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RUNX1 prevents oestrogen-mediated AXIN1
suppression and b-catenin activation in ER-positive
breast cancer
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Recent high-throughput studies revealed recurrent RUNX1 mutations in breast cancer,

specifically in oestrogen receptor-positive (ERþ ) tumours. However, mechanisms underlying

the implied RUNX1-mediated tumour suppression remain elusive. Here, by depleting

mammary epithelial cells of RUNX1 in vivo and in vitro, we demonstrate combinatorial reg-

ulation of AXIN1 by RUNX1 and oestrogen. RUNX1 and ER occupy adjacent elements in

AXIN1’s second intron, and RUNX1 antagonizes oestrogen-mediated AXIN1 suppression.

Accordingly, RNA-seq and immunohistochemical analyses demonstrate an ER-dependent

correlation between RUNX1 and AXIN1 in tumour biopsies. RUNX1 loss in ERþ mammary

epithelial cells increases b-catenin, deregulates mitosis and stimulates cell proliferation and

expression of stem cell markers. However, it does not stimulate LEF/TCF, c-Myc or CCND1,

and it does not accelerate G1/S cell cycle phase transition. Finally, RUNX1 loss-mediated

deregulation of b-catenin and mitosis is ameliorated by AXIN1 stabilization in vitro,

highlighting AXIN1 as a potential target for the management of ERþ breast cancer.
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B
eside their developmental roles, particularly in haematopoi-
esis, skeletogenesis and neurogenesis, the three mammalian
RUNX transcription factors have been assigned both

oncogenic and tumour suppressor functions in a variety of
neoplastic diseases1–3. In breast cancer, RUNX3 is frequently
inactivated by promoter hypermethylation or protein
mislocalization, its expression inversely correlates with disease
progression4,5, and its haploinsufficiency in mice promotes
mammary ductal carcinoma6. Mechanistically, RUNX3 (as well
as RUNX2) antagonize ERa6–9. RUNX2, however, is better
known for its pro-metastatic activity in breast and other
carcinomas3,10. Little attention has been paid thus far to the
potential roles of RUNX1 in breast cancer. Recent studies,
however, demonstrate that it is the predominant RUNX family
member expressed in mammary epithelial cells2, and growing
evidence suggests context-dependent dual roles for RUNX1 in
breast cancer progression2,11–17. In particular, three independent
studies of breast cancer patient cohorts have recently reported
recurrent somatic mutations and/or deletions of RUNX1, as well
as CBFB that encodes an obligate co-activator of RUNX1
(refs 18–20). Here, we demonstrate that RUNX1 antagonizes
oestrogen-mediated inhibition of AXIN1 expression, shedding
light on its breast cancer suppression role.

Nearly two-thirds of all breast cancer cases belong to the ERþ

luminal subtype21. ERa, which plays important physiological
roles in mammary epithelial cell growth and differentiation
during puberty and pregnancy, can acquire deleterious functions
that promote breast carcinogenesis22–24. This is associated with
changes to ERa-mediated transcriptional stimulation or
repression, attributable, in part, to increased ERa levels or
alterations to modifying transcription factors such as FOXA,
GATA, AP2g and their associated co-regulators25–28. The present
work calls attention to the ERa-interacting transcription factor
RUNX1 (ref. 29). It suggests that loss of RUNX1 in breast cancer
facilitates ERa-mediated suppression of AXIN1, resulting in
aberrant b-catenin signalling.

b-Catenin plays pivotal roles in cancer, primarily attributable
to its role in canonical Wnt signalling. Upon Wnt pathway
stimulation, a constitutively active b-catenin destruction complex
is disassembled, allowing b-catenin to accumulate and ultimately
activate LEF/TCF target genes such as CCND1, c-Myc, AXIN2
and LEF1 itself30,31. The b-catenin destruction complex contains,
among others, the scaffold proteins AXIN1 and APC
(adenomatous polyposis coli), as well as glycogen synthase
kinase 3a/b (GSK3a/b), which phosphorylate and mark
b-catenin for proteasomal degradation30,32. In addition,
b-catenin resides in the centrosome, where it regulates micro-
tubule dynamics and bipolar mitotic spindle formation33–35.
At the centrosome, b-catenin is phosphorylated by another
kinase, NEK2, but is protected from degradation36. Despite its
established oncogenic role in general, several issues regarding the
role of b-catenin in ERþ breast cancer remain to be elucidated.
For instance, expression of b-catenin/TCF-regulated genes,
both endogenous Wnt targets and reporter constructs, is
poorly correlated with Wnt-driven mammary epithelial cell
transformation that occur either spontaneously or experi-
mentally37,38. In particular, increased expression of c-Myc and
CCND1, implicated in Wnt-driven loss of G1/S cell cycle control
in colon cancer, is either absent or dispensable in many cases of
ERþ breast cancer37,38. Furthermore, it is unclear if and how
oestrogen signalling may regulate b-catenin in breast cancer.

In this study, by depleting RUNX1 in vitro and in vivo, we
expose a link between oestrogen and b-catenin in ERþ breast
cancer, that is, RUNX1-gated oestrogen-mediated AXIN1 tran-
scriptional repression. Furthermore, we present evidence that
deregulation of b-catenin in RUNX1-deficient ERþ breast cancer

cells is associated with compromised mitotic checkpoint control,
accelerated cell proliferation and increased expression of stem cell
markers. Our work marks AXIN1 as a potential therapeutic target
to remedy deregulation of b-catenin in ERþ breast cancer
tumours that have lost RUNX1 function through somatic
mutations or other mechanisms.

Results
RUNX1 loss deregulates b-catenin. Expression of RUNX1 in the
breast cancer cohort of The Cancer Genome Atlas (TCGA)20

varied considerably among individual tumours, with strong
dependence on tumour subtype (Fig. 1a). RUNX1 mutations,
mostly in the Runt DNA-binding domain2, were identified in
18 of the overall 524 tumours in this cohort, and 17 of them were
within the group of 406 ERþ tumours20. In pursuit of molecular
mechanisms contributing to its implied tumour suppressor
activity in ERþ breast cancer, we performed pathway analysis
of genes differentially expressed in the ERþ tumours with versus
without RUNX1 mutations in TCGA, as well as in the ERþ breast
cancer cohort of Ellis et.al.18 Annotations associated with genes
differentially expressed in each of these cohorts (Fig. 1b,c) or in
both cohorts (Supplementary Fig. 1) were most significantly
related to Wnt/b-catenin signalling. The three gene lists and their
inclusion criteria are provided in Supplementary Data 1–3,
respectively.

Prompted by the data mining results, we next assessed the
effect of RUNX1 silencing on b-catenin in the MCF7 and T47D
cell culture models. Both of them represent the ERþ luminal A
breast cancer subtype, in which RUNX1 is most highly expressed
(Fig. 1a), attributable in part to promoter hypomethylation
(Supplementary Fig. 2). RUNX1 silencing with shRNAs that
target either its RUNT domain (shRx1RUNT) or its 30-untranslated
region (30-UTR; shRx130-UTR) upregulated active b-catenin
(A-b-cat) levels in both cell lines (Fig. 1d), and increased
cytoplasmic and nuclear b-catenin was confirmed by western blot
analysis of the respective MCF7 cell fractions (Fig. 1e).

RUNX1 loss promotes cell growth and stem cell markers.
Deregulation of b-catenin has been linked to cancer cell
proliferation in general and cancer stem cells in particular39–41.
Accordingly, RUNX1 knockdown with either shRx1RUNT or
shRx130-UTR resulted in increased MCF7 breast cancer cell
proliferation (Fig. 2a). Furthermore, conditional re-expression
of RUNX1 in MCF7/shRx130-UTR cells using a dox-inducible
system normalized their growth rate (Fig. 2b). In addition,
RUNX1 silencing was associated with upregulation of the stem
cell markers ALDH1A3, CD44, AXIN2, NANOG and SOX2
(refs 42–46; Fig. 2c), and RUNX1 restoration normalized SOX2
mRNA levels (Fig. 2d). Similarly in T47D breast cancer cells,
RUNX1 knockdown increased cell growth rate13 and SOX2
expression (Fig. 2e). Moreover, mRNA profiles of Runx1-deficient
mammary luminal epithelial cells from MMTV-Cre;Runx1f/f

versus control mice (GSE 47377) indicated increased expression
of Sox2 in response to Runx1 loss (Fig. 2f). Finally, as shown in
Fig. 2g, SOX2 mRNA was markedly elevated in biopsies from
RUNX1-mutant versus RUNX1-WT human primary breast
tumours in the clinical cohort of Ellis et al.18 Thus,
deregulation of b-catenin in RUNX1-deficient ERþ breast
cancer might contribute to disease progression by promoting
cell growth in general and expansion of a stem cell-like
population in particular.

RUNX1 regulates AXIN1. In pursuit of RUNX1 target genes in
ERþ breast cancer, which may mediate the regulation of
b-catenin levels, we determined both the RUNX1 transcriptome
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and its cistrome in MCF7 cells by mRNA profiling and ChIP-seq
analysis, respectively. We first compared global mRNA expres-
sion in cells expressing shRx130-UTR versus cells expressing a
nonspecific hairpin RNA (shNS) as in Figs 1e and 2. Because
recurrent RUNX1 mutations are specific to ERþ tumours20, we
determined the differentially expressed genes both in the presence
and absence of estradiol (E2), and turned our attention to 599
genes that responded to RUNX1 knockdown in the presence of
E2 (Fig. 3a, Supplementary Data 4). We then profiled RUNX1
locations with ChIP-seq to identify putative direct RUNX1
targets, those that not only respond to RUNX1 (in the presence of
E2) but also physically associate with RUNX1. As shown in
Fig. 3b, there was enrichment of RUNX1-occupied regions
(R1ORs) near the transcription start sites (TSSs) of the
RUNX1-responsive genes, likely related to short-range direct
transcriptional regulation. We next interrogated an MCF7 ERa
ChIP-seq data set47 to identify putative RUNX1-responsive
enhancers that also recruited ERa, potentially accounting for
dependence of the RUNX1 response on oestrogen. Of the 176
R1ORs present between positions � 500 kb and þ 500 kb relative
to the TSSs of the 599 RUNX1-reponsive genes, 36 genes (named
in Fig. 3b) were also occupied by ERa. Among the regions
co-occupied by RUNX1 and ERa was the second intron of AXIN1

(Fig. 3b,c), encoding a pivotal regulatory component of the
b-catenin destruction complex. Co-occupancy of this region by
RUNX1 and ERa was validated by ChIP-quantitative PCR
(ChIP-qPCR; Fig. 3d). RT–qPCR (qPCR with reverse trans-
cription) analysis confirmed the downregulation of AXIN1
expression upon RUNX1 silencing (Fig. 3e). Furthermore,
conditional induction (by dox treatment) of wild-type RUNX1,
but not RUNX1 mutants with the amino acid substitutions
D198G or R166Q found in human breast cancers18,20, restored
AXIN1 mRNA expression (Fig. 3e).

RUNX1 prevents oestrogen-mediated inhibition of AXIN1. We
next addressed the dependence of the RUNX1-AXIN1 axis on
oestrogen signalling using cell and animal experimental models,
as well as clinical data mining. First, we assessed by RT–qPCR the
effect of dox-mediated RUNX1 silencing on AXIN1 expression in
MCF7/shRx1dox cultures maintained in charcoal-stripped serum
(CSS) with or without added E2. As shown in Fig. 4a, RUNX1
silencing in the absence of oestrogens did not itself affect AXIN1
expression. However, RUNX1 silencing in the presence of E2
resulted in the suppression of AXIN1. Second, we tested
the dependence of the RUNX1-AXIN1 axis on oestrogens in
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Figure 1 | Upregulation of b-catenin in RUNX1-deficient breast cancer. (a) RUNX1 mRNA expression in the five major breast cancer subtypes in the

breast cancer cohort of TCGA20. Expression levels are significantly different between the subtypes (P¼6.8e� 38 by analysis of variance). Boxes represent

the 25% to 75% quartiles, lines within boxes represent the median levels and whiskers represent the non-outlier range. (b) Genes differentially expressed

in ERþ tumours with mutant versus wild-type RUNX1 in the breast cancer patient cohort of TCGA20 (Supplementary Data 1) were interrogated using

Ingenuity Pathways Analysis (IPA) for annotations related to major developmental signalling pathways. Line graph represents fold enrichment, and

statistical significance (bars) was calculated by Fisher’s exact test as implemented in the IPA software. (c) IPA analysis was performed as in b for the

differentially expressed genes (Supplementary Data 2) in RUNX1-mutant tumours in the breast cancer patient cohort of Ellis et al.18 (d) Top: representative

western blot analyses of the indicated proteins in MCF7 and T47D cells expressing either a nonspecific shRNA (shNS) or shRNAs targeting the Runt

domain (shRx1RUNT) or the 30-UTR (shRx130-UTR) of RUNX1. Bottom: western blots from three independent experiments were scanned using the ImageJ

software, and bar graphs represent mean densitometric values (±s.e.m.) for normalized A-b-cat corrected for b-actin. *Po0.05 by t-test. (e) Western blot

analysis of total b-catenin in whole-cell extracts (WCE), as well as cytoplasmic (cyt) and nuclear (nuc) fractions of MCF7 cells expressing the shNS or the

shRx130-UTR RNAs.
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MCF7/shRx1dox cells cultured in complete (oestrogen-contain-
ing) serum (as in Figs 1 and 2) with or without the ER antagonist/
downregulator ICI 182780. As shown in Fig. 4b, dox-mediated
RUNX1 silencing resulted in decreased AXIN1 expression in the
absence but not in the presence of ICI 182780. These results
suggest that AXIN1 is negatively regulated by oestrogen signal-
ling, and that this negative regulation is denied by RUNX1
(Fig. 4a,b). Notably, the combinatorial regulation of AXIN1 by
RUNX1 and E2 is unusual, because the global transcriptional
response to RUNX1 knockdown is generally independent on E2
(Fig. 4c). In addition, unlike the global transcriptional response to
RUNX2 overexpression7,9,48, the global transcriptional response
to RUNX1 overexpression is generally independent of E2
(Supplementary Fig. 3).

We further examined the dependence of the RUNX1-AXIN1
axis on oestrogen signalling in vitro by comparing the effect of
dox-mediated RUNX1 silencing on AXIN1 expression in ERþ

versus ER� mammary epithelial cell lines. As demonstrated by
western blot analysis, dox-mediated silencing of RUNX1 with
either shRx130-UTR (Fig. 4d) or shRx1RUNT (Supplementary Fig. 4)
resulted in the downregulation of AXIN1 expression in the ERþ

MCF7 and T47D cells, but not in the ER� MDA-MB-231 or
MCF10A cells.

We next set to test the effect of Runx1 on Axin1 mRNA
expression in ERþ versus ER� murine mammary epithelial
cells in vivo. Our strategy was to isolate mature luminal cells
(ML; predominantly ER-positive) and luminal progenitor cells

(LP; predominantly ER-negative) from MMTV-Cre;Runx1f/f and
control mice, and compare the two cell populations in terms of
the effect of Runx1 ablation on Axin1 expression. However,
because, as reported previously13, the ML cell population was
virtually lost in MMTV-Cre;Runx1f/f mice, we isolated
Runx1-depleted and control ML cells from mice with additional
ablation of Rb1, in which the ML cell population was restored
despite the absence of Runx1. As shown in Fig. 4e, Runx1 ablation
resulted in decreased Axin1 expression in the predominantly
ERþ ML cells but not in the predominantly ER- LP cells, again
suggesting E2-dependent regulation of AXIN1 by RUNX1. Thus,
multiple experimental approaches in vitro and in vivo indicate
combinatorial regulation of AXIN1 by RUNX1 and oestrogens in
both normal and transformed mammary epithelial cells. These
results implicate AXIN1 suppression in E2-driven breast
carcinogenesis, containment of which accounts for the tumour
suppressor activity of RUNX1 in ERþ breast cancer. Dependence
of the RUNX1-AXIN1 axis on oestrogens may explain the
observation of recurrent RUNX1 somatic mutations in ERþ but
not ER� breast cancer tumours20.

Association between RUNX1 and AXIN1 in ERþ breast cancer.
To address the combinatorial regulation of AXIN1 by RUNX1
and oestrogens in clinical settings, we first calculated an ‘inhibi-
tory index’ for RUNX1 in each tumour in the breast cancer
cohort of TCGA20 based on the expression levels of genes that
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Figure 2 | Increased proliferation and expression of stem cell markers in RUNX1-depleted mammary epithelial cells in vitro and in vivo. (a) MCF7 cells

expressing nonspecific (NS) or the indicated RUNX1-targeting shRNAs were plated and their growth rate was assessed by MTT assays on days 3 and 6.

(b) RUNX1 was silenced with shRx130-UTR as in Fig. 1d,e, and was re-expressed from a dox-inducible vector as demonstrated by the western blot in the inset.

Cell growth was assessed as in a and bars represent the increase in MTT values between day 3 and day 6. (c) MCF7 cells expressing a nonspecific shRNA

(shNS) or shRx130-UTR were subjected to RT–qPCR analysis of the indicated stem cell markers. Expression of Sox2 was also assessed by western blot

analysis. (d) RT–qPCR analysis of SOX2 in MCF7 cells in which RUNX1 was silenced and then restored as in b. (e–g) Comparisons of SOX2 mRNA

expression between (e) RUNX1-depleted versus control T47D cells; (f) mammary luminal epithelial cells from MMTV-Cre;Runxf/f;R26Y versus control
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RUNX1 inhibited in MCF7 cells (see ‘Methods’ section). As
shown in Fig. 5a, AXIN1 mRNA significantly correlated with the
RUNX1 inhibitory index in ERþ but not in the ER� breast
cancer types. We further analysed the association between AXIN1
and RUNX1 at the protein level using a commercial tumour
microarray, TMA-1007, which included among others duplicate
cores from 31 ERþ invasive ductal carcinomas in which ER was
expressed at either low (ERlow) or high levels (ERhigh).
We immunostained the TMA to define each tumour as positive
or negative for RUNX1 and AXIN1. Despite the reported
scarcity of RUNX1 mutations (r5% in three large independent
studies18–20), RUNX1 was undetectable in 12 of the 31 ERþ

ductal invasive carcinomas, indicating that its function may be
lost, at least transiently, in far more than the r5% of tumours
with RUNX1 mutations (Supplementary Table 1). AXIN1 was
undetectable in 11 of the 31 tumours, but there was no correlation
between the RUNX1 and the AXIN1 status across all the

tumours. However, examination of the correlation in relation to
the ER levels demonstrated strong positive association between
RUNX1 and AXIN1 (odds ratio of 21.7; P¼ 0.033) in the ERhigh

tumours with no significant correlation in the ERlow tumours
(Fig. 5b and Supplementary Table 1). The positive correlation in
the ERhigh group is illustrated by representative immuno-
histochemical images in Fig. 5c. Given the evidence from cell
culture and animal models for combinatorial regulation of
AXIN1 by RUNX1 and oestrogens (Fig. 4), the analyses of the
RNA-seq and the TMA data (Fig. 5) suggest ER-dependent
regulation of AXIN1 by RUNX1 in patient tumours as well.

Abbreviated mitosis in RUNX1-depleted breast cancer cells.
Activation of the Wnt/b-Catenin pathway is traditionally thought
to promote cell proliferation through LEF/TCF-mediated
stimulation of target genes such as CCND1, c-MYC and LEF1
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itself, resulting in accelerated G1/S cell cycle transition39,49,50.
However, cell cycle profiling showed that RUNX1 silencing, either
constitutively or conditionally (by dox treatment), resulted in
increased, not decreased percentage of cells in the G1 phase of the
cell cycle (Fig. 6a,b). Accordingly, RUNX1 silencing increased the
mRNA levels of neither c-Myc, nor CCND1 nor LEF1 (Fig. 6c and
Supplementary Fig. 5), nor did it upregulate expression of the
LEF/TCF TOPFLASH reporter (Fig. 6d). Furthermore, expression
of neither c-Myc, CCND1, nor LEF1 differed in TCGA breast
cancer tumours with wild-type versus mutant RUNX1 (Fig. 6e).
Rather than accelerated G1/S transition, the cell cycle profiles
(Fig. 6a,b) suggested abbreviated mitosis, indicated by a
reproducible decrease in G2/M cells, and this effect was
observed with both complete (oestrogen-containing) medium
(Fig. 6a) and after the supplementation of CSS with E2 (Fig. 6b).

To further investigate the role of RUNX1 in regulating breast
cancer cell cycle progression, we challenged control and RUNX1-
depleted MCF7 cells by treatment with the anti-mitotic taxane
drug docetaxel, which normally induces a G2/M block
and a mitotic catastrophe51,52. We first confirmed (Fig. 6f) the
accumulation of cells in G2/M, as well as the presence of cell
debris, in naive cultures treated with 2 nM docetaxel. A similar
response was observed in MCF7/RUNX1RUNT

dox cells cultured in
the absence of dox as control (Fig. 6g, left). However, dox-treated
(RUNX1-depleted) MCF7/RUNX1RUNT

dox cells (Fig. 6g, right), and
not dox-treated naive MCF7 cells used as control (Fig. 6f, right)
were resistant to docetaxel. Consistent with abbreviated mitosis,
cyclin B1 levels decreased in the RUNX1-depleted, docetaxel-
treated compared with control cells (Fig. 6g, inset). Similar results
were obtained with the microtubule-targeting agent nocodazole
(Supplementary Fig. 6).

Mitotic abbreviation in RUNX1-depleted ERþ breast cancer
cells could result from deregulation of b-catenin at the
centrosome, where it is locally phosphorylated and controls
microtubule organization before and during mitosis33,34,36. Given
its cell cycle-dependent expression53 (Supplementary Fig. 7), we
measured phospho-b-catenin (P-b-cat) levels by western blot

analysis of cells blocked at G1/S, G2/M or after release. As shown
in Fig. 6h, RUNX1 depletion resulted in increased P-b-cat levels
specifically around 8 h after release from a G1/S block. The
cell cycle-dependent increase in P-b-cat, which is undetectable
in unsynchronized cells (Supplementary Fig. 8) may account
for deregulated mitosis in RUNX1-depleted ERþ breast
cancer cells through its role in the centrosome33–36 (Supple-
mentary Fig. 9).

Partial restoration of cell cycle control by AXIN1 stabilization.
Because RUNX1 loss resulted in decreased AXIN1, the least
abundant component of the b-catenin destruction complex and a
rate-limiting factor for b-catenin phosphorylation and degrada-
tion32,54, we explored the effects the AXIN1 stabilizer IWR1
(ref. 55) on the deregulated cell cycle in RUNX1-depleted MCF7
cells. Remarkably, the IWR1-mediated restoration of AXIN1 and
the subsequent normalization of b-catenin levels in MCF7/shRx1
cells (Fig. 7a) resulted in a decrease in cell growth rate (Fig. 7b) to
levels measured in control MCF7/shNS cultures. Furthermore,
IWR1 prevented the cell cycle-dependent increase in P-b-cat level
(Fig. 7c) and restored docetaxel-mediated G2/M block (Fig. 7d) in
dox-treated (RUNX1-depleted) MCF7/shRx1dox cells. Taken
together, our results assign a role for RUNX1 in antagonizing
oestrogen-mediated AXIN1 suppression and highlight AXIN1 as
a potential target for the treatment of RUNX1-deficient ERþ

breast cancer (Fig. 7e).

Discussion
This study demonstrates combinatorial regulation of AXIN1 by
RUNX1 and oestrogen signalling in ERþ breast cancer cells.
AXIN1 mRNA and protein levels were decreased upon
RUNX1 silencing, and this was observed only in the presence
of oestrogen. It did not occur in (1) ER� breast epithelial cell
lines (Fig. 4d); (2) ERþ breast cancer cells treated with the ICI
182780 (Fig. 4b); and (3) ERþ breast cancer cells cultured in CSS
without added E2 (Fig. 4a). That RUNX1 regulates AXIN1 in an
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oestrogen-dependent manner in vivo is suggested by (1) the
decreased Axin1 expression in the predominantly ERþ ML cells,
but not in the predominantly ER� LP cells in Runx1-deficient
versus control murine mammary epithelium (Fig. 4e), (2) the
positive correlation between AXIN1 mRNA and the RUNX1
inhibitory index in ERþ but not ER� breast cancer subtypes in
TCGA (Fig. 5a) and (3) the positive correlation between RUNX1
and AXIN1 protein levels in ERhigh but not ERlow human ERþ

breast cancer tumours (Fig. 5b). Importantly, RUNX1 did not
stimulate AXIN1 expression in the absence of oestrogens; rather,
it prevented oestrogen-mediated AXIN1 repression (Fig. 4). Such
combinatorial regulation by RUNX1 and oestrogens does not
represent genome-wide antagonism of oestrogen-regulated gene
expression (Fig. 4c); instead, it likely reflects local interaction
between ERa and RUNX1 at a co-occupied regulatory region in
the second intron of AXIN1 (Fig. 3c). This co-occupancy does not

seem to occur through a mechanism of tethering as described for
forcibly expressed ERa in ER� MDA-MB-231 cells29. Evidence
arguing against recruitment of endogenous ERa by DNA-bound
RUNX1 in MCF7 cells has been presented previously29 and is
certainly unlikely at the AXIN1 locus, where the ERa and RUNX1
ChIP-seq peaks are phased, each perfectly aligned with its
respective DNA sequence motif (Fig. 3c). Although genome-wide
transcriptional regulation by RUNX1 is not generally dependent
on oestrogens (Fig. 4c, Supplementary Fig. 3), such dependence at
a few critical regulatory loci, such as AXIN1, may explain the
specificity of RUNX1 recurrent mutations to ERþ breast cancer
tumours18,20. While additional loci (for example, NCRNA00173,
LGR6, TFF3 and CBFA2T3, MMP17; Fig. 3b) may also contribute
to the oestrogen-dependent tumour suppressor activity of
RUNX1 in breast cancer, the role of AXIN1 downstream of
RUNX1 in this context is strongly supported by deregulation
of b-catenin in RUNX1-deficient ERþ breast cancer cells and the
corrective effects of IWR1. Our data therefore demonstrates
crosstalk between oestrogen and b-catenin signalling in ERþ

breast cancer through AXIN1. It further suggests that RUNX1
suppresses ERþ breast cancer progression by denying oestrogens
their negative regulation of AXIN1.

Our work begins to elucidate tumour suppression mechanisms
operative downstream of the RUNX1-AXIN1 axis in ERþ breast
cancer cells. As expected, loss of AXIN1 expression after RUNX1
silencing in the MCF7 and T47D cell lines was associated with
increased b-catenin levels (Fig 1d,e). However, unlike colon
cancer, increased b-catenin in breast cancer does not seem to
deregulate the b-catenin/TCF-driven transcription in the cano-
nical Wnt pathway37,38. Accordingly, the upregulation of
b-catenin in RUNX1-depleted ERþ breast cancer cell lines was
not associated with increased expression of the LEF/TCF-
responsive G1/S regulatory genes CCND1 and c-Myc (Fig. 6c;
Supplementary Fig. 5). Likewise, the Wnt reporter TOPFLASH
was not stimulated (Fig. 6d) and G1/S cell cycle transition
was not accelerated (Fig. 6a,b). Instead, E2-mediated AXIN1
suppression upon RUNX1 loss may contribute to ERþ breast
cancer progression through mitotic aberrations that promote
expansion of a stem cell-like population. This notion is supported
by the following observations: (1) accelerated growth and
upregulation of stem cell markers in RUNX1-depleted ERþ

breast cancer cells (Fig. 2a–e); (2) increased Sox2 mRNA levels in
Runx1-ablated murine mammary epithelial cells and RUNX1-
mutant human breast cancer tumour biopsies (Fig. 2f,g); (3) cell
cycle-dependent upregulation of P-b-cat in RUNX1-depleted
MCF7 cells (Fig. 6h), which could potentially affect centrosome-
anchored microtubule asters and mitotic cell polarity34,56,57;
(4) loss of cyclin B1 in RUNX1-depleted MCF7 cells (Fig. 6g),
potentially reflecting deregulated microtubule organization and
premature activation of the anaphase-promoting complex58; and
(5) abbreviated mitosis/slippage in RUNX1-depleted MCF7
breast cancer cells (Fig. 6a,g). Thus, the increased levels of
SOX2, AXIN2 and CD44 (Fig. 2c) do not appear to reflect
deregulated LEF/TCF-driven transcription. Instead, they likely
represent one aspect of a stem cell-like phenotype, potentially
related to changes in centrosomal proteins including b-catenin
and possibly RUNX1 itself59.

The consequences of b-catenin stimulation in RUNX1-
depleted ERþ luminal cells remain to be fully elucidated. They
clearly differ, however, from mechanisms activated by stimulation
of the Wnt/b-catenin pathway in mouse models where MMTV-
driven genetic manipulations lead to breast carcinogenesis38,60–62.
Such genetic manipulations typically result in the development
of basal and alveolar ER- tumours through mechanisms
resembling Wnt-driven colon carcinogenesis60–62. Possibly, the
ERþ luminal cell population is spared in these models because it
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lacks Wnt/b-catenin-responsive stem cells46. Our study suggests
that these same ERþ cells specifically respond to loss of RUNX1
function by E2-dependent downregulation of AXIN1, and that
the mechanisms operative downstream of the RUNX1/AXIN1/
b-catenin axis in these cells are distinct from those operative in
Wnt-driven colon cancer and ER� breast cancer.

Further studies are also warranted to investigate the role of
RUNX1 in the control of mammary epithelial cell physiology. We
speculate that RUNX1 may prevent undesirable b-catenin-driven
stem cell proliferation in adult ERþ luminal cells by antagonizing
ER that is activated by circulating oestrogenic compounds and
binds at the AXIN1 locus; and, downregulation of RUNX1,
as well as RUNX2 and RUNX3, during pregnancy and lactation,
and their upregulation during involution13,63 may facilitate
physiological regulation of b-catenin in response to hormonal
changes during these processes.

Compromised RUNX1 function in ERþ breast cancer likely
occurs in far more than the o5% of tumours with RUNX1
mutations20. RUNX1 expression may be compromised
in many additional cases, including the 20–40% invasive ductal
carcinomas in which RUNX1 is undetectable by immuno-
histochemistry (Supplementary Table 1 and refs 12,15).
Compromised RUNX1 transcription may be related to
promoter hypermethylation (Supplementary Fig. 2), and protein
expression and function may also be lost posttranslationally, for
example, due to CBFB mutations18–20. Subsequent loss of AXIN1
in RUNX1-deficient ERþ breast cancer cells may be prevented by
treatment with tankyrase inhibitors64,65 (Fig. 7), partly alleviating
consequences of RUNX1 loss. Tankyrase inhibition would likely
be safer than the alternative of restoring RUNX1 itself because
RUNX proteins play both tumour suppressor and oncogenic roles
in cancer1,2. In fact, RUNX1 appears to play an oncogenic rather
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than a tumour suppressor role in triple-negative breast
cancer12,15, possibly, in part, related to alternative splicing of
AXIN1 (ref. 66). In ERþ breast cancer, however, RUNX1
predominantly functions as a tumour suppressor, and the
present work attributes this function at least in part to
antagonism of oestrogen-mediated AXIN1 suppression.

Methods
Clinical data mining. High-throughput whole-genome data used in this study was
from cases for which clinical information was available in the breast cancer cohort
of TCGA20. Gene expression (based on either microarray hybridization or
RNA-seq), DNA methylation and somatic mutation data were retrieved from the
TCGA Data Portal (http://cancergenome.nih.gov/). In addition, RNA-seq data
were downloaded from the UCSC Cancer Genomics Browser (http://genome-
cancer.ucsc.edu) as ranked expression scores. Expression microarray data and
RUNX1 mutation status of 209 ERþ tumours described by Ellis et al.18 was
obtained from the University of North Carolina Microarray Database.

Mice. Mice used in this study have been previously described13. YFPþ ER�

luminal progenitor cells (LPs) were sorted from MMTV-Cre;Runx1f/f;R26Y and
MMTV-Cre;Runx1þ /þ ;R26Y (control) females (2 months of age) and YFPþ ERþ

mature luminal cells (MLs) were sorted from MMTV-Cre;Runx1f/f;Rb1f/f;R26Y and
MMTV-Cre;Runx1þ /þ ;Rb1f/f;R26Y (control) females (either 2-month or 7-month
old). R26Y is a conditional Cre-reporter that expresses YFP upon Cre-mediated
recombination. In the compound mice, conditional knockout of Runx1 (and Rb1)

in mammary epithelial cells is linked to YFP expression. Breeding with Rb1f/f mice
facilitated rescue of the ERþ luminal cell subpopulation upon Rb1 deletion as
described13. FACS sorting was performed with a FACSAria sorter (BD Biosciences)
using antibodies from eBiosciences including CD24-eFluor450, CD24-eFluor605,
CD29-APC, c-Kit-PE-CY7, CD14-PE and biotinylated CD31, CD45, TER119 and
Streptavidin-PerCP-CY5.5. All animal work was performed in strict accordance
with the recommendations in the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health and was approved by the Institutional
Animal Care and Use Committee of Boston Children’s Hospital where the animals
are housed.

Cells. The ERþ MCF7 and T47D, as well as the ER� MDA-MB-231 breast cancer
cells were from the American Type Culture Collection. MCF10A cells were
obtained from the Karmanos Cancer Institute (Detroit, Michigan). MCF7 and
T47D cells were cultured in Dulbecco’s Modified Eagle’s medium (DMEM;
Mediatech, Inc) and RPMI-1640 medium (Mediatech, Inc), respectively, both
supplemented with 10% fetal bovine serum (FBS; Gemini Bio-products).
MDA-MB-231 cells were cultured in DMEM/F12 (Mediatech, Inc) supplemented
with 5% FBS. MCF10A cells were cultured in DMEM/F12 supplemented with 5%
horse serum (Gemini Bio-products), 10 mg ml� 1 insulin (Sigma-Aldrich),
20 ng ml� 1 EGF (Sigma-Aldrich), 0.5 mg ml� 1 hydrocortisone (Sigma-Aldrich)
and 0.1 M CaCl2. For oestrogen treatment, the cells were washed three times with
phosphate-buffered saline and maintained for 48 h in phenol-red-free growth
medium supplemented with 10% CSS (Gemini Bio-products), followed by estradiol
(E2) administration (Sigma-Aldrich). ICI 182780, IWR1 and docetaxel, also from
Sigma-Aldrich, were added to the culture medium as indicated.
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expressing shRx130-UTR (shRx1) were treated for 36 h with either 5 mM IWR1 or its dimethyl sulphoxide vehicle followed by western blot analysis of the

indicated proteins. MCF7 expressing a nonspecific shRNA (shNS) were analysed as a reference control. (b) Cells as in a were treated as indicated for 6

days and their growth rate was calculated based on MTT assays as in Fig. 2b. *Po0.05 by t-test. (c) AXIN1 and P-b-cat levels were assessed 8 h after the

release of MCF7/shRx1RUNT
dox cells from a G1/S double thymidine block as in Fig. 6h. Dox treatment (to silence RUNX1) initiated along with the release from

the first thymidine block and IWR1 treatment (to stabilize AXIN1) initiated 17 h before harvest. (d) MCF7/shRx1RUNT
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silence RUNX1) and 2 nM docetaxel for 48 h (to induce mitotic slippage) as in Fig. 6f,g and IWR1 was added for the last 24 h before FACS analysis. Data are

mean±s.e.m. (n¼ 3). *Po0.05 by t-test. (e) Working model for the tumour suppressor function of RUNX1 in ERþ breast cancer, whereby RUNX1 prevents

E2-mediated AXIN1 suppression. Mechanisms linking the RUNX1/AXIN1/b–catenin axis to loss of cell cycle control in RUNX1-deficient ERþ mammary
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instead with deregulated mitosis.
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In vitro RUNX1 manipulation. Mission shRNA lentiviral plasmids targeting either
the RUNT or the 30-UTR of RUNX1 were purchased from Sigma-Aldrich
(Supplementary Table 2). For packaging, the plasmids were co-transfected into
HEK293T cells along with helper plasmids pMD.G1 and pCMV.R8.91 using the
calcium chloride method. Culture media containing viral particles were harvested
after 48–72 h and used for the transduction of breast cancer cells in the presence of
8 mg ml� 1 polybrene (Millipore Corp., MA, USA) followed by selection with
1 mg ml� 1 puromycin for 5 days. Alternatively, we used the pSLIK vector system67

for conditional RUNX1 silencing. Lentiviruses containing dox-inducible shRNAs
that target either the RUNT domain (shRx1RUNT

dox ) or the 30-UTR (shRx130-UTR
dox ) of

RUNX1 (Supplementary Table 2) were engineered by first cloning the shRNAs into
the entry vector pEN_TmiRc3. The resulting plasmids were each recombined using
Gateway LR Clonase II enzyme mix (Invitrogen) with the pSLIK destination vector
carrying a neomycin-resistant gene. Transduced cells were selected with Geneticin
(Gemini Bio-products) at 1 mg ml� 1 for MCF7 cells and 0.4 mg ml� 1 for T47D
cells. The pSLIK vector system was also used to conditionally express FLAG-tagged
RUNX1, either wild type or mutant, by following the protocol previously described
for conditional expression of FLAG-tagged RUNX2 (refs 9,68). For RUNX1 rescue
experiments, cells containing dox-inducible FLAG-RUNX1 (Rx1dox) were
additionally transduced with a lentivirus expressing the Mission shRNA against the
30-UTR of RUNX1.

Cell proliferation and cell cycle assays. Cell proliferation was assessed
using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
colorimetric assay. Approximately 5,000 cells per well were seeded in 96-well
tissue culture plates and incubated on the indicated days with 0.5 mg ml� 1 MTT
(Sigma-Aldrich) for 3 h before lysis with dimethyl sulphoxide. Absorbance at a 595
nm wavelength was measured using Victor3V plate reader from PerkinElmer. Cell
cycle synchronization at G1/S was achieved by double-thymidine block. The cells
were incubated for 16 h in medium containing 2 mM thymidine (Sigma-Aldrich),
released for 8–12 h in DMEM containing 10% FBS, and then incubated again in
2 mM thymidine for 16–18 h. For G2/M synchronization, the cells were released
from the double-thymidine block for 4 h before treatment with 100 nM nocodazole
(Sigma-Aldrich) for 14 h. Percentage of cells in the various phases of the cell
cycle was quantified by propidium iodide staining and flow cytometry using LSRII
flow cytometer (BD Biosciences) and the Modfit LT SynchWizard Tool (Verity
Software House).

TOPFLASH assay. The cells were seeded at a density of 50,000 per well in 24-well
plates, and LEF/TCF-mediated transcriptional activity was measured using the
Super8xTOPFLASH reporter plasmid with the Super8xFOPFLASH plasmid
serving as control. Plasmids were transiently transfected using the jetPrime
transfection reagent (Polyplus-Transfection) according to the manufacturer’s
specification. Luciferase activity was determined with the Dual-Luciferase Reporter
Assay System (Promega) using a Victor3V plate reader (PerkinElmer).

RT–qPCR. Total RNA from cultured cells was isolated using Aurum Total RNA
mini-kit (Bio-Rad) and cDNA was synthesized from 1 mg of total RNA with iScript
reverse transcription kit (Bio-Rad). Quantitative real-time PCR was carried out in
triplicate using a CFX96 instrument (Bio-Rad) and the Maxima SYBR Green/
Fluorescein Master Mix (ThermoFisher Scientific). Relative mRNA expression
values were normalized to those of GAPDH and/or 18S RNA. For cell populations
isolated from mouse tissue, the RNA was extracted using RNeasy kit (Qiagen) and
amplified with the Ovation RNA Amplification System V2 kit (Nugen). cDNA was
synthesized with Omniscript (Qiagen) according to the manufacturer’s protocol,
and real-time qPCR was performed using FastStart SYBR Green Master (Roche). Gene
expression in ER- LPs was measured in LPs sorted from MMTV-Cre;Runx1f/f;
R26Y and MMTV-Cre;Runx1þ /þ ;R26Y (control) adult females. Since the ERþ ML
subpopulation was largely lost in MMTV-Cre;Runx1f/f;R26Y females13, gene
expression in ERþ MLs was measured in rescued MLs (by simultaneous inactivation
of Rb1 together with Runx1 (ref. 13) sorted from MMTV-Cre;Runx1f/f;Rb1f/f;R26Y
female mice (7 months of age), upon normalization to those in ERþ MLs sorted from
2-month-old MMTV-Cre;Runx1f/f;Rb1f/f;R26Y female mice (to correct for changes in
cell compositions in the ML FACS gate) and to those in the corresponding ML
subpopulations sorted from 7-month- and 2-month-old MMTV-Cre;Runx1þ /þ ;
Rb1f/f;R26Y control females, respectively. Primers used for RT–qPCR amplifications
are listed in Supplementary Table 2.

Western blot analysis. The cells were lysed using RIPA buffer (ThermoFisher
Scientific) supplemented with protease (Sigma-Aldrich) and phosphatase inhibitors
(ThermoFisher Scientific). Cytoplasmic and nuclear extracts were prepared using
NE-PER kit (ThermoFisher Scientific) following the manufacturer’s instructions.
Proteins were resolved by SDS–PAGE (polyacrylamide gel electrophoresis) and
transferred to AmershamHybond-P PVDF membranes (GE Healthcare), followed
by blocking with 5% non-fat dry milk. The following antibodies were purchased
from Cell Signaling Technology, Inc. and used at a 1:1,000 dilution: rabbit anti-
RUNX1 (#8529), rabbit-anti-AXIN1 (#2087), rabbit anti-phospho-b-catenin
(Ser33/37/Thr41; #9561) and mouse anti-CCNB1 (#4135). Mouse anti-active-
b-catenin (#05-665) was purchased from Millipore and used at a 1:1,000 dilution.

Rabbit anti-b-catenin (ab32572) and rabbit anti-SOX2 from Abcam were used at a
1:5,000 dilution. Mouse anti-FLAG (F3165) antibody from Sigma-Aldrich was used
at a 1:2,000 dilution. Goat anti-Actin (sc-1616) and goat anti-GAPDH (sc-20357)
antibodies were purchased from Santa Cruz Biotechnology and used at a 1:200
dilutions. The mouse monoclonal anti-b-tubulin antibody, developed by Dr
Charles Walsh, was obtained from the Developmental Studies Hybridoma Bank
under the auspices of the NICHD and The University of Iowa, Department of
Biological Sciences, Iowa City, USA, and used at a 1:5,000 dilution. HRP-
conjugated donkey anti-goat (sc-2033), donkey anti-mouse (sc-2314) and goat
anti-rabbit (sc-2004) antibodies were purchased from Santa Cruz Biotechnology
and used at a 1:2,000 dilution. Immunodetection was performed using Pierce ECL2
western blotting detection system (ThermoFisher Scientific). Uncropped scans of
key western blots are provided as a Supplementary Fig. 10.

Immunohistochemistry. TMA slides (TM-1007) were purchased from Protein
Biotechnologies, Inc. The majority of tumours represented on this TMA were
invasive ductal carcinomas, of which 31 were ERþ and 33 were ER� . TMAs were
deparaffinized and rehydrated before antigen retrieval in 10 mM sodium citrate
buffer at 95 �C. After cool-down, the slides were incubated for 20 min in 1% H2O2

in methanol to block endogenous peroxidase, washed with TBS and blocked with
Background Punisher (#BP974, Biocare Medical) for 10 min at room temperature.
The slides were then incubated overnight at 4 �C with antibodies against RUNX1
(#8529) or AXIN1 (#2087), both purchased from Cell Signaling Technology and
used at a 1:50 dilution. Afterwards, the slides were washed with TBS, and treated
with MACH4 Universal HRP-polymer (#M4U534, Biocare Medical) for 30 min.
After 5-min incubation with a DAB reagent (#K3466, DAKO) to visualize HRP, the
slides were rinsed, counterstained with haematoxylin and topped with cover slips.
ER histoscores were provided by the manufacturer and presence or absence of
RUNX1 and AXIN1 was determined by a certified surgical pathologist (P.M.-F.).
The association between the RUNX1 status and AXIN1 status was tested using
the Pearson chi-square test for the 2� 2 table, for ERlow and ERhigh tumours
separately. Odds ratios for the ERlow and ERhigh tumours were compared using the
Breslow–Day test for homogeneity of odds ratios.

Expression profiling and ChIP-seq. MCF7/shRx1 and MCF7/shNS cells,
expressing shRNAs that target RUNX1 or a nonspecific shRNA, respectively, were
maintained in CSS for 48 h before treatment with either 10 nM E2 or the ethanol
vehicle for 48 h. Total RNA was extracted using Aurum Total RNA mini-kit
(Bio-Rad) and global expression profiling was performed using BeadChips
(Illumina) by the Southern California Genotyping Consortium at UCLA. To
compare the RUNX1 and the RUNX2 transcriptomes, MCF7 cells were first
transduced with the respective dox-inducible pSLIK vectors, and then with the
Mission shRx130-UTR vector. RUNX1 depleted cells were then treated with
0.25 mg ml� 1 dox to induce RUNX1 or RUNX2 expression and/or with 10 nM E2
for 48 h, and global mRNA expression was profiled as described above. RUNX1
ChIP-seq was performed essentially as described69. Briefly, MCF7 cells were cross-
linked, lysed and sonicated to obtain DNA fragments mostly in the 200–1,000-bp
range. Immunoprecipitation was performed at 4 �C overnight with anti-RUNX1
antibody (ab23980, Abcam). Downstream analysis was performed on high-fidelity
peaks reproduced in two independent experiments. GEO accession numbers for the
microarray and ChIP-Seq data are GSE65620, GSE65616 and GSE65313. MCF7
ERa ChIP-seq data was from GSE14664. ChIP-qPCR validation was performed
using antibodies against either RUNX1 (ab23980, Abcam) or ERa (sc543x from
Santa Cruz Biotechnology). For ERa, ChIP-qPCR cells were maintained in CSS for
48 h and treated with 10 nM E2 for 1 h. A region near GAPDH served as negative
control.

Data analysis. Global gene expression raw data from MCF7 cell cultures was
processed using GenomeStudio (Illumina Inc). After background subtraction and
quantile normalization, the signal intensity values were exported to the Partek
Genomics Suite 6.4 (Partek, Inc.) using ‘Partek’s Report Plug-in’option in the
GenomeStudio software and differential expression was analysed by one-way
analysis of variance. Differentially expressed genes were investigated using the
Ingenuity Pathways Analysis package ( http://www.ingenuity.com). Fisher’s exact
test as implemented in the Ingenuity Pathways Analysis software was used to
calculate P values. To estimate RUNX1 inhibitory activity on the basis of RNA-seq
tumour data mining, we first defined a set of 123 genes that were expressed in E2-
treated MCF7/shRx130-UTR cells at levels Z1.7-fold higher (Po0.05) than the
respective expression levels in MCF7/shNS cells (Fig. 3a). The ranked expression
score for each of these gene in each tumour in the breast cancer cohort of TCGA
was obtained from the UCSC Cancer Genomics Browser. We then defined an
‘inhibitory index’ for RUNX1 in each tumour as the mean rank for the 123 genes
and calculated its correlation with the respective AXIN1 expression level. For the
analysis of RUNX1 locations, the ChIP-seq reads from biological replicates and an
input control library were aligned to the hg19 build of the human genome. Peaks
for RUNX1, as well as for ERa (based on Welboren et al.47) were called with
MACS70 with default parameters using input as control and only reproducible
peaks in both RUNX1 replicates were retained for further analysis. Unless
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otherwise stated, statistical significance of differences in this study was determined
using InStat 3.0b GraphPad Software (GraphPad Software, Inc., CA, USA).
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