variances to be
too different, or equivalent, different frailty variances do not allow the correlation to be (almost) one

𝜈1 = 1
𝜉1

− 𝜌√
𝜉1𝜉2

> 0√
𝜉2∕𝜉1 > 𝜌 (8)

𝜈2 = 1
𝜉2

− 𝜌√
𝜉1𝜉2

> 0√
𝜉1∕𝜉2 > 𝜌. (9)

From (8) and (9), it follows that 𝜌 < min(
√
𝜉2∕𝜉1,

√
𝜉1∕𝜉2).

4.2 Model estimation
Model parameters are obtained by maximizing the log-likelihood function based on the observed data. Since frailties
associated to different centers and individuals across hospitals are independent, the likelihood is the product of hospital
likelihoods. For simplicity, only the log-likelihood and necessary quantities of a single center k are given in the following.

Denote by nk and dk j the number of patients and the number of patients that fail from cause j ( j = 1, 2) in hospital
k, respectively. Let Xk i, tk i, and 𝛿k i (𝛿k i = 0, 1, 2) be the covariate vector for patient i treated at hospital k, the event
or censoring time, and the event or censoring indicator, respectively. In the following, let 𝜷 j be the vector of regression
coefficients, 𝜆j0 the baseline hazard, and Λj0 the cumulative baseline hazard for cause j ( j = 1, 2). If the frailties were
observed, the complete data yields the following log-likelihood for hospital k

𝓁k(𝜷1, 𝜷2, 𝜆10, 𝜆20) =
nk∑

i=1
1𝛿ki=1

{
log

(
Zk0 + Zk1

𝜈0 + 𝜈1

)
+ log

(
𝜆10(tki)e𝜷

T
1 Xki

)}

+
nk∑

i=1
1𝛿ki=2

{
log

(
Zk0 + Zk2

𝜈0 + 𝜈2

)
+ log

(
𝜆20(tki)e𝜷

T
2 Xki

)}
(10)

− Zk0 + Zk1

𝜈0 + 𝜈1

nk∑
i=1

Λ10(tki)e𝜷
T
1 Xki − Zk0 + Zk2

𝜈0 + 𝜈2

nk∑
i=1

Λ20(tki)e𝜷
T
2 Xki + log( 𝑓 (Zk0,Zk1,Zk2),

where f is the probability density function of the independent and gamma distributed frailty components.
Integrating out all frailty components specific to each center in the log-likelihood yields the observed data log-likelihood,

which is computationally challenging to maximize (see Appendix A for details). Considering the unobserved frailties as
missing information yields a typical application of the EM algorithm.20

4.3 Implementation
For fixed parameter 𝝂 = (𝜈0, 𝜈1, 𝜈2), the estimation procedure uses the EM algorithm to approximate the observed
data log-likelihood to find optimal regression coefficients and baseline hazards.20 The approximated observed data
log-likelihood is then employed in a three-dimensional search to a find maximum likelihood estimate (MLE) for 𝝂.

Since 𝝂 is fixed throughout the EM iterations, the estimation concerns the regression coefficients and baseline haz-
ards only. The conditional expectations of the terms log((Zk0 + Zk𝑗)∕(𝜈0 + 𝜈𝑗)), ( j = 1, 2), and of log(𝑓 (Zk0,Zk1,Zk2))
given observed data are irrelevant to the estimation of the complete data case (10). Therefore, the E-step reduces to the
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calculation of the conditional expectations of the frailties Wk j = (Zk0 + Zk j)∕(𝜈0 + 𝜈j), ( j = 1, 2) given observed data.
As a result, defining Λk𝑗 =

∑nk
i=1 Λ𝑗0(tki)e𝜷

T
𝑗

Xki , ( j = 1, 2), it is sufficient to consider

E(Zk0|datak) = ∫zk0

zk0𝑓 (zk0|datak)dzk0 (11)

=
dk1∑
l=0

dk2∑
m=0

ck(l,m, 𝜈0, 𝜈1, 𝜈2)
dk1 + dk2 + 𝜈0 − l − m(

1 + 1
𝜈0+𝜈1

Λk1 + 1
𝜈0+𝜈2

Λk2

)
E(Zk1|datak) = ∫zk1

zk1𝑓 (zk1|datak)dzk1 (12)

=
dk1∑
l=0

dk2∑
m=0

ck(l,m, 𝜈0, 𝜈1, 𝜈2)
l + 𝜈1(

1 + 1
𝜈0+𝜈1

Λk1

)
E(Zk2|datak) = ∫zk2

zk2𝑓 (zk2|datak)dzk2 (13)

=
dk1∑
l=0

dk2∑
m=0

ck(l,m, 𝜈0, 𝜈1, 𝜈2)
m + 𝜈2(

1 + 1
𝜈0+𝜈2

Λk2

) ,
where f is the conditional probability density function of a frailty component given data, and ck(l,m, 𝜈0, 𝜈1, 𝜈2) is a function
over the number of events of each type of failure for fixed frailty parameters. Details about the computations are outlined
in Appendix A.

Since the conditional distributions of the frailty components Zk0,Zk1,Zk2 given observed data are mixtures of gamma
distributions (see Appendix A for details), it is straightforward to compute the quantities (11)-(13). Notably, the factor
ck(l,m, 𝜈0, 𝜈1, 𝜈2) is the same in all three expectations.

The M-step consists of estimating the updated baseline hazardsΛ10(t),Λ20(t) and coefficient vectors𝜷1, 𝜷2, through max-
imization of the conditional log-likelihood, given frailties estimated in the E-step. This can be done with existing software,
eg, using coxph() from the R21 package survival,22 incorporating the logarithm of the expected frailties as offset
into the cause-specific hazards model. The algorithm iterates over these two steps and stops once the approximation of
the observed data log-likelihood converged (eg, change of smaller than 1e−06).

Until now, the frailty parameter 𝝂 = (𝜈0, 𝜈1, 𝜈2) was fixed throughout the EM iterations. Profile likelihood is used
to obtain MLEs of (𝜈0, 𝜈1, 𝜈2, 𝛽1, 𝛽2, Λ10, Λ20); the function optim() is used to find the optimal 𝝂, maximizing the
observed data log-likelihood approximated with the EM algorithm (see the supplementary material in this paper).

4.4 Estimation of the standard error
Louis23 discussed how to obtain the covariance matrix for the regression parameters, which stays within the EM algorithm
framework, using only derivatives of the complete data log-likelihood. This approach does not yet include the uncertainty
caused by estimating the frailty parameters 𝝂 = (𝜈0, 𝜈1, 𝜈2) outside of the EM algorithm. Putter and van Houwelingen24

(see the supplementary material in the article of Putter and van Houwelingen) proposed estimation as described in the
following.

Let �̂�(𝝂) = (�̂�T
1 (𝝂), �̂�

T
2 (𝝂), �̂�

T
10(𝝂), �̂�

T
20(𝝂))T denote the MLEs of the regression coefficients and baseline hazards given

frailty parameters 𝝂, and denote by �̂� the MLE of 𝝂 maximizing the observed data log-likelihood. The combined covariance
matrix of �̂�, �̂� is given as ⎛⎜⎜⎜⎝

Σ𝝂𝝂 Σ𝝂𝝂

(
𝜕�̂�(𝝂)
𝜕𝝂

)T

(
𝜕�̂�(𝝂)
𝜕𝝂

)
Σ𝝂𝝂 Σ𝜼𝜼 +

(
𝜕�̂�(𝝂)
𝜕𝝂

)
Σ𝝂𝝂

(
𝜕�̂�(𝝂)
𝜕𝝂

)T

⎞⎟⎟⎟⎠ , (14)

where Σ𝝂𝝂 and Σ𝜼𝜼 are the covariance matrix of 𝝂 and �̂�, respectively, and the term 𝜕�̂�(𝝂)
𝜕𝝂

are the partial derivatives of the
regression parameters given 𝝂. The term on the bottom right of (14) represents the covariance of �̂�(�̂�) where the term �̂�(�̂�)
is obtained using a Taylor expansion of �̂�(𝝂) and the score functions of �̂�(𝝂) and �̂� around the MLEs. The off-diagonal
terms are covariance matrices of (�̂�, �̂�(�̂�)) and can be derived in a similarly way, see Appendix B for details.

The term Σ𝝂𝝂 is computed from the Hessian matrix obtained using the hessian() function from the numDeriv
package25 around the point estimate of 𝝂 found by the optim() function in R.21 We proceed by inverting the negative of
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the Hessian matrix, since the inverse of the observed profile information is equal to the 𝝂 component of the full observed
inverse information evaluated at (𝝂, �̂�(𝝂)) (see section 8.6.2 in the work of Young and Smith26).

The term 𝜕�̂�(𝝂)
𝜕𝝂

is approximated numerically. The derivative around the MLE is estimated by calculating the slope
between parameters for values of 𝝂 close to the MLE.

The term Σ𝜼𝜼 can be computed as described by Louis.23 It requires the gradient vector and second derivative matrix of
the complete data log-likelihood, but not the ones associated to the incomplete data case, see Appendix B for details.

The standard error of the estimated regression parameters 𝜼 can be calculated by taking the square root of the cor-
responding diagonal elements of the covariance matrix (14). To obtain the standard error of the frailty variances and
correlation, we apply the multivariate delta method on Σ𝝂𝝂 (see section 5.6 in the work of Casella and Berger27). See the
supplementary material for implementation in R.

4.5 Empirical Bayes estimates
Heterogeneity between hospitals may raise the question of hospital ranking based on their frailty or relative performance.
A popular method to compare institutions is the empirical Bayes approach introduced to this setting by Thomas et al.28

If many centers are involved, a crude center effect estimate may explode for small centers due to large variation and not
due to a real center effect.29 The empirical Bayes estimator helps distinguish observations that are “extreme by nature”
and those that are “extreme by chance” and is very well suited for the analysis of quality comparison data.30 The empirical
Bayes approach not only uses information on a particular center to quantify its performance but also uses information on
all centers to help improve the estimate.

Following the work of van Houwelingen,30 the empirical Bayes principle will be outlined. Let X1, … ,XK be indepen-
dent outcomes with densities f (xk, 𝜃k) and 𝜃1, … , 𝜃K iid with distribution G. The optimal estimator under mean squared
error loss for each 𝜃k is given by the Bayes estimator d(xk|G) = E(𝜃k|xk,G), when G is known. When G is unknown,
one can estimate E(𝜃k|xk,G) through an estimate of the distribution G. The resulting estimator is shrunken toward the
mean, where the amount of shrinkage depends on the variance of the underlying distribution. In the context of center
performance, Xk represents the outcome and 𝜃k the true unobserved performance of center k.

The E-step of the EM algorithm estimates the empirical Bayes estimate of the center frailties given current model param-
eters and 𝝂. Hence, computing a last E-step based on the MLE of regression parameters and 𝝂 after convergence of the
algorithm will give the empirical Bayes estimate of center frailties.

Even though empirical Bayes estimates are preferred to crude performance estimates when analyzing quality com-
parison data, interpretation of results should be made with caution as reasons for different outcome may lie outside a
center's responsibility. Statistical issues in comparing institutions are discussed in more detail in the work of Goldstein
and Spiegelhalter.31

The conditional distribution of Zk0,Zk1, and Zk2 given data is the weighted sum of gamma distributions depending on
the number of events of each type (see Appendix A for details). To obtain prediction intervals for the empirical Bayes
estimates, a simplified sampling procedure is applied.

1. Sample from set of tuples (l,m) from {(0, 0), … , (dk1, dk2)}, where dk1 and dk2 are the number of events of type 1 and
type 2, respectively.

2. Sample Zk0,Zk1, and Zk2 from gamma distributions Γ(dk1 + dk2 + 𝜈0 − l − m, 1 + Λk1 + Λk2), Γ(l + 𝜈1, 1 + Λk1) and
Γ(m + 𝜈2, 1 + Λk2), respectively.

Repeating this sampling procedure many times lower and upper confidence limits can be found by taking the 2.5% and
97.5% quantile.

5 DATA APPLICATION

5.1 Data description
The data used in this work originates from the European Organisation for Research and Treatment of Cancer trial 10854,
which studied the effect of one course of perioperative chemotherapy given directly after surgery on survival.32 The data
set includes 2795 women treated for invasive stage I or II breast cancer, randomized for treatment in 15 different centers.
Breast cancer is one of the most common types of cancer in women. The standard treatment for breast cancer is surgery,
which may be followed by chemotherapy, radiotherapy, or both. Disease progression after surgery can be described in
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ANED

Recurrence

Death

1049

83

FIGURE 1 Initially, 2658 patients are alive with no evidence of disease (ANED)

TABLE 1 Characteristics of 2658 patients

Variable N (%)
Age
≥50 1602 (60.3)
40-50 762 (28.7)
<40 294 (11.1)

Tumor size
<2 cm 798 (30.0)
≥2 cm 1860 (70.0)

Nodal status
Negative 1407 (52.9)
Positive 1251 (47.1)

Surgery
Mastectomy 1164 (43.8)
Breast conserving 1494 (56.2)

Perioperative chemotherapy
Yes 1325 (49.8)
No 1333 (50.2)

Adjuvant chemotherapy
No 2173 (81.8)
Yes 485 (18.2)

Adjuvant radiotherapy
No 54 (2.0)
Yes 2604 (98.0)

terms of events that a patient might experience. A patient can develop local recurrence (LR), which means that the tumor
grows back at the site of surgery and/or might develop distant metastasis (DM), which corresponds to a tumor growth
not at the site of surgery and/or she might die.

Patients were excluded from this analysis following exclusion criteria of the trial (n = 41) and if information on relevant
covariates was missing (n = 91). Furthermore, all five patients from a particular center were excluded, because of the
small amount of patients treated at this center, leaving a total of 2658 patients from 14 different centers for analysis.

The competing risks model for this data is illustrated in Figure 1. Two competing events are considered, recurrence of
disease (LR or DM) and death. The starting state is the state a patient enters after surgery, being alive with no evidence
of disease after surgical removal of the primary tumor (ANED).

The choice of covariates to analyze is based on a previous study on the same data.33 The following prognostic factors
are considered in the analysis: age (≥50, 40-50, <40), tumor size (<2 cm, ≥2 cm), nodal status (negative, positive), type
of surgery (mastectomy, breast conserving), perioperative chemotherapy (yes, no), adjuvant chemotherapy (yes, no), and
adjuvant radiotherapy (yes, no). Patients' characteristics are provided in Table 1.

5.2 Competing risks model with independent frailties
To account for center effect in a cause-specific regression model, each cause of failure within a hospital is assigned its
own independent frailty.
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TABLE 2 Cause-specific hazards model with independent frailties

ANED→Recurrence ANED→Death
HR 0.95 CI HR 0.95 CI

Age
≥50 1.00 1.00
40-50 1.00 0.85-1.19 0.84 0.68-1.04
<40 1.43 1.16-1.76 1.03 0.79-1.34

Tumor size (≥2 vs <2 cm) 1.41 1.22-1.64 1.46 1.21-1.76
NodST (pos. vs neg.) 1.55 1.34-1.79 2.22 1.87-2.63
Surgery (cons. vs mast.) 0.92 0.80-1.05 0.82 0.70-0.97
PeriCT (no vs yes) 1.15 1.02-1.30 1.11 0.96-1.29
AdjCT (yes vs no) 0.79 0.64-0.97 0.82 0.64-1.05
AdjRT (yes vs no) 1.20 0.73-1.98 1.12 0.62-2.00

Variance SE Variance SE
Frailty 0.05 0.03 0.13 0.06

Abbreviations: NodST (pos. vs neg.), Nodal status (positive vs negative); Surgery (cons.
vs mast.), Surgery (breast conserving vs mastectomy); PeriCT, Perioperative chemother-
apy; AdjCT, Adjuvant chemotherapy; AdjRT, Adjuvant radiotherapy. ANED, alive with
no evidence of disease; CI, confidence interval; HR, hazard ratio; SE, standard error.

The model can be estimated similarly to the classical competing risks model, by using coxph() together with the
frailty() function from the R package survival22 or the emfrail() function from the frailtyEM34 package.
The results of the estimated model with independent gamma frailties are shown in Table 2.

A young age (<40) significantly increases the risks of experiencing recurrence (HR: 1.43; CI: 1.16-1.76), as well as a
larger tumor size (HR: 1.41; CI: 1.22-1.64), a positive nodal status (HR: 1.55; CI: 1.34-1.79), and whether or not perioper-
ative chemotherapy and adjuvant chemotherapy was administered (HR: 1.15; CI: 1.02-1.30 and HR: 0.79; CI: 0.64-0.97,
respectively). The frailty variance for transition 1 is estimated to be equal to 0.05.

A larger tumor size and a positive nodal status also have a significant effect on death before recurrence with HR: 1.46
(CI: 1.21-1.76) and HR: 2.22 (CI: 1.87-2.63). For death, type of surgery also has a significant effect with HR equal to 0.82
(CI: 0.70-0.97) for breast conserving therapy compared to mastectomy. This finding is unexpected and should probably
be ascribed to insufficient adjustment for factors relates to choice of primary surgical treatment. The frailty variance for
this transition is estimated to be equal to 0.13.

A different frailty model assigns to each hospital a shared frailty term for both causes of failure. Both the independent
and shared frailty models are not realistic. The former assumes an independent effect of the unobserved covariates on the
two events and the latter assumes them to have the same effect on both events. A model allowing for possible correlation
between frailties is probably a more accurate representation of reality.

5.3 Competing risks model with correlated frailties
In Table 3, the results for the competing risks frailty model with correlated frailties are shown.

The hazard ratios for recurrence are almost unchanged compared to the independent frailty model. However, in the
correlated frailty model, nodal status and size are the only significant factors. The hazard ratios for death without recur-
rence are very different from the independent frailty model. This can be explained by the small number of deaths without
recurrence in the data set. The variation added by additionally estimating the frailties increased the standard errors, and
fewer variables are significant.

The variance of the frailty for transition 1 (ANED → Recurrence) is equal to 0.05 with a standard error of 0.03. For tran-
sition 2 (ANED → Death), the frailty variance is equal to 0.27 with a standard error of 0.22. The correlation of the frailties
is estimated to be equal to 0.37 with a standard error of 0.18. Given these frailty variances, the maximum correlation
between frailties in this model is 0.43 resulting from inequalities (8) and (9).

5.4 Empirical Bayes estimates
Figure 2 shows the empirical Bayes estimates of the frailties of each center together with 95% prediction intervals, for
event recurrence and death. A value equal to 1 implies that there is no center effect. Centers are ordered by number of
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TABLE 3 Cause-specific hazards model with correlated frailties

ANED→Recurrence ANED→Death
HR 0.95 CI HR 0.95 CI

Age
≥50 1.00 1.00
40-50 1.00 0.69-1.44 0.35 0.05-2.76
<40 1.42 0.92-2.18 0.62 0.06-6.48

Tumor size (≥2 vs <2 cm) 1.41 1.05-1.89 0.96 0.25-3.73
NodST (pos. vs neg.) 1.55 1.15-2.08 1.72 0.47-6.27
Surgery (cons. vs mast.) 0.92 0.70-1.22 0.65 0.18-2.31
PeriCT (no vs yes) 1.15 0.89-1.48 1.14 0.35-3.70
AdjCT (yes vs no) 0.79 0.50-1.27 0.80 0.06-10.08
AdjRT (yes vs no) 1.18 0.81-1.71 0.66 0.12-3.72

Variance SE Variance SE
Frailty 0.05 0.03 0.27 0.22

Correlation SE
Correlation 0.37 0.18

Abbreviations: NodST (pos. vs neg.), Nodal status (positive vs negative); Surgery (cons.
vs mast.), Surgery (breast conserving vs mastectomy); PeriCT, Perioperative chemother-
apy; AdjCT, Adjuvant chemotherapy; AdjRT, Adjuvant radiotherapy. ANED, alive with no
evidence of disease; CI, confidence interval; HR, hazard ratio; SE, standard error.
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FIGURE 2 Empirical Bayes estimates of frailties and 95% prediction intervals for event recurrence and death of 14 centers, sorted by
number of patients [Colour figure can be viewed at wileyonlinelibrary.com]

patients treated. The prediction intervals are computed by sampling from the gamma mixture distribution of frailties and
taking 2.5% and 97.5% quantiles as lower and upper limits.

The left panel of Figure 2 shows the frailties for the event recurrence for 14 hospitals ordered by number of patients
treated. Two hospitals (9 and 11) have a significantly increased risk for their patients to develop recurrence. One hospital
(12) has a significantly decreased risk for its patients to develop recurrence. Further, one can see that the width of the
prediction intervals decrease with a growing number of patients in the hospital.

The right panel of Figure 2 shows that one hospital (11) has an increased risk for its patients to move to the state death.
One hospital (14) has a marginally significant decreased risk for its patients to die.

To visualize the relation of the frailties within a hospital, the empirical Bayes estimates of the two frailties for each
center are plotted against each other in Figure 3, together with the joint empirical distribution of the frailties for two
centers with index 11 and 12.

The hospital effects on a patient can be investigated by looking at the difference in cumulative hazard and cumulative
incidence between the hospitals for a particular patient. This is shown in Figure 4, for a patient whose covariate values
correspond to the mean covariate values in the data.

http://wileyonlinelibrary.com
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FIGURE 3 Empirical Bayes estimates of frailties for two causes of failure plotted together for 14 centers. For centers with index 11 and 12
the joint empirical distribution of the frailties is shown in red and blue respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Left panel: stacked cumulative incidence curves for an average patient treated in hospital with lowest estimated frailty for
recurrence. Right panel: cumulative incidence curves for an average patient treated in hospital with highest estimated frailty for recurrence
[Colour figure can be viewed at wileyonlinelibrary.com]

A pairwise comparison of cumulative incidence curves for an average patient treated in two hospitals further illustrates
the difference in effects. This is depicted in Figure 5, which shows the stacked cumulative incidence curves for an average
patient treated in the two hospitals with the lowest and highest frailties for recurrence. The prognosis shown in the left
panel estimates a lower risk for both events, compared to the right panel. This is explained by the estimated correlation
between frailties (Table 3) and the empirical Bayes estimates of the hospitals (Figure 3), which indicate that a hospital
with a decreased risk for one cause also has a decreased risk for the other cause. This makes the hospital corresponding
to the left panel more appealing.

6 SIMULATION

To investigate the performance of the correlated frailty model, a simulation study is conducted. Multiple data scenarios are
simulated and the results of the independent and correlated frailty model are compared. Motivated by the data example
from Section 5, a similar scenario with 2700 patients distributed equally over 15 centers is used for simulation. To study
how the number of centers affects the estimation, different scenarios with 5, 30, and 50 centers are considered, while
keeping the total number of patients fixed to 2700 (see Table 4).

Survival times are generated by using two Weibull baseline hazards with a common shape parameter a and rate param-
eters b1 and b2 for the two causes of failure, respectively. Weibull parameters are fixed throughout the data scenarios and
are estimated from the data example of Section 5 (a = 1.01, b1 = 0.05, b2 = 0.03).

Different frailty variance structures are simulated in the different scenarios. Using an additive gamma model as pre-
sented in Section 4, correlated frailties are sampled with variances equal to 0.25 and correlation equal to 0.3 for scenarios
A, B, C, and D. As discussed in Section 4, different frailty variances by construction do not allow too large correlations;

TABLE 4 Scenarios for simulation

Scenario n K nk Var(Wk1) Var(Wk2) Cor(Wk1,Wk2) Correlation Bounds

A 2700 5 540 0.25 0.25 0.3 (0, 1)
B 2700 15 180 0.25 0.25 0.3 (0, 1)
C 2700 30 90 0.25 0.25 0.3 (0, 1)
D 2700 50 54 0.25 0.25 0.3 (0, 1)
E 2700 15 180 0.1 0.3 0.8 (0, 0.58)
F 2700 15 180 0.25 0.25 −0.3 (0, 1)

Notation: n, total number of patients; K, number of centers; nk, number of patients per center; Wkj (j = 1, 2),
center-specific frailty for cause j.

http://wileyonlinelibrary.com
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TABLE 5 Frailty variance results of simulation study for 6 different data scenarios

Correlated Frailty Model Independent Frailty Model
Scenario Parameter True Value Mean (avSE; empSE) Bias RMSE Mean (empSE) Bias RMSE

A Var(Wk1) 0.25 0.20 (0.13; 0.15) −0.05 0.16 0.72 (0.28) 0.47 0.55
Var(Wk2) 0.25 0.20 (0.13; 0.15) −0.05 0.16 0.59 (0.29) 0.34 0.45

Cor(Wk1,Wk2) 0.3 0.29 (0.20; 0.29) −0.01 0.29
B Var(Wk1) 0.25 0.24 (0.10; 0.10) −0.01 0.10 0.57 (0.18) 0.32 0.37

Var(Wk2) 0.25 0.24 (0.10; 0.10) −0.01 0.10 0.42 (0.18) 0.17 0.24
Cor(Wk1,Wk2) 0.3 0.3 (0.21; 0.22) 0.00 0.22

C Var(Wk1) 0.25 0.25 (0.07; 0.08) 0.00 0.08 0.39 (0.13) 0.14 0.19
Var(Wk2) 0.25 0.25 (0.08; 0.08) 0.00 0.08 0.30 (0.12) 0.05 0.12

Cor(Wk1,Wk2) 0.30 0.33 (0.19; 0.17) 0.03 0.17
D Var(Wk1) 0.25 0.25 (0.06; 0.06) 0.00 0.06 0.29 (0.09) 0.04 0.10

Var(Wk2) 0.25 0.24 (0.07; 0.07) −0.01 0.07 0.25 (0.08) 0.00 0.08
Cor(Wk1,Wk2) 0.3 0.33 (0.16; 0.15) 0.03 0.16

E Var(Wk1) 0.1 0.09 (0.04; 0.04) −0.01 0.04 0.18 (0.12) 0.08 0.15
Var(Wk2) 0.3 0.19 (0.08; 0.08) −0.11 0.13 0.41 (0.18) 0.11 0.22

Cor(Wk1,Wk2) 0.80 0.67 (0.17; 0.15) −0.13 0.20
F Var(Wk1) 0.25 0.20 (0.08; 0.08) −0.05 0.20 0.51 (0.18) 0.26 0.32

Var(Wk2) 0.25 0.20 (0.08; 0.09) −0.05 0.10 0.37 (0.19) 0.12 0.22
Cor(Wk1,Wk2) −0.3 0.02 (0.05; 0.06) 0.32 0.32

Abbreviations and notation: empSE, empirical standard error; avSE, average standard error; RMSE, root-mean-square error;Wkj (j = 1, 2),
center-specific frailty for cause j.

in addition, correlation is assumed to be positive to use the proposed method. To study the performance of the method
proposed in this article, data scenarios E and F that violate these assumptions are simulated. Center and patient distribu-
tion are set closest to the data example (15 centers with 180 patients each). Frailties for scenarios E and F in Table 4 are
sampled from a multivariate lognormal distribution. Scenario E considers a situation in which the correlation is too large
to be modeled: frailty variances are equal to 0.1 and 0.3 for cause 1 and cause 2, respectively, while correlation is equal
to 0.8. Scenario F represents a situation in which negative correlation is present, with frailty variances equal to 0.25 and
correlation equal to −0.3.

Table 4 summarizes all scenarios simulated. Censoring times are simulated from a uniform distribution between 9 and
14 years, motivated by the data example.

For each scenario, 1000 data sets are simulated for which two models are estimated: a model with independent frailties
for the two causes and the proposed correlated frailty model. Results for frailty variance and empirical Bayes estimates
are shown in Tables 5 and 6, respectively.

Table 5 shows that the independent frailty model generally estimates the frailty variances to be too high with a large
bias and large root-mean-square error (RSME). This seems to be more apparent in data sets with fewer centers.

The correlated frailty model estimates on average results that are closer to the true parameter values with bias of less
than half the empirical standard error apart from scenarios E and F. Empirical standard errors are smaller compared
to the independent model and are comparable to the average standard error, which, even though close, is consistently
smaller than the empirical standard error. Root-mean-square errors are generally smaller for the correlated frailty model
compared to the independent model.

For scenarios with a larger number of centers, better estimation results are obtained. Scenario D with 50 centers per
data set shows the best estimation results. Average standard errors are close to the empirical standard errors and RSMEs
are small. Scenario E showcases a situation in which the correlation is too large to be modeled with the additive gamma
construction. Given frailty variances, correlation is restricted to 𝜌 <

√
0.1∕0.3 = 0.58 (see Equations (8)-(9)). The method

in this case finds a middle ground and underestimates the frailty variance for cause 2 to allow for a larger correlation.
Scenario F considers negative correlation. In this case, frailty variances are underestimated; however, they are still closer
to the true values compared to estimates of the independent model and the correlation estimate is very close to 0.

Table 6 shows summary measures of empirical Bayes estimates over the different data scenarios. Bias as well as RMSEs
are reported together with coverage probabilities of prediction intervals acquired using the sampling method described
in Section 4 and studied for each scenario. The number of centers has a stronger effect on the empirical Bayes estimates
compared to the frailty variance estimates. Scenario A with only five centers shows very poor coverage of the 95% predic-
tion intervals with probabilities of 0.394 and 0.492 for empirical Bayes estimates corresponding to cause 1 and cause 2,
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TABLE 7 Failed estimation of standard error

Scenario Total Nbr. of Data Sets Total Successful Runs Success at Second Attempt Failed Estimation Evaluated

A 1200 1062 80 138 1000
B 1200 1165 17 35 1000
C 1200 1117 1 83 1000
D 1200 1142 0 58 1000
E 1200 1046 232 154 1000
F 1200 1196 0 4 1000

respectively. Scenarios with 15 centers (B, E, and F) achieved coverage probabilities between 0.749 and 0.864 and scenarios
with more centers (C and D) achieved values between 0.877 and 0.930. Bias and RSME of empirical Bayes estimates appear
consistent over different scenarios. To quantify the performance of the method on the estimation of the center-specific
cumulative incidence, its bias and RMSE are estimated at quartiles of the theoretical overall event time distribution
(t1 = 3.55, t2 = 8.48, t3 = 16.85). The estimates appear unbiased but worsen for the later time t3. Interestingly, the bias
and RSMEs appear not to be influenced much by the amount of centers and it even appears to become slightly worse if
more centers are present in the data. An explanation could be that the estimation of the cumulative incidence becomes
more challenging due to the data being generated from many different hazard rates.

For some of the simulated data sets, the standard error of the frailty variance and correlation estimate could not be
obtained because the hessian matrix obtained during optimization was not positive definite. In this case, another attempt
was made by starting the optimization of the frailty components from another starting value. This procedure was able
to compute results in some cases (see Table 7). In case the hessian was not positive definite, the data set was discarded.
The amount of failed estimation was strongly dependent on the amount of centers in the data set. Percentages of second
attempts and discarded data sets are given in Table 7.

7 DISCUSSION AND CONCLUSION

Using shared frailty models to account for unobserved covariates in multicenter studies is common practice to avoid bias
and to measure the amount of heterogeneity between centers. Correlated frailty models extend the shared frailty model by
incorporating dependence structures between related individuals. Dependence among transition intensities of competing
risks have come of interest.12,14,15

The model presented uses correlated gamma frailties to model dependence within hospitals and between two com-
peting risks. The mathematical properties of the gamma distribution are exploited to construct and estimate correlated
frailties. An estimation procedure using the EM algorithm is outlined and estimation of the standard error is illustrated.
The estimation procedure provides empirical Bayes estimates for hospital frailties, which, together with their prediction
intervals, can be used to compare hospital effects. The model is applied to breast cancer data and a moderate correlation
between the frailties of the competing events recurrence and death is estimated. A simulation study is conducted to inves-
tigate performance of the method in different situations. Data scenarios with differing number of centers and correlation
structures are considered and estimates of a model with independent frailties are compared to the proposed correlated
frailty model. The performance of the empirical Bayes estimates obtained by the method was studied under different
conditions.

The independent frailty model showed that it is not capable of accounting for center frailty in case of correlation between
frailties. The correlated frailty model outperformed it in all data scenarios, concerning estimates as well as size of empirical
standard errors. Its estimation benefits from a larger number of centers in the data. In data scenarios with unattainable
correlation structures, it still performed reasonably well and behaved in an expectable way.

The method is well suited to investigate hospital heterogeneity in the presence of competing risks. It distinguishes
between common and separate effects of a hospital on two competing events and performed well in a simulation study.
The proposed model can be extended to the case of more then two competing events. Dependence between risks can be
modeled by adding frailty components, where shared components induce dependence between risks. However, the model
is limited to positive correlation between frailties.

Wienke et al12 pointed out that, in the case of cause-specific mortality, the presence of risk factors might increase the
risk of death with respect to all disease, making the case for positive dependence between risks. At the same time, the
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authors argue that everyone dies eventually, so if the risk of death from one cause is decreased, the risk from another
cause must be increased, which suggests negative correlation between risks. Further study should be dedicated to the
nature of dependencies among competing risks.

Putter and van Houwelingen35 compare a two-point frailty distribution to a gamma distribution to model association
between transition times in multistate models. An advantage of the two-point frailty model is that it allows the two frailty
terms to operate on different scale and that, in contrast to the gamma distribution, it allows negative association. In
their simulation study, the two-point frailty outperforms the gamma distribution. A similar model could be used in the
competing risks setting modeling dependence between risks, possibly with three or four points.
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APPENDIX A

PROBABILITIES FOR E-STEP

Let zk0, zk1, zk2 be the independent gamma distributed frailty components and let dkj ( j = 1, 2) be the number of failures
of type j in hospital k (k = 1, … ,K ). Defining Λk𝑗 =

∑nk
i=1 Λ𝑗0(tki)e𝜷

T
𝑗

Xki ( j = 1, 2), the conditional probability of the data
given frailty components is given as

𝑓 (datak|zk0, zk1, zk2) =
nk∏

i=1

(
zk0 + zk1

𝜈0 + 𝜈1
𝜆10(tki) exp

(
𝜷T

1 Xki
))1{𝛿ki=1}

(
zk0 + zk2

𝜈0 + 𝜈2
𝜆20(tki) exp

(
𝜷T

2 Xki
))1{𝛿ki=2}

exp
(
−
(

zk0 + zk1

𝜈0 + 𝜈1
Λ10(tki) exp

(
𝜷T

1 Xki
)
+ zk0 + zk2

𝜈0 + 𝜈2
Λ20(tki) exp

(
𝜷T

2 Xki
)))

= (𝜈0 + 𝜈1)−dk1 (𝜈0 + 𝜈2)−dk2

( dk1∑
l=0

(
dk1

l

)
zdk1−l

k0 zl
k1

)( dk2∑
m=0

(
dk2
m

)
zdk2−m

k0 zm
k2

)
nk∏

i=1

{(
𝜆10(tki) exp

(
𝜷T

1 Xki
))1{𝛿ki=1}

(
𝜆20(tki) exp

(
𝜷T

2 Xki
))1{𝛿ki=2}

}
exp

(
−zk0

(
1

𝜈0 + 𝜈1
Λk1 +

1
𝜈0 + 𝜈2

Λk2

))
exp

(
−zk1

1
𝜈0 + 𝜈1

Λk1

)
exp
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1
𝜈0 + 𝜈2
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)
.
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Integrating over the frailty components yields the following conditional probabilities:

𝑓 (datak|zk0, zk2) = ∫zk1

𝑓 (zk1)𝑓 (datak|zk0, zk1, zk2)dzk1

= (𝜈0 + 𝜈1)−dk1 (𝜈0 + 𝜈2)−dk2

( dk2∑
m=0

(
dk2
m

)
zdk2−m

k0 zm
k2

)
nk∏

i=1

{(
𝜆10(tki) exp

(
𝜷T

1 Xki
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(
𝜆20(tki) exp

(
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2 Xki
))1{𝛿ki=2}

}
exp
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(
1

𝜈0 + 𝜈1
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1
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Λk2
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1
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1
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l
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1

Γ(𝜈1)Γ(𝜈2)
nk∏

i=1

{(
𝜆10(tki) exp

(
𝜷T

1 Xki
))1{𝛿ki=1}

(
𝜆20(tki) exp

(
𝜷T

2 Xki
))1{𝛿ki=2}
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𝑓 (datak|zk2) = ∫zk0

𝑓 (zk0)𝑓 (datak|zk0, zk2)dzk0

= (𝜈0 + 𝜈1)−dk1 (𝜈0 + 𝜈2)−dk2
1
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{(
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k2 exp
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.

The observed data likelihood is given as

𝑓 (datak) = ∫zk0

𝑓 (zk0)𝑓 (datak|zk0)dzk0
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1
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.

The conditional probabilities of the frailty components given the data necessary for the E-step are given as

𝑓 (zk0|datak) =
𝑓 (datak|zk0)𝑓 (zk0)

𝑓 (datak)

=
dk1∑
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k1 exp
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𝑓 (datak)
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where
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dk1

l

)(
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APPENDIX B

OBSERVED INFORMATION OF REGRESSION PARAMETERS

The term Σ𝜼𝜼 = I−1
𝜼𝜼 can be computed as described by Louis.23

Let 𝓁∗ and 𝓁 be the log-likelihood and the conditional log-likelihood given frailties. The Fisher information for �̂� can
be rewritten in terms of the conditional log-likelihood given as

I𝜼𝜼(𝝂) = E𝝂

(
− 𝜕2

𝜕𝜼𝜕𝜼
𝓁∗(𝜼)

)
(A1)

= E𝝂

(
− 𝜕2

𝜕𝜼𝜕𝜼
𝓁(𝜼|W)|W ∈ R

)

− E𝝂

(
𝜕

𝜕𝜼
𝓁(𝜼|W) 𝜕

𝜕𝜼
𝓁T(𝜼|W)|W ∈ R

)
+ 𝜕

𝜕𝜼
𝓁∗(𝜼) 𝜕

𝜕𝜼
𝓁∗T(𝜼),

where W are the unobserved frailties and R is the set of possible frailties given the data. Notably, the last term is zero at
the MLE, and thus, a simplified notation for the Fisher information at the MLE is given as

I𝜼𝜼 = I(full)
𝜼𝜼 − I(loss)

𝜼𝜼 ,

where the first term represents the full information and the second term represents the loss of information due to the
unobserved frailties.

Let

• dk1, dk2: number of failures of cause 1 and cause 2 in hospital k, respectively;
• d1, d2: number of failures of cause 1 and cause 2 in total, respectively;
• dkl′ : number of failures of cause 1 at time tl′ in hospital k;
• dkm′ : number of failures of cause 2 at time tm′ in hospital k;
• d1l′ : number of failures of cause 1 at time tl′ ;
• d2m′ : number of failures of cause 2 at time tm′ ;
• tkl, l = 1, … , dk1: ordered event times for cause 1 in hospital k;
• tkm,m = 1, … , dk2: ordered event times for cause 2 in hospital k;
• tl′ , (l′ = 1, … , d1): ordered event times for cause 1;
• tm′ , (m′ = 1, … , d2): ordered event times for cause 2;
• Λ10(t) =

∑
tl′≤t𝜆10(tl′ );

• Λ20(t)
∑

tm′≤t𝜆20(tm′ );
•

∑nk
i=1 e𝜷T

1 XkiΛ10(tki) =
∑d1

l′=1 𝜆10(tl′ )
∑

i∶tki≥tl′
e𝜷T

1 Xki ;
•

∑nk
i=1 e𝜷T

2 XkiΛ20(tki) =
∑d2

m′=1 𝜆20(tm′ )
∑

i∶tki≥tm′ e
𝜷T

2 Xki ;
• Rk(t) = {i ∶ tk i ≥ t}: risk set at time t for hospital k.

The conditional log-likelihood given frailties can be expressed as

𝓁 =
∑

k
dk1 log

(
zk0 + zk1

𝜈0 + 𝜈1

)
+

dk1∑
l=1

log (𝜆10(tkl)) +
dk1∑
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𝜷T
1 Xkl −
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d1∑
l′=1

𝜆10(tl′ )
∑
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e𝜷

T
1 Xki

+ dk2 log
(
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𝜈0 + 𝜈2

)
+

dk2∑
m=1

log (𝜆20(tkm)) +
dk2∑

m=1
𝜷T

2 Xkm − zk0 + zk2

𝜈0 + 𝜈2

d2∑
m′=1

𝜆20(tm′ )
∑

i∈Rk(tm′ )
e𝜷

T
2 Xki .
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The term I(loss)
𝜼𝜼 is the product of the gradient vector of the conditional log-likelihood with itself. The elements of the

gradient vector are

𝜕

𝜕𝜷1𝑗
𝓁 =

∑
k

{ dk1∑
l=1

Xkl𝑗 −
zk0 + zk1

𝜈0 + 𝜈1

d1∑
l′=1

𝜆10(tl′ )
∑

i∈Rk(tkl′ )
Xki𝑗e𝜷

T
1 Xki

}
𝜕

𝜕𝜷2𝑗
𝓁 =

∑
k

{ dk2∑
m=1

Xkm𝑗 −
zk0 + zk2

𝜈0 + 𝜈2

d2∑
m′=1

𝜆20(tm′ )
∑

i∈Rk(tm′ )
Xki𝑗e𝜷

T
2 Xki

}
𝜕

𝜕𝜆10l′
𝓁 =

∑
k

{
dkl′

𝜆10l′ (tl′ )
− zk0 + zk1

𝜈0 + 𝜈1

∑
i∈Rk(tl′ )

e𝜷
T
1 Xki

}
= d1l′

𝜆10l′ (tl′ )
−
∑

k

zk0 + zk1

𝜈0 + 𝜈1

∑
i∈Rk(tl′ )

e𝜷
T
1 Xki

𝜕

𝜕𝜆20m′
𝓁 = d2m′

𝜆20m′ (tm′ )
−
∑

k

zk0 + zk2

𝜈0 + 𝜈2

∑
i∈Rk(tm′ )

e𝜷
T
2 Xki .

The second-order derivatives to calculate the full information matrix I(full) are

𝜕2

𝜕𝜷1𝑗𝜕𝜷1h
𝓁 = −

∑
k

zk0 + zk1

𝜈0 + 𝜈1

d1∑
l′=1

𝜆10(tl′ )
∑

i∈Rk(tl′ )
Xki𝑗Xkihe𝜷

T
1 Xki

𝜕2

𝜕𝜷1𝑗𝜕𝜷2h
𝓁 = 0

𝜕2

𝜕𝜷1𝑗𝜕𝜆10l′
𝓁 = −

∑
k

zk0 + zk1

𝜈0 + 𝜈1

∑
i∈Rk(tl′ )

Xki𝑗e𝜷
T
1 Xki

𝜕2

𝜕𝜷1𝑗𝜕𝜆20m′
𝓁 = 0

𝜕2

𝜕𝜷2𝑗𝜕𝜷2h
𝓁 = −

∑
k

zk0 + zk2

𝜈0 + 𝜈2

d2∑
m′=1

𝜆20(tm′ )
∑

i∈Rk(tm′ )
Xki𝑗Xkihe𝜷

T
2 Xki

𝜕2

𝜕𝜷2𝑗𝜕𝜆10l′
𝓁 = 0

𝜕2

𝜕𝜷2𝑗𝜕𝜆20m′
𝓁 = −

∑
k

zk0 + zk2

𝜈0 + 𝜈2

∑
i∈Rk(tm′ )

Xki𝑗e𝜷
T
2 Xki

𝜕2

𝜕𝜆10p′𝜕𝜆10l′
𝓁 = 0, 𝜕2

𝜕𝜆10l′𝜕𝜆10l′
𝓁 = − d1l′

𝜆10l′ (tl′ )2

𝜕2

𝜕𝜆10p′𝜕𝜆20m′
𝓁 = 0

𝜕2

𝜕𝜆20p′𝜕𝜆20m′
𝓁 = 0, 𝜕2

𝜕𝜆20m′𝜕𝜆20m′
𝓁 = − d2m′

𝜆20m′ (tm′ )2 .


	Investigating hospital heterogeneity with a competing risks frailty model
	Abstract
	INTRODUCTION
	COMPETING RISKS MODEL
	FRAILTY MODEL
	COMPETING RISKS FRAILTY MODEL
	Frailty decomposition
	Model estimation
	Implementation
	Estimation of the standard error
	Empirical Bayes estimates

	DATA APPLICATION
	Data description
	Competing risks model with independent frailties
	Competing risks model with correlated frailties
	Empirical Bayes estimates

	SIMULATION
	DISCUSSION AND CONCLUSION
	REFERENCES


