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Abstract

Human botulism is primarily caused by botulinum neurotoxin (BoNT) serotypes A, B and E,

with around 1% caused by serotype F (BoNT/F). BoNT/F comprises at least seven different

subtypes with the amino acid sequence difference between subtypes as high as 36%. The

sequence differences present a significant challenge for generating monoclonal antibodies

(mAbs) that can bind, detect and neutralize all BoNT/F subtypes. We used repertoire cloning

of immune mouse antibody variable (V) regions and yeast display to generate a panel of 33

lead single chain Fv (scFv) mAbs that bound one or more BoNT/F subtypes with a median

equilibrium dissociation constant (KD) of 4.06 × 10−9 M. By diversifying the V-regions of the

lead mAbs and selecting for cross reactivity we generated five mAbs that bound each of the

seven subtypes. Three scFv binding non-overlapping epitopes were converted to IgG that

had KD for the different BoNT/F subtypes ranging from 2.2×10−8 M to 1.47×10−12 pM. An

equimolar combination of the mAbs was able to potently neutralize BoNT/F1, F2, F4 and F7

in the mouse neutralization assay. The mAbs have potential utility as diagnostics capable of

recognizing the known BoNT/F subtypes and could be developed as antitoxins to prevent

and treat type F botulism.

Introduction

Botulism occurs in infants and adults and is caused by botulinum neurotoxin (BoNT), the

most poisonous substance known. [1,2]. Botulism is characterized by flaccid paralysis, which if

not rapidly fatal requires prolonged hospitalization in an intensive care unit and mechanical

ventilation. The catalytic domain of BoNT is the light chain (LC), a heavy chain (HC) is com-

prised of a translocation domain (HN) and a receptor-binding domain (HC). There are at least

seven distinct BoNT serotypes (A-H) [3–5], defined by their neutralization by serotype specific
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antitoxin; an antitoxin against one serotype will not neutralize another serotype [6,7]. For six

serotypes (A-F), there also exist multiple subtypes, which can vary at the amino acid level by

a few percent to up to 36% for BoNT/F [8–10]. Subtype sequence differences may result in

changes in surface epitopes that can cause a reduction in antitoxin potency [11].

Four BoNT serotypes (A, B, E, and F) cause virtually all human botulism. BoNTs are also

classified as Category A biothreat agents, HHS Tier 1 select agents/toxins, one of the seven

highest-risk threat agents for bioterrorism [12]. The only treatment for botulism is antitoxin

[13]. Equine antitoxin [14,15] and human botulism immune globulin [16,17] are currently

licensed to treat adult and infant botulism respectively. Human botulism immune globulin

(BabyBIG) is produced by plasmaphersing immunized laboratory personnel who are at risk of

exposure to BoNT [18]. Although human botulism immune globulin (licensed for serotypes A

and B only) has been shown to be both safe and effective for treating infant botulism scaling of

this product to treat adult botulism or for the biothreat drug repository is not feasible [18]. A

heptavalent (serotypes A-G) equine botulism antitoxin (HBAT) produced from immunized

horses is also licensed in the United States for the treatment of botulism [19]. As a foreign pro-

tein, HBAT is immunogenic, and hypersensitivity reactions, including serum sickness and

asystole, have been reported [19]. HBAT is an immunoglobulin fragment antigen-binding

(Fab’)2 whose seven serotype-specific components have short serum half-lives (7.5–34.2

hours), which preclude its effective use for prophylaxis and may predispose to relapse of

botulism after treatment [20]. As an alternative, highly potent human monoclonal antibody-

(mAb)-based antitoxins composed of three mAbs [21] are being developed for serotypes A, B,

C, D and E, with the most advanced (serotype A) having completed Phase 1 human testing

[22]. These mAbs bind non-overlapping epitopes on the BoNT molecules of the different

BoNT subtypes [23,24].

For this work, we sought to generate a panel of mAbs that bound most, or all, of the highly

disparate (up to 36% different at the amino acid level) BoNT/F sub-serotypes for the purpose

of generating a therapeutic antitoxin.

Materials and methods

Ethics

The USAMRIID Institutional Animal Care and Use Committee approved the animal care and

use protocol to conduct the animal studies reported here. Research was conducted under an

IACUC approved protocol in compliance with the Animal Welfare Act, PHS Policy, and other

Federal statutes and regulations relating to animals and experiments involving animals. The

facility where this research was conducted is accredited by the Association for Assessment and

Accreditation of Laboratory Animal Care, International (AAALAC/I) and adheres to princi-

ples stated in the Guide for the Care and Use of Laboratory Animals, National Research Coun-

cil, 2011. The specific national regulations and guidelines to which this animal care and use

protocol adheres are the following: (1) 7 USC, Sections 2131–2159, Chapter 54 “Animal Wel-

fare Act”, and (CFR, Chapter 1, Subchapter A, Parts 1–4 “Animal Welfare Regulations”; (2)

Health Research Extension Act of 1985, Public Law 99–158 “Animals in Research” and the

Public Health Service Policy in Humane Care and Use of Laboratory Animals; (3) Biosafety in

Microbiological and Biomedical Laboratories, 5th Edition, NIH, Human and Health Services

Publication (CDC) 21–112; (4) Army Regulation 40–33 “The Care and Use of Animals in

DOD Research, Development, Test and Evaluation or Training Programs” and (5) DOD

Instruction 3216.01 “Use of Animals in DOD Programs”. DOD uses the “The Guide for the

Care and Use of Laboratory Animals”, 8th Edition, Institute for Laboratory Animal Research,

National Research Council, as a guideline for evaluation and accreditation of program and it is
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based on the actual national regulations and guidelines for animal care and use programs. The

animals used in this study were euthanized using carbon dioxide gas following the AVMA

Guidelines on Euthanasia prior to spleen removal.

The University of California, San Francisco (UCSF) Institutional Review Board approved

the human use protocol used for the studies described here. Human donors were laboratory

workers being immunized to work with BoNT who were recruited via an informational letter

and who signed informed consent.

Materials

Saccharomyces cerevisiae strain EBY100 was used for library construction and BoNT/F domain

display. Escherichia coli DH5α was used for subcloning and preparation of plasmid DNA,

while the strain BL21 was used for BoNT/F fragment expression. Chinese hamster ovary

(CHO) cells were used for immunoglobulin G (IgG) expression. Yeast Peptone dextrose

(YPD) medium was used for growth of EBY100 cells. Selective growth dextrose casamino acids

media (SD-CAA) was used for selection of pYD4-transformed EBY100 as previously described

[25] and selective growth galactose casamino acids media (SG-CAA), for induction of scFv

expression on the surface of EBY100. 2 x YT was used for BL21 and DH5α growth. Pure holo-

toxin BoNT/F1 and polyclonal rabbit anti-BoNT/F antibody were purchased from Metabiolo-

gics Inc. (Madison, WI, USA). Clostridial culture supernatants containing unpurified BoNT

holotoxins BoNT/Bf2, Af4, F6, and F7 were expressed from strains An436, SU1904, Eklund

202F, and Sullivan, respectively. BoNT/F5 culture supernatant was a kind gift of Susan

Maslanka and Brain Raphael at the Centers for Disease Control and Prevention. Mouse anti-

SV5 antibody was purified from a hybridoma cell line and labeled with AlexaFluo-488 or Alex-

aFluo-647 labeling kit (Invitrogen, Carlsbad, CA, USA). All the secondary antibodies including

PE (APC)-conjugated goat anti human-Fc, goat anti-mouse Fc and goat anti-human F(ab)

were purchased from Jackson ImmunoResearch Laboratories (West Grove, PA).

Protein expression and purification

The cDNA of 14 BoNT/F fragments including F1-7 N-terminal portion of the light chain

(LC-HN) and F1-7 C-terminal portion of the heavy chain (HC) were amplified from synthetic

BoNT/F1-7 genes. All the cDNAs were subcloned into the plasmid pET28b with a hexahisti-

dine (His) tag (for the FLC-HN fragments, F1HC and F7HC) or a maltose binding protein

(MBP) tag (F2-6HC). The fragments were expressed in the E. coli strain BL21 and purified as

described [26]. The MBP-tagged BoNT/F HC fragments were purified using the agarose Dex-

trin Sepharose High Performance (GE Healthcare, Pittsburg, PA, USA), eluted into PBS with

10mM maltose. The His-tagged fragments were purified with a Ni-NTA agarose (Qiagen,

Valencia, CA). The recombinant proteins were dialyzed with PBS buffer overnight to remove

imidazole or maltose prior to use. IgG were generated by subcloning VH and Vk genes into a

mammalian expression vector with human heavy and kappa light chain constant regions,

establishment of stable CHO cell lines by transfection and purification of IgG by Protein G

chromatography as previously reported [21].

Mouse immunization and spleen harvest

For the BoNT/F toxin immunization, mice were vaccinated three times at two week intervals

(Days 1, 14 and 28) with 10 μg/mouse of catalytically inactive BoNT/ACEF HC. Mice boosted

with BoNT/F5 were also vaccinated with BoNT/F5 LC. Mice were boosted twice with 1 μg

active toxin (1.0–1.8 x 104 lethal dose 50% (LD50) BoNT/F1, BoNT/Bf2, and BoNT/F6; 2.5 x

103 LD50 BoNT/Af4; 0.5 x 103 LD50 BoNT/F7). BoNT/F5 boosts were done with nontoxic
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BoNT/F5 LC-HN. For BoNT/F LC-HN immunization, 0.25–2.5 μg/mouse of antigen were sub-

cutaneously injected with adjuvant on Days 1,14 and 28, 0.25–2.5 ug/mouse and 0.5–5.0 μg/

mouse of antigen was intramuscularly injected with adjuvant; at day 42, proteins were intrave-

nously injected in PBS. Antibody titers after the third vaccination ranged from 0.2–10 x 10−5.

Mice were euthanized and spleens were removed 3 to 5 days after their final vaccinations and

processed to extract mRNA for scFv library construction.

Yeast-displayed, scFv antibody library construction and sorting

Total RNA was isolated from the blood of healthy human donors immunized with investiga-

tional pentavalent BoNT ABCDE toxoid (formalin-inactivated toxins) or from spleens of

immunized mice. cDNA synthesis, VH and VK gene repertoires preparation and library con-

struction were completed as previously described [26]. Library size of resultant libraries is

given in S1 Table. Finally, the libraries were cultured in SD-CAA media and were induced

with SG-CAA media at 18˚C over night.

Monoclonal BoNT/F antibodies were isolated as described [25,26] by using 100nM of

BoNT/F1 with 1 hour of incubation at room temperature. Then yeasts were incubated with

2 μg/mL of rabbit anti-BoNT/F polyclonal antibody (Metabiologics Inc.) for 60 min. at 4˚C,

washed, and then incubated with 1 μg/mL of Alexa-488-labeled goat anti-rabbit Fc antibody

(Jackson ImmunoResearch Laboratories) and 1 μg/mL Alexa-647-labeled anti-SV5 mAb.

After washing, yeasts were sorted by flow cytometry and identified as previously described.

[25,26]. For the initial library sorting, positive binding population were gated as many as possi-

ble to obtain all the potential binders; but for the libraries for affinity maturation, less than 1%

of positive binder were gated to obtain the colonies with improved affinity.

Measurement of yeast-displayed scFv KD

The equilibrium dissociation constant (KD) of yeast-displayed scFv was measured by flow

cytometry, as previously described [26–29], except that mAbs used were 6F5.1 and 6F11 (for

LC-HN binders) or mAbs 6F8 and 6F3 (for HC binders) as secondary antibodies. Briefly, 2x106

yeast were incubated in serially diluted BoNT/F toxin or fragments for 1 hour at room temper-

ature, then with a detection antibody and a R-phycoerythrin (PE)-conjugated goat anti-human

or anti-mouse antibody together with Alexa Fluor1 647-labeled SV5 tag antibody. Mean fluo-

rescence intensity (MFI) was measured by flow cytometry as previously described [26,27].

Ability of mAbs to bind other BoNT/F subtypes

The yeast-displayed scFv were incubated with 100nM BoNT/F1, F2, F3, F5, F6, F7 LC-HN or

BoNT/F4 holotoxin (for LC-HN binders) or BoNT/F1, F2, F3, F4, F5, F6, F7 HC individually at

room temperature for 1 hour. All subsequent washing and staining steps were performed at

4˚C using ice-cold FACS buffer as above. Yeast-displayed scFvs were incubated for 30 minutes

with 2 μg/mL of a mixture of Alexa-647 conjugated IgGs 6F5.1 and 6F11 (for LC-HN binders)

or mAbs 6F3 and 6F8 (for HC binders) as the secondary antibody for binding detection,

together with an Alexa-488 labeled anti-SV5 IgG for detection of scFv expression. Finally, the

yeasts were washed using cold FACS buffer and BoNT/F subtype binding was measured by

flow cytometry.

Affinity maturation

The antibodies that potentially bound all seven subtypes of BoNT/F were affinity matured by

chain shuffling, followed by error prone PCR mediated random mutagenesis. For the chain
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shuffling libraries, the VH gene of the scFv was PCR-amplified with primers with gap tails and

gel purified. The plasmids containing a pYD4-VK repertoire [25] were linearized by digestion

with NcoI/SalI and were purified from an agarose gel by using Geneclean Turbo Kit (MP

Biomedicals, Santa Ana, CA, USA). The gap-tailed VH gene was transformed into EBY100

together with the linearized pYD4-VK plasmids using LiAC as described previously [28]. For

the random mutagenesis libraries, the cDNA encoding scFvs were PCR-amplified with gap-

tailed primers by using Paq5000™ DNA polymerase (Agilent, Santa Clara, CA, USA), in which

0.05mM MnCl2 was applied to introduce random mutation. The cDNA with mutations was

gel purified and transformed into EBY 100 together with NcoI/NotI digested pYD4 plasmid by

LiAC method as described previously [28]. The library size was determined by plating serially

diluted transformation mixture on SD-CAA plates. The scFv libraries were induced by cultur-

ing in SG-CAA media with 10% SD-CAA for at least 24 hours.

In order to isolate the colonies that had improved affinity to all of the BoNT/F subtypes,

each library was sorted at least five times; each subsequent round of sorting used a different

BoNT/F subtype, with the antigen concentration decreased from 100nM to 100pM from the

first to last round of sorting. After the final round of sorting, the collected yeast clones were

grown on SD-CAA plates followed by plasmid isolation and DNA sequencing. KD values were

measured and the colonies with highest affinity to each BoNT/F subtype were selected.

Epitope mapping

cDNA encoding each subtype of the BoNT/F1 LC, HN and HC domains were PCR amplified

from the seven synthesized BoNT/F genes. Gel purified cDNA fragments were digested with

NcoI/NotI and cloned into the plasmid pYD4. The recombinant plasmids were then used to

transform EBY100 by LiAC, which were grown on SD-CAA plate for 72 hours. Individual col-

onies were picked, grown in SD-CAA medium and were induced with SG-CAA medium at

18˚C for 48 hours to express the BoNT/F domain on the yeast surface. Yeast colonies were

incubated with 2 μg/ml one of the BoNT/F IgGs at room temperature for 1 hour, followed by

PE-conjugated goat anti-mouse IgG together with Alexa-488 labeled anti-SV5 IgG at 4˚C for

30 minutes. Yeast clones were washed and assayed by flow cytometry.

BoNT/F modeling and comparison

BoNT/F1 was modeled on BoNT/A crystal structure (pdb ID: 2NZ9) using the software

UCSF-Chimera [30]. The modeled LC was replaced by the crystal structure of BoNT/F LC

(pdb ID: 2A97), leading to a BoNT/F1 model containing an experimentally determined struc-

ture of LC and a modeled FN and FC. In order to compare the structure of BoNT/F subtypes,

the amino acid sequence of BoNT/F1 was aligned with the other subtypes using the online tool

“MultAlin”, (http://multalin.toulouse.inra.fr/multalin), [31]. The alignment was overlaid on

the model structure into Esprit 3 online (http://espript.ibcp.fr) [32]. which then. calculated the

similarity score based on the physiochemical property of residues. and generated a file with the

structure comparison that was edited with Pymol [32]. The difference of the amino acids was

coded between red and white; the more different, the more red.

Mouse neutralization assay

The mouse neutralization assay was performed as described previously [11]. Briefly, mAbs or

HBAT were mixed with 1 μg of the indicated BoNT/F subtype and injected into mice. The

toxin-exposed mice were observed at least twice daily. Most animals receiving lethal doses of

BoNT become moribund within 12 hours, frequently within 4 hours.

Monoclonal antibody combination neutralizes multiple botulinum neurotoxin F sub-serotypes
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Results and discussion

Comparison of the surface amino acid differences between BoNT/F

subtypes

The BoNT/F subtypes differ from each other by 1.1% to 36.1% at the amino acid level [10].

BoNT/F1 differs from the other BoNT/F subtypes by 7.7% to 30.1% at the amino acid level. To

visualize the impact of these differences on potential mAb binding, we modeled the differences

on a model of BoNT/F. The BoNT/F1 model was generated by using a combination of the

BoNT/F1 LC crystal structure (pdb ID: 2A97) and a model of the BoNT/F1 HC based on the

crystal structure of BoNT/A1 complexed to mAb CR1 (pdb ID: 2NZ9). Differences in the

amino acid sequence between BoNT/F1 and the other BoNT/F subtypes results in differences

on the BoNT/F surface (Fig 1). These differences are greatest for BoNT/F5 (31.1% different)

Fig 1. Comparison of the BoNT/F subtypes. The BoNT/F1 model was constructed by merging the BoNT/F1 LC crystal structure (pdb ID: 2A97)

and a model of the BoNT/F1 LC-HN model based on the BoNT/A1 crystal structure (pdb ID: 2NZ9). BoNT/F subtypes were compared to the BoNT/

F1 by using the tool MultAlin [31] and were visualized using ESPript 3 [32]. The physiochemical similarity of amino acids is indicated on a color

scale from white to red. The white indicates 100% identity and the red indicates 0% physiochemical similarity.

https://doi.org/10.1371/journal.pone.0174187.g001
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and BoNT/F7 (26.3% different). The difference between BoNT/F5 and BoNT/F7 are as high as

36.3%. Differences are greatest between the BoNT/F1 LC and the LC of BoNT/F5 (52.4% dif-

ferent) and the LC of BoNT/F7 (36.7% different). In contrast, BoNT/F2 and BoNT/F3 surfaces

are highly homologous. Diversity between subtypes makes it challenging to generate high

affinity mAbs to all the subtypes.

Yeast-displayed scFv antibody library

scFv yeast-display libraries were constructed from spleens of immunized mice. Since BoNT/F1

was the only holotoxin commercially available, we produced recombinant BoNT/F domains

for immunization of the other subtypes. Synthetic genes encoding the BoNT/F binding

domain (HC) or translocation domain (HN) fused to the light chain (LC) (LC-HN) of sub-sero-

types F1, F2, F3, F4, F5, F6 and F7 were designed and cloned into plasmid pET28b to contain

His tags or MBP tags. His-tagged BoNT/F1 and BoNT/F7 HC and MBP-tagged BoNT/F2, 3, 4,

5, 6 HC were expressed in the cytoplasm and could be purified (S1 Fig). His-tagged BoNT/F1,

F2, F3, F5, F6 and F7 LC-HN could be expressed and purified to varying levels of purity (S1

Fig), while BoNT/F4 LC-HN did not express as soluble protein in the cytoplasm. Mice were

initially immunized with one of the non-toxic domains and then boosted with either BoNT/F1

holotoxin or the domain used for the initial immunization (S1 Table). BoNT/F2 LC-HN was

not used for immunizations due to its high level of identity to BoNT/F1.

Total RNA was isolated from mouse spleens and used to construct scFv libraries in the

yeast display vector pYD4 exactly as described [25,26]. Libraries varied in size from 1.6x 107 to

9.0 x 107, with a 3-human donor library mixture of 2.0 x 108 (S1 Table). Total RNA was also

isolated from white blood cells from twelve human donors and was used for scFv library con-

struction as previously described [26].

mAb isolation and initial characterization

After three rounds of sorting, individual colonies were picked and characterized for binding,

yielding 33 unique mAbs as determined by DNA sequencing of the scFv genes; 26 of the mAbs

were from the murine libraries and seven from the human libraries (Table 1). Four of these

mAbs (46A5, 46F8, 47A12, and 54D7) did not bind BoNT/F1 holotoxin. The affinity of the

yeast-displayed scFv was measured by flow cytometry, demonstrating a KD to BoNT/F1 rang-

ing from 4.0 × 10−11 M to 1 × 10−7 M, with a median KD of 4.06 × 10−9 M. (Table 1).

BoNT/F subtype cross reactivity of the mAbs was tested by flow cytometry. The scFv 4E17

bound all seven BoNT/F subtypes (Table 1 and S2 Fig). BoNT scFv 6F8 and 37B6 bound six of

the seven subtypes but did not show binding to BoNT/F7 (Table 1). scFv 38B8, 38C1, 54D7,

57A8 and 57C3 bound five of the seven subtypes of BoNT/F. The other mAbs showed varying

levels of cross reactivity to the other subtypes (Table 1 and S2 Fig).

Broadening sub-serotype specificity and increasing affinity

To broaden subtype specificity and increase affinity, the V-genes of selected scFv were

mutated, displayed on yeast and sorted for higher affinity for multiple subtypes [28,29,33,34].

The VH gene of 4E17 was shuffled into a VL library, leading to 4E17.2 (6F5), which showed

improved affinity to BoNT/F1 but low affinity to other subtypes. Then V gene of 4E17.2 (6F5)

was randomly mutated by error prone PCR and sorted using extremely low BoNT/F1 holo-

toxin concentrations (100pM), which yielded the scFv 6F5.1 which has a 3.75 to>700 fold

increase in affinity for the BoNT/F subtypes with the KD ranging from 0.32 nM for BoNT/F4

to 2.97nM for BoNT/F7 (Table 2, Fig 2). IgG produced from the 6F5.1 scFv showed high affin-

ity binding to all seven BoNT/F subtypes, with KDs ranging from 26 pM against BoNT/F4
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Table 1. Binding characteristics of selected mAbs against BoNT/F.

mAb name Origin Yeast KD (BoNT/F1 Holotoxin) Domain Subtype specificity

6F3 Mouse 0.76 × 10−9 M HC F1, F7

6F4 Mouse 2.87 × 10−9 M HC F1

4E17.2 Human 1.50 × 10−9 M HN F1, F2, F3, F4, F5, F6, F7

6F6 Mouse 0.55 × 10−9 M HN F1, F3, F5, F7

6F7 Mouse 1.55 × 10−9 M LC F1, F3, F4

6F8 Mouse 0.30 × 10−9 M HC F1, F2, F3, F4, F5, F6

6F9 Mouse 0.04 × 10−9 M HC F1, F3, F4,F5

6F10 Mouse 0.12 × 10−9 M LC-HN F1, F6

28H4 Mouse 20.0 × 10−9 M HC F1, F3, F4, F6

30C8 Mouse 0.20 × 10−9 M LC-HN F1, F3, F4, F5

29A2 Mouse 0.99 × 10−9 M LC-HN F1

28C9 Mouse 15.91 × 10−9 M HC F1, F4

32G2 Mouse 5.18 × 10−9 M HC F1, F4

37B4 Human 10.14 × 10−9 M HC F1, F3, F4, F6

37B6 Human 23.75 × 10−9 M HC F1, F2, F3, F4, F5, F6

38B8 Human 18.32 × 10−9 M HC F1, F3, F4, F5, F6

38C1 Human 30.26 × 10−9 M HC F1, F3, F4, F5, F6

38D11 Human 29.13 × 10−9 M HC F1

38F8 Human 29.36 × 10−9 M HC F1, F3, F4, F6

44A12 Mouse 1.09 × 10−9 M HC F1, F4, F7

44C2 Mouse 26.93 × 10−9 M HC F1, F4, F7

44C4 Mouse 29.32 × 10−9 M HC F1, F4, F7

44F4 Mouse 16.85 × 10−9 M HC F1, F4, F7

46.25 Mouse 13.84 × 10−9 M HN F1 F3 F6

46A5 Mouse No binding LC-HN F3

46F8 Mouse No binding LC-HN F3

46E12 Mouse 4.06 × 10−9 M HN F1 F3 F6 F7

47A12 Mouse No binding HN F3, F5, F6

54D7 Mouse No binding LC-HN F3, F4, F5, F6, F7

55A9 Mouse 5.25 × 10−9 M HC F1, F4, F7

56E11 Mouse No binding LC-HN F3

57A8 Mouse 28.67 × 10−9 M LC-HN F1, F3, F5, F6, F7

57C3 Mouse >100 × 10−9 M LC-HN F1, F3, F5, F6, F7

https://doi.org/10.1371/journal.pone.0174187.t001

Table 2. The KD values (x 10-9M) of affinity and specificity-matured yeast-displayed scFv for the seven BoNT/F subtypes.

Antibodies (epitopes)

Toxin* 4E17.2 (6F5)!6F5.1

(HN)

46E12!6F11(HN) 46.25!6F1 (HN) 47A12!6F13 (HN) 6F8 (HC) 28H4!6F15(HC)

F1 1.5 0.4 23.4 3.81 50.0 6.93 NB 3.63 0.3 12.7 1.77

F2 42.3 2.23 NB# 93.5 NB 141 NB 97.8 8.8 NB 41.3

F3 40.3 2.09 >500 19.8 >500 59.6 >500 13.2 0.44 >500 19.5

F4 >250 0.32 NB 3.61 NB 38.9 NB 24.1 5.32 >500 53.4

F5 14.1 0.68 NB >50 NB 49.1 >500 12.8 52.7 NB 196

F6 4.88 1.24 >500 8.42 >500 70.3 >500 6.23 4.95 >500 60.3

F7 101 2.97 >500 200 NB >500 >500 39.2 NB NB 10.5

#NB: No binding detected

*For HN binders, BoNT/F1, F2, F3, F5, F6, F7 LC-HN or BoNT/F4 holotoxin were used; For HC binders, BoNT/F1, F2, F3, F4, F5, F6, F7HC were used for

KD measurement.

https://doi.org/10.1371/journal.pone.0174187.t002
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holotoxin to 204 pM against BoNT/F7 LC-HN (Table 3). In addition, 4E17.2 is a highly cross

reactive mAb that also binds HN of BoNT/A, BoNT/B, BoNT/E and BoNT/H [29,33].

A similar strategy was used for scFv 6F8, 37B6, 38B8, 38C1, 54D7, 57A8, 57C3, 46E12,

46.25, 47A12, and 28H4 with the first mutagenesis strategy being light chain shuffling followed

by error prone mutagenesis. Selections and sorting were performed by simultaneous incuba-

tion of yeast-displayed scFv with two to up to five of the BoNT/F subtype fragments labeled

with different fluorescent labels [34]. Using this strategy, the affinity and specificity of scFv

Fig 2. Cross reactivity of the affinity matured mAbs against BoNT/F subtypes. Yeast-displayed single chain Fv were incubated with BoNT/F

LC-HN or HC fragments followed by an Alexa-647 labeled secondary IgG for binding detection. An Alexa-488 labeled anti-SV5 IgG was used to

detect scFv mAb expression on the yeast surface. For 6F5.1, 6F11, 6F12 and 6F13, BoNT/F LC-HN fragments or BoNT/F4 crude toxin were

used (the upper panel) and for 6F8 and 6F15, BoNT/F HC fragments were used.

https://doi.org/10.1371/journal.pone.0174187.g002
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46E12, 46.25, 47A12, and 28H4, were improved to generate scFv 6F11, 6F12, 6F13 and 6F15,

respectively. While the starting scFv bound 3–4 subtypes, the resultant scFv bound all seven

subtypes (Fig 2), with the KD on yeast ranging from 3.81nM to 200 nM for 6F11, 6.93 nM to

>500 nM for 6F12, 3.63 nM to 97.8 nM for 6F13 and 1.77 nM to 60.3 nM for 6F15 (Table 2).

Thus for each of these four scFv, it proved possible to impart a measurable KD where previ-

ously no detectable binding could be observed (Table 2 and Fig 2 versus S2 Fig). IgG con-

structed from the engineered 6F11 and 6F13 bound to each of the seven BoNT/F sub-

serotypes with KD ranging from 1.47 pM to 12.8 nM for 6F11 and from 112 pM to 32 nM for

6F13 (Table 3). Interestingly, it was not possible to broaden the specificity of scFv 6F8, 37B6,

38B8, 38C1, 54D7, 57A8, or 57C3 to all seven subtypes.

Epitope determination and overlap analysis

In order to confirm the binding domain of the cross-reactive antibodies, three domains of

BoNT/F1, (LC, HN, and HC) and LC-HN were subcloned into the plasmid pYD4 and displayed

on the surface of EBY100. The yeast-displayed domains were incubated with Alexa-647 conju-

gated IgG and Alexa-488 labeled antiSV5 IgG and detected by flow cytometry. The results

demonstrated that 6F5.1, 6F11, 6F12, and 6F13 bound BoNT/F LC-HN and BoNT/F HN, indi-

cating that they bound on HN domain, and that 6F8 and 6F15 bound BoNT/F HC (S3 Fig)

Only 6F7 bound BoNT/F LC. A sandwich binding assay was designed to determine if the four

BoNT/F HN binders shared overlapping or non-overlapping epitopes. BoNT/F1 was captured

by a yeast displayed yeast-displayed scFv, and each Alexa labeled IgG was tested for the ability

to simultaneously bind the scFv captured BoNT/F1 (Fig 3). 6F11 and 6F12 share an overlap-

ping epitope, while 6F5.1 and 6F13 had epitopes that did not overlap with each other or with

the epitopes of 6F11 and 6F12. Similarly, the HC binding 6F8 and 6F15 were able to bind

BoNT/F1 simultaneously, indicating that their epitopes on the HC did not overlap (Fig 3).

Mouse neutralization assay

Our previous studies demonstrated that potency of in vivo BoNT neutralization by mAbs was

greatest when three mAbs with high affinity and non-overlapping epitopes were combined

[21]. A combination of mAbs 6F5.1, 6F11, and 6F13 were chosen for the mouse neutralization

assay due to their ability to bind multiple BoNT/F subtypes, their non-overlapping epitopes,

and their relatively high affinity when compared with the other mAbs reported here. Although

6F15 is also cross-reactive to all the seven subtypes, it had lower affinity to BoNT/F4, F5 and

F6. HBAT was used as a comparator. Various doses of an equimolar combination of the three

mAbs (0.5 μg– 100 μg) or the equine antitoxin (10 μg– 300 μg) were incubated with 1 μg of

BoNT/F1, F2, F4, or F7; the mixtures were injected into mice, and the animals were monitored

Table 3. KD values of selected IgGs to BoNT/F toxin subtypes (x 10−12 M) as determined by flow

fluorimetry in a KinExA [28].

Toxin 6F5.1 6F11 6F13

BoNT/F1 holotoxin 90.93 1.47 327.31

BoNT/F2 holotoxin 64.22 287.46 22150

BoNT/F3 LC-HN 78.76 52.94 2860

BoNT/F4 holotoxin 26.38 85.64 112.17

BoNT/F5 holotoxin 152.01 12850 125.39

BoNT/F6 holotoxin 26.67 142.56 822.63

BoNT/F7 LC-HN 204.53 430.60 458.13

https://doi.org/10.1371/journal.pone.0174187.t003
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for signs of botulism and mortality. As the antibody:toxin interactions are based on amounts,

and not toxicities, of the toxins, an equimolar amount of BoNT/F subtypes (1 μg) was studied

rather than an equipotent dose (LD50). A broad range of specific activity of the different

BoNT/F subtypes (> 40 fold difference in lethality was seen when comparing LD50s of 1 μg of

BoNT/F4 to 1 μg of BoNT/F1) (Table 4). Five micrograms of the mAb combination completely

Fig 3. Identification of overlapping and non-overlapping mAb epitopes. Yeast-displayed scFv were incubated with BoNT/F1 holotoxin,

followed by incubation with one of six Alexa-647 labeled IgG and Alexa-488 labeled anti-SV5 IgG. mAbs with non-overlapping epitope showed a

signal in the Y-axis.

https://doi.org/10.1371/journal.pone.0174187.g003
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protected mice that were challenged with 1 μg (20,000 LD50) of BoNT/F1 and 1 μg of the mAb

combination protected 8/10 mice, indicating a median effective dose (ED50) of less than 1 μg

(Table 4 and Fig 4). For BoNT/F7, the most frequently reported BoNT/F subtype causing

human disease, complete protection of a 1 μg (11,000 LD50) challenge dose of BoNT occurred

at a mAb dose of 20 μg, with an ED50 of less than 10 μg. The mAb combination was least potent

for BoNT/F2, with an ED50 of approximately 50 μg, likely reflecting the lower affinity of mAb

6F13 for this subtype (22 nM) compared to the other BoNT/F subtypes (112–458 pM, Table 3).

The mAb combination was approximately 150 times more potent in neutralizing BoNT/F1

than equine antitoxin on a weight basis and approximately 450 times more potent on a molar

basis (IgG molecular weight = 150 kDa; Fab molecular weight = 50 kDa), since 1.0ug of mAbs

neutralized 20,000LD50 of BoNT/F1. In contrast, 50ug of HBAT was needed to neutralize 6600

LD50 of BoNT/F1. This difference would be expected given that only a fraction of polyclonal

antitoxins bind the BoNT F1. For BoNT/F2, F4 and F7, the mAb combination also demon-

strated much potent neutralizing capacity than HBAT, with the ED50 of<50ug for BoNT/F2,

< 5.0ug for BoNT/F4 and< 10ug for BoNT/F7. By comparison, the range of ED50s of the

equine antitoxin for the four BoNT subtypes were more than 100 fold lower than the mAb

combination; the lowest ED50 was for BoNT/F7, with 300ug of HBAT rescuing 9 of 10 mice

with 344 LD50 of BoNT/F7 challenge but without showing any protection if mice exposed to

11000 LD50 of BoNT/F7 (Table 4 and Fig 4).

Conclusions

Using repertoire cloning, a panel of murine scFv antibody fragments were generated that

bound one or more of the BoNT/F subtypes. Only one of these lead scFv bound all seven

BoNT/F subtypes, reflective of the fact that the subtypes differ by up to 36% at the amino acid

level [10]. Using yeast display and the simultaneous staining and sorting of yeast-displayed

scFv for binding to multiple subtypes, we significantly increased subtype cross-reactivity and

Table 4. Neutralization of BoNT/F subtypes in the mouse neutralization assay by HBAT of an equimolar combination of mAbs 6F5.1, 6F11 and

6F13.

mAbs 6F5.1+6F11+6F13 Equine antitoxin (HBAT)

BoNT/F subtype F1 F2 F4 F7 F1 F2 F4 F7

Experimentally-determined LD50 of 1 μg of toxin 20000 2000 480 11000 66001 2000 480 11000

Antibody Dose (μg) Mice surviving/ mice studied

0.5 1/10 0/10 0/10

1.0 8/10 0/10

2.0 8/10 1/10

5.0 10/10 0/10 10/10 2/10

10 10/10 8/10 1/10

20 10/10 2/10

50 7/10 10/10 9/10 10/10 0/10 0/10 0/10

100 7/10 10/10 1/10 5/10 0/10

150 10/10 2/10 10/10 0/10

300 10/10 4/10 0/10

ED50 (ug)3 0.5–1.0 20–50 2–5 5–10 20–50 >3002 100 >>3002

1 BoNT/F1 dose reduced as 50% survival not achieved at maximal HBAT dose with 20,000 LD50 challenge.
2 300 μg of HBAT protected 9 of 10 mice from 1,000 LD50 BoNT/F2 and 344 LD50 of BoNT/F7 challenge.
3 The ED50 is the mAb dose at which greater than 50% of the mice studied survived

https://doi.org/10.1371/journal.pone.0174187.t004
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affinity. As a result, four mAbs were generated that bound all seven BoNT/F subtypes with

high affinity. Interestingly, three of the most cross reactive mAbs, 6F11, 6F12 and 6F13, were

those that initially only showed measurable binding to three to four of the BoNT/F subtypes.

Broadening specificity occurs through a combination of removing steric clashes, increasing

complementarity determining region (CDR) flexibility and generating new contacts such as

hydrogen bonds and van der Waals interactions while not changing key contact residues

[34,35]. For whatever reason, in the examples here that only proved possible with the less

cross-reactive lead mAbs.

The mAbs reported here have potential diagnostic and therapeutic utility due to their sub-

type cross reactivity. The ability to bind all seven BoNT/F subtypes allows sensitive detection

Fig 4. Protection of mice from BoNT/F subtypes challenged by HBAT or triple mAb combination. (A) Mouse

survival following intoxication with different toxin subtypes. The combination of 6F5.1/6F11/6F13 (3Ab) rescued

mice at much lower dosage (the solid lines) than the equine-derived HBAT showing with dash line. (B) Neutralizing

capacity of HBAT and triple mAb combination (LD50/μg), calculating by toxin amount (LD50) divided by HBAT or

mAbs dosage (μg) that rescue >70% of mice.

https://doi.org/10.1371/journal.pone.0174187.g004
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of all known BoNT/F’s and increases the probability that yet-to-be discovered subtypes

will also be detected [29,36]. Therapeutically, the mAbs reported could serve as leads for devel-

opment of a neutralizing mAb combination, for example via humanization, as has been

reported for BoNT/A [22]. While we did not evaluate the ability of the mAbs reported here to

neutralize BoNT/F3, F5 and F6, due to lack of availability of the toxins, the mAb affinities for

these subtypes would suggest that potent neutralization would be achieved. Compared to anti-

toxins generated by animal immunizations, such mAb combinations are more potent, can be

engineered to have broader subtype coverage as reported here and are expected to have a lon-

ger half-life in vivo reducing the risk of reintoxication [20].

Supporting information

S1 Fig. Analysis of the purity of recombinant BoNT/F domains. A. Cartoon of botulinum

neurotoxin primary structure. B. SDS-PAGE analysis of BoNT/F fragments expressed from E.

coli BL21 (DE3). The upper panel shows the expression of BoNT/F LC-HN fragments fused

with a 6 x His tag (~110Kd). C. Expression of BoNT/F HC fragments fused with a 6 x His tag

(BoNT/F1 HC and BoNT/F7 HC, (~50Kd) or fused to a maltose binding protein (MBP) tag

(BoNT/F2, F3, F4, F5 and F6 HC, (~80Kd).

(TIF)

S2 Fig. Cross reactivity of selected mAbs against BoNT/F subtypes. Yeast displayed scFv

were incubated with BoNT/F LC-HN fragments (scFv 4E17, 46E12, 46.25 and 47A120) or were

incubated with BoNT/F HC fragments (6F8 and 28H4) and then an Alexa-647 labeled second-

ary IgG was used for binding detection. An Alexa-488 labeled anti-SV5 IgG was used to detect

scFv mAb expression on yeasts. Binding to BoNT/F4 was measured using crude BoNT/F4 cul-

ture supernatant due to the absence of recombinant domains.

(TIF)

S3 Fig. Domain specificity of cross-reactive mAbs. Yeast displayed BoNT/F1 LC, HN,

LC-HN or HC was incubated with Alexa-647 labeled IgG and Alexa-488 labeled anti-SV5 IgG.

(TIF)

S1 Table. Characteristics of yeast display libraries used for BoNT/F mAb generation.

(PDF)
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