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Insights into the Transcriptional 
Architecture of Behavioral 
Plasticity in the Honey Bee Apis 
mellifera
Abdullah M. Khamis1,*, Adam R. Hamilton2,*, Yulia A. Medvedeva1,†, Tanvir Alam1, 
Intikhab Alam1, Magbubah Essack1, Boris Umylny3, Boris R. Jankovic1, Nicholas L. Naeger2, 
Makoto Suzuki4, Matthias Harbers4,5, Gene E. Robinson2 & Vladimir B. Bajic1

Honey bee colonies exhibit an age-related division of labor, with worker bees performing discrete 
sets of behaviors throughout their lifespan. These behavioral states are associated with distinct 
brain transcriptomic states, yet little is known about the regulatory mechanisms governing them. 
We used CAGEscan (a variant of the Cap Analysis of Gene Expression technique) for the first time 
to characterize the promoter regions of differentially expressed brain genes during two behavioral 
states (brood care (aka “nursing”) and foraging) and identified transcription factors (TFs) that 
may govern their expression. More than half of the differentially expressed TFs were associated 
with motifs enriched in the promoter regions of differentially expressed genes (DEGs), suggesting 
they are regulators of behavioral state. Strikingly, five TFs (nf-kb, egr, pax6, hairy, and clockwork 
orange) were predicted to co-regulate nearly half of the genes that were upregulated in foragers. 
Finally, differences in alternative TSS usage between nurses and foragers were detected upstream 
of 646 genes, whose functional analysis revealed enrichment for Gene Ontology terms associated 
with neural function and plasticity. This demonstrates for the first time that alternative TSSs 
are associated with stable differences in behavior, suggesting they may play a role in organizing 
behavioral state.

Due to its extensive behavioral repertoire and highly social lifestyle, the European honey bee (Apis mel-
lifera) has been utilized as an ethological model for decades. More recently, the publication of the honey 
bee genome1, quantitative trait locus analyses2, and transcriptomic studies3 have positioned the honey 
bee at the forefront of efforts to understand the relationship between genes, the environment, and com-
plex behavior. Adult worker honey bees exhibit behavioral maturation and transition between discrete 
sets of tasks as they age4. Bees perform tasks in the hive for the first 2–3 weeks of their 6–7 week adult 
life, such as cleaning or building new honeycomb and tending to (“nursing”) the brood. They then 
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transition to working outside the hive, guarding its entrance or foraging for food and other resources. 
While this behavioral maturation has a strong age-related foundation, bees are also able to respond to 
changing colony conditions by accelerating, delaying or even reversing their trajectory. This behavioral 
plasticity is influenced by a complex of factors including genotypic background, colony demography, 
nutrition, and the availability of colony resources4. It is also mediated by specific endocrine factors and 
neuromodulators, and associated with changes in the expression of thousands of genes in the brain, some 
of which have causal effects on behavior3. As a result, transcriptomic analyses of behavioral maturation in 
honey bees have led to fundamental insights about how genotype and the environment act on the brain 
transcriptome to regulate behavior3.

Two particular behavioral states in honey bees, nursing and foraging, are often used to characterize 
the relationship between behavioral maturation and the transcriptome due to the well-characterized 
and distinct suites of behaviors that each entails. While the social, neuroendocrine, physiological, 
molecular, and genetic influences mediating these states have been elucidated in numerous studies3, 
the transcriptional regulatory architecture in the brain underlying and connecting these maturational 
determinants remains largely unknown. A brain transcriptional regulatory network (TRN) derived from 
co-expression data collected in a large set of microarray studies revealed that a small number of TFs were 
predicted to reliably regulate the vast majority of differentially expressed genes (DEGs) in the brain5. 
Similarly, examining the cis-regulatory logic underlying motifs present in the promoters and enhanc-
ers of DEGs revealed that specific combinations of motifs (many of which are binding sites for TFs 
identified in the above-mentioned brain TRN5) were reliably associated with the differential expression 
of maturation-related genes in the brain6. Together, these results strongly suggest that a set of key TFs 
are responsive to maturational determinants and regulate definable gene modules to govern patterns of 
behavior. A comprehensive understanding of the manner in which these TFs contribute to behavioral 
state is thus essential to furthering our understanding of how behavior is organized.

As can be seen, there is great interest in elucidating the genome-scale TRNs underlying behavior5–9. 
However, because bioinformatics and experimental methods for identifying potential cis-regulatory sites 
upstream of the transcriptional start site (TSS) can be unreliable or difficult, respectively10,11, an ideal 
approach is to use a combination of methods to increase the robustness of inferences made about a 
network’s regulatory architecture. Since recent studies have highlighted the fact that a surprising pro-
portion of potential binding sites in the promoter’s immediate vicinity exert functional influences on 
gene expression12, the region surrounding the TSS may provide particularly valuable insights about the 
identity of the TFs regulating a gene. Indeed, it appears that TF binding at the promoter is so vital that 
regulator-target interactions during development can be conserved over vast evolutionary distances13.

Transcriptomic techniques based on cap analysis of gene expression (CAGE) allow for high-throughput 
deep sequencing of the 5’-ends of mRNA transcripts to identify a gene’s TSS as well as promoter features 
downstream of the start site by selectively enriching and sequencing the region immediately down-
stream of the 5’ methylguanosine cap14. This allows one to spatially restrict motif finding to cis-regulatory 
modules that are actively co-transcribed with the target gene, and thus likely to be biologically rele-
vant15. These modules can then be used to create a high resolution map of the transcriptional start sites 
upstream of actively transcribed genes16.

In order to determine how TFs (as well as promoter and TSS characteristics) might contribute to 
behavior, we used CAGEscan17 to examine the transcriptional regulatory architecture in the brain under-
lying behavioral maturation. The large quantities of RNA required to perform traditional CAGE and 
SAGE techniques preclude the analysis of individual bee brains, a critical factor in accurately characteriz-
ing nuanced transcriptomic changes associated with behavioral state. CAGEscan, however, is a variant of 
the nanoCAGE technique and is designed expressly for promoter characterization from small quantities 
of input RNA17. Mapping CAGEscan reads to a reference genome allows for accurate identification of 
TSS and the related promoter and 3’ region of the expressed gene. CAGEscan thus permits one to detect 
subtle changes in gene expression and link them to promoter characteristics such as motif composition 
of the promoter and TSS. With CAGEscan it is also possible to utilize paired-end-reads to provide addi-
tional information on the 3’end of the DNA fragments within the library. The additional 3’-end reads 
are used to improve mapping to the reference genome and to more accurately associate 5’-end reads 
to genes, and allowing for the discovery of novel promoter regions and TSSs. Here we report on the 
first comprehensive use of CAGEscan and mapping of TSS followed by promoter analysis of honey bee 
behavioral maturation.

Alternative TSSs are a pervasive feature in eukaryotic genomes, and a growing body of evidence 
indicates that they may play a vital role in gene regulation18. While they can arise from distinct pro-
moter regions clearly separated by long stretches of sequence, alternative TSSs can also occur close to 
each other within the same promoter region; even subtle alterations in a gene’s TSS have been associated 
with changes in the expression of downstream genes in Drosophila melanogaster19,20 and mammals21. 
CAGE-based techniques have already made valuable contributions to our understanding of transcription 
in model organisms such as, the fruit fly19,20, zebrafish22, and human and mouse15,23,24, and specifically 
in the nervous system, where alternative TSSs appear to play a role in establishing developmental25 and 
region-specific26 gene expression patterns. However, the potential relevance of alternative TSSs in organ-
izing behavior has, to our knowledge, not been addressed in any organism. A previous characterization 
of promoter usage at the transcriptome level using 5’ LongSAGE and expressed sequence tags found that 
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there was evidence for TSS variability in nearly half of the genes transcribed in the head of male bees27, 
suggesting that promoter and TSS usage may also play a vital role in the regulatory systems underlying 
behavioral maturation.

Using CAGEscan to associate differentially expressed TFs with motif enrichment in the promoter 
region of DEGs, we were able to infer the identity of putative regulators of DEGs in specific behavioral 
contexts. Moreover, the identification of many of these TFs in previous analyses5 suggests that they may 
play a role as regulators of not only individual genes, but of the behavioral state itself. If so, they would 
represent crucial links between the transcriptomic architecture and behavior. Finally, we used CAGEscan 
to accurately detect TSSs for every expressed gene, which enabled us to discover differences in TSS usage 
in different behavioral contexts. For the first time, this implicates alternative TSS usage as a potential 
mechanism regulating the transcriptomic changes underlying behavioral maturation.

Results and Discussion
Read Mapping and Gene Expression. To elucidate the regulatory networks and TFs underlying 
behavioral plasticity in honey bees, we prepared CAGEscan libraries from the brains of individual nurses 
and foragers. Libraries were pooled into two groups of eight (corresponding to nurses and foragers) for 
sequencing on an Illumina platform (Fig.  1), and sample-specific barcodes were used to differentiate 
between individuals. Initial sequencing of the forager samples revealed a low number of reads relative 
to standard RNAseq protocols. Since this deficiency in reads was likely due to the sequencing protocol 
rather than the quality of the RNA (Supplementary Table S1), the input cDNA of the nurse samples 
was increased to compensate. A total of 102,568,069 and 67,921,806 paired-reads were obtained from 
the sequencing of the nurse and forager samples, respectively; after filtering for read quality, 92,603,096 
and 39,946,689 paired-reads were retained (Fig. 1, Supplementary Table S2). 63% and 59% of nurse and 
forager reads, respectively, could be mapped to v4.5 of the honey bee reference genome (Supplementary 
Table S3), and were then processed for mapping quality (Supplementary Table S4). 83% to 90% of the 
CAGE tags from each sample could be mapped to genes in the honey bee genome (Supplementary Table 
S5), and we were able to associate CAGE tags with 13,111 genes. After normalizing and filtering the 

Figure 1. Overview of library preparation and sequencing. CAGEscan libraries were generated from total 
RNA extracted from individual brains of 8 nurses and 8 foragers. Barcoded cDNAs were pooled into two 
lanes and sequenced on an Illumina HiSeq2000. The resulting reads can be viewed in the table on the right.
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genes (see Methods), 12,453 of the 15,314 genes in OGSv3.2 (81.3%) had measurable levels of expression 
(Table 1). Despite the low quantity of read counts in our samples relative to traditional RNAseq studies, 
plotting saturation curves indicated that the degree of coverage was adequate to capture genes with a low 
level of expression, even in the forager samples (Supplementary Fig. S1). For additional measures of read 
quality and distribution, see Supplementary Tables S1–S5.

Comparing the per sample biological coefficient of variation (Supplementary Fig. S2) and per gene 
squared coefficient of variation (Fig. 2) revealed that there was a substantially higher degree of within-group 
variation in gene expression among foragers than nurses (p-value <  1.0e-300, Wilcoxon Rank Sum Test). 
Although this increase in variance could theoretically be due to the lack of read coverage in forager sam-
ples relative to nurses (Supplementary Table S2), we minimized the impact of coverage-related biases by 
normalizing gene expression (see Methods). Moreover, if the variance was a result of low coverage, one 
would expect genes with a low level of expression to be the most adversely affected, and thus have the 
highest variance. However, this does not appear to be the case (Fig.  2), indicating that read count did 
not contribute significantly to variation in gene expression or, by extension, differential gene analyses. It 
is possible, then, that the discrepancy in variation is a biologically relevant phenomena and may reflect 
the fact that the foragers have to respond to a far more diverse set of stimuli (samples were collected 
on their return trip) and adapt to more variable conditions (i.e., outside environment and varying floral 
conditions) than do the hive-bound nurses. Although no prior study has explicitly compared nurse and 
forager variability in gene expression, forager variability has itself been the focus of other studies, which 
found that differences in experience, motivational state and environmental exposure can lead to distinct 
neurotranscriptomic states3,28.

Number of genes

Total number of genes in OGS3.2 15,314

Number of genes associated with CAGE 
tags in at least one sample 13,111 (85.6%)

Number of genes associated with CAGE 
tags in two or more samples 12,453 (81.3%)

Table 1.  Number of genes that could be associated with CAGE tags.

Figure 2. The squared coefficient of variation (CV2) in per-gene expression for foragers and nurses. The 
x-axis is the log10 normalized per-gene expression level and the y-axis is the squared coefficient of variance 
(CV2). It is apparent that variability in gene expression within foragers is higher than nurses for most genes, 
yet not for genes with a low level of expression (which should be the most prone to variation arising from 
technical artifacts).
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Despite the disparity in within-group variance between nurses and foragers, unsupervised hierar-
chical clustering (Fig. 3A,B, Supplementary Figs S3 and S4) was able to generate two distinct groups of 
gene expression profiles that correspond directly to the behavioral state of the sampled bee. Hierarchical 
clustering also revealed discrete within-group clustering of the samples, which may reflect differences in 
within-group genetic relatedness (despite an average degree of relatedness of 75%), age, or time spent 
performing a particular activity28. A single outlier (sample F41) was identified during this analysis. 
However, subsequently removing the outlier had little impact on downstream analyses (Supplementary 
Table S6), and the sample was retained. Overall, these results indicate that CAGEscan was able to reca-
pitulate the strong relationship between neurotranscriptomic and behavioral state observed in previous 
honey bee microarray studies29–31.

Figure 3. Hierarchical clustering of the brain gene expression profiles of nurse and forager honey 
bees. Clustering was performed using Ward’s method. Rows correspond to 100 clusters obtained from 
12,453 genes by the k-means algorithm and columns represent nurse (‘N’) and forager (‘F’) samples. The 
scale bar indicates the z-scores of gene expression values, such that highly expressed genes are depicted in 
(dark red) while genes with low levels of expression are depicted in (dark blue). A heatmap showing 
the hierarchical clustering of all 12,453 genes without K-Means clustering is provided in (Supplementary 
Fig. S2).

http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_comp  <FFFC>    .html
http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_comp  <FFFC>    .html
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Differentially Expressed Genes. There were 1,058 differentially expressed genes (DEGs) between 
nurses and foragers (FDR <  0.05, Supplementary Dataset 1, Supplementary Fig. S5). Although the num-
ber of DEGs upregulated in both groups is almost identical (534/524 genes in foragers and nurses, 
respectively), K-Means clustering revealed 29 clusters of upregulated genes in foragers and 21 clusters 
in nurses (Fig.  4). This suggests that foragers may have greater variation in regulatory patterns, which 
is consistent with our previous observations on the distribution of variance within the two behavioral 
groups.

The honey bee brain is surrounded by the hypopharyngeal glands (HPG), making it difficult to dissect 
the brain without the risk of contamination. Further, because the development of the HPG is intrinsically 
linked to the maturational state of the bee, contamination can result in systematic biases in gene expres-
sion when behavioral maturation is being assessed. Therefore, in order to determine the extent of poten-
tial contamination we used RNAseq to obtain an expression profile of nurse and forager HPGs relative to 
brain tissue. We then compared genes that were upregulated in the HPG to our dataset (Supplementary 
Table S7). Only 36 of the 1125 genes that were strongly (log2 fold-change >  3) upregulated in the HPG 
were identified as differentially expressed between nurses and foragers, implying that HPG contamination 

Figure 4. Heatmap for the hierarchical clustering of the differentially expressed brain gene profiles of 
nurse and forager honey bees. Rows correspond to 50 clusters obtained from 1,058 DEGs by the k-means 
algorithm. Columns represent samples. The scale bar indicates z-scores of gene expression values, with highly 
expressed genes depicted in dark red low-expressed genes depicted in dark blue. The heatmap that shows the 
hierarchical clustering of all 1,058 DEGs without clustering is provided in (Supplementary Fig. S3).



www.nature.com/scientificreports/

7Scientific RepoRts | 5:11136 | DOi: 10.1038/srep11136

most likely had a minimal impact on the identification of DEGs. Since the potential influence of this 
contamination appeared to be negligible, no DEGs were removed from subsequent analyses.

Comparisons with Previous Studies. To explore the concordance of these results with previous 
studies, we compared our data to prior microarray assessments of nurse and forager brain transcrip-
tomes. For consistency, we remapped the microarray datasets to the current official honey bee gene 
set, OGSv3.2 using BLAT and Bowtie (Fig.  5a). The present CAGEscan and previously published 
microarray datasets29,31 show strong similarities in the number of DEGs detected in the brain, with 
circa 800-900 DEGs for each study (Fig. 5b, Supplementary Dataset 2). Moreover, the DEGs identified 
in the CAGEscan dataset exhibits a significant degree of overlap with prior microarray assessments of 
nurse and forager transcriptomes, sharing approximately 150 genes with each previous study (Fig. 5b). 
Hypergeometric tests indicated that the degree of overlap between the three datasets was modest, but 
significant (p <  1e-08 for all pairwise comparisons, Bonferroni adjusted). The directional concordance 
of gene expression changes in the overlapping DEGs was highly consistent, however, with a minimum of 
84% concordance (Fig. 5c,d). Moreover, we calculated the Spearman Rank Correlation (r) of the log2 fold 
change of our data and the aforementioned studies, and found robust and reliable correlations in gene 
expression values between the three studies (r =  0.39, p <  1e-100, comparison of29,31; r =  0.39, p <  1e-120, 
comparison of our results and31; r =  0.25, p <  1e-125, comparison of our results and29).

Figure 5. Overlap of DEGs between CAGEscan and previous studies of nurse and forager brain 
transcriptomes. (a) Represents the relationship between gene models of the newest honey bee genome 
annotation (OGS 3.2) and the probes that were present on microarray platforms used in previous analyses 
of honey bee nursing and foraging behavior. Only probes that could be mapped to OGS 3.2 and genes that 
were present on at least one array (shown in the regions of overlap) were used to assess commonalities 
between CAGEscan and the two cited studies. (b) Shows the overlap of differentially expressed genes 
detected by CAGEscan and the two previous microarray based studies of nurse and forager transcription. 
(c & d) These Venn diagrams display the degree of directional concordance for nurse (c) and forager (d) 
upregulated genes in the three studies. The areas of overlap represent the number of concordant genes, while 
the numbers in parentheses indicate the percentage of concordance relative to the number of differentially 
expressed genes associated with nursing and foraging in each study.
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These results are noteworthy given the differences in sample genetic background, collection protocol, 
analytical platforms and gene models used in these studies. In particular, models of alternative splicing 
are not as complete in the honey bee as they are in genetic model organisms, and have shifted consid-
erably with the advent of newer annotations32. This could cause isoform specific probes to be miscon-
strued as indicating a change in overall gene expression when none actually exist. Finally, it should be 
noted that the degree of concordance between our study and the two array studies was not substantially 
different from the level of similarity between the two microarray studies themselves, suggesting that 
discrepancies between these studies may be the result of genetic background or biological noise rather 
than platform-related differences.

Gene Ontology Analyses of Differentially Expressed Genes. A Gene Ontology (GO) analysis 
was performed to explore the functional implications of nurse and forager upregulated genes. Genes 
upregulated in nurses were found to be enriched for GO terms associated with nucleic acid, lipid and 
protein metabolism (Supplementary Dataset 3), a result consistent with previous transcriptomic analy-
ses of behavioral maturation31. For instance, energy metabolism33, oxidoreductase activity30, oxidation 
reduction6, glycolysis6, and various mitochondrial and ribosomal34 components are all GO categories that 
were identified in both our study and previous studies on maturational determinants (Supplementary 
Dataset 4). These annotations are particularly relevant, since it is now well established that nutritional 
physiology has a causal influence on the behavioral state of the honey bee2,3. Manipulating factors that 
influence metabolic state such as diet33, insulin signaling35 and the yolk-protein Vitellogenin affect not 
only brain gene expression but the rate of behavioral maturation3. Indeed, there is evidence of coor-
dinated TRNs in honey bee brain and fat tissues during behavioral maturation, suggesting that brain 
function and body-wide metabolic changes are intrinsically linked at the level of the transcriptome36.

Genes upregulated in foragers were also enriched for some metabolic processes, but there was also 
far greater diversity in the types of GO terms that characterize forager up-regulated genes, including 
numerous terms associated with organ development and growth (Supplementary Dataset 3). A closer 
inspection of these categories reveals that they are composed of genes known to play roles in nervous 
system development, neuronal function and neural plasticity in Drosophila melanogaster (Supplementary 
Dataset 4). As with nurses, the GO categories linked to foraging are also consistent with previous tran-
scriptomic and informatics based analyses, especially for nervous system development6,37, synaptic/neu-
rotransmission5, receptor signaling pathways30, protein kinase activity28,30, G-protein coupled receptor 
signaling28,38, insulin receptor signaling34, protein folding6,28,30, and response to heat6,28. These results may 
reflect the highly demanding cognitive tasks that foraging honey bees must perform relative to nurses 
related to navigation, manipulating flowers, and forming spatiotemporal memories of different foraging 
sites34, though experiments that directly manipulate the effects of these factors on the performance of 
foraging activities are still limited.

Transcription Factors Identified as Key Regulators of Behavioral Maturation. In total, 250 
orthologous TFs were identified by sequence similarity. 26 of these TFs were differentially expressed, with 
4 upregulated in nurses and 22 upregulated in foragers (Supplementary Dataset 5, Supplementary Fig. S6 
and S7). Additionally, more than half of the differentially expressed TFs had DNA binding motifs that 
were statistically enriched in the promoter regions of differentially expressed genes (Table  2), strongly 
suggesting they are part of the regulatory architecture underlying behavioral state.

Previous studies have indicated that the G/C content of promoter regions can have a dramatic impact 
on motif identification37. To ascertain whether our analysis was influenced by this bias, we compared the 
relative G/C content of promoters associated with forager and nurse upregulated genes. We found that 
the promoters of forager upregulated genes were indeed significantly enriched for G/C nucleotides com-
pared to those of nurse upregulated genes (p-value <  1.0e-50, Wilcoxon Rank Sum Test, Supplementary 
Dataset 6, Fig. 6). Since our initial analysis used nurse and forager promoters as background sets when 
assessing enrichment, a difference in C/G content between these groups could adversely affect these 
findings. In order to verify that our motif enrichment data were not compromised, we performed two 
additional analyses using alternative backgrounds consisting of 1) all predicted promoters in OGS v3.2 or 
2) randomized portions of the bee genome. Since the motifs of only two TFs were altered in these new 
analyses (Table 3), we conclude that C/G bias we detected exerted a minimal influence on our analysis.

To determine whether each of the 15 putative regulators of behavioral state might serve as activators 
or repressors of their target genes, we compared the expression patterns of the TFs themselves with the 
patterns of the genes they were predicted to regulate. Eight putative regulators had motifs that were 
enriched in the promoters of genes upregulated in the same behavioral context (Table 3) suggesting that 
they have an activating influence on their targets. Conversely, five putative regulators have a reciprocal 
relationship with their predicted targets, suggesting that they are serving as repressors of these genes. 
Finally, the last two TFs had motifs that were enriched in the promoters of both forager and nurse 
upregulated genes relative to all annotated promoters in the genome, suggesting they may have bivalent 
regulatory functions. Remarkably, these predictions are largely consistent with the known functions of 
orthologous genes in other organisms and contexts (Table  3). That being said, it should be noted that 
these functions may not correspond with canonical descriptions of the TF in question, as some of these 
TFs have been documented to possess dual activator and repressors functions in different contexts.
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Two of these putative regulators, Creb1 and NF-κ B, have previously been identified as potential reg-
ulators of behavioral maturation in both a reconstruction of the honey bee brain TRN5 and in motif dis-
tribution analyses of the regulatory regions of genes associated with behavioral maturation6. Both Creb1 
and NF-κ B have also been experimentally shown to play vital roles in regulating neural plasticity39–42, 
in addition to their involvement in other biological processes. Intriguingly, the genes of several TFs that 
interact with Creb1 were found to be differentially expressed, including atf3 and usf1. Like Creb1, Atf3 
is a critical component of protein kinase A signaling43, heterodimerizing with Creb1 to modulate gene 
expression in vertebrates. Indeed, according to our data, both Atf3 and Creb1 appear to be involved in 
instituting or maintaining the foraging state (Table 3), suggesting that they might be acting in a cooper-
ative manner in bees as well. Usf1, by contrast, is known to work in opposition to Creb1 signaling44 and 
is similarly predicted by our data to repress forager-related transcripts, potentially countering Creb1’s 
predicted role as an activator of foraging related genes. Several modulators of NF-κ B activity, including 
egr45 (another putative regulator detailed below) and nr4a2 (which interacts with NF-κ B in the nervous 
system46) were also found to be differentially expressed in foragers. Together, these groups of genes may 
represent coherent regulatory modules governing behavioral state. At the very least, the fact that so many 

Human 
Ortholog

Fly 
Ortholog

Bee Gene 
Identifier

Nursing Regulators

USF1/USF2 usf GB40634

CXXC1 cfp1 GB43820

MYOD1 nautilus GB55306

Foraging Regulators

RXRA/RXRB ultraspiracle GB42692

CREB1 Creb-B17A GB46492

C/EBP slbo GB44204

DFD deformed GB51299

HXA1 labial GB51303

ATF3 atf3 GB53401

DRI retained GB55596

NF-κ B dorsal GB42472

EGR1/EGR2 stripe GB50091

PAX6 eyeless GB50342

HES1 Hairy GB47799

BHE40/BHE41 cwo GB52039

Table 2.  Putative Transcriptional Regulators of Behavioral State.

Figure 6. G/C content distribution for the promoters of DEGs. Promoters associated with Forager 
upregulated genes have a significantly higher percentage of G/C nucleotides than those associated with 
Nurse upregulated genes, which could bias motif enrichment analyses.
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TFs known to interact with one another are predicted to regulate the same behavioral state reinforces 
the idea that the cellular functions regulated by Creb1 and NF-κ B are particularly vital for the onset or 
maintenance of foraging behavior.

EGR, a TF that has previously been characterized as a canonical immediate early gene (IEG) linked to 
induction of neural plasticity in a variety of organisms47, was also upregulated in foragers. egr expression 
in the honey bee mushroom bodies (a region of the insect brain involved in learning and memory) is 
responsive to stimuli that trigger spatial learning (namely orientation flight) in conjunction with expo-
sure to a novel environment48. Quantitative PCR analyses additionally indicate that mushroom body egr 
expression increases in association with behavioral maturation independent of environmental stimuli48. 
Our results concerning egr are therefore consistent with previous findings. Moreover, since the egr motif 
is enriched in the promoters of forager up-regulated genes, these data suggest that egr functions not only 
as an IEG that governs transcriptomic responses to experiential stimuli, but also helps orchestrate the 
neurotranscriptomic changes that precede and maintain the foraging state as well.

The gene rxra1 (ultraspiracle/usp) is a highly conserved nuclear receptor with affinity for both juvenile 
hormone49 and ecdysone. Its identification as a putative regulator of foraging behavior is fitting, since 
endocrine signals (including juvenile hormone) are known to play a critical role in regulating behavioral 
maturation in honey bees50. Moreover, experimental usp knockdown was previously shown to delay the 
transition to the foraging state36. This indicates that CAGEscan can “reproduce” known causal effects of 
genes on behavioral state, something that approaches based purely on informatics-derived inferences 
have sometimes failed to capture5. Intriguingly, the gene for Ecdysone Receptor (EcR), a binding partner 
of USP51, was also upregulated in foragers. While ecdysone has no known role in honey bee behavioral 
maturation, the co-expression of ecdysone receptor with its binding partner usp provides a suggestive hint 
that such a relationship exists, but has hitherto gone undetected.

TF Name
Nurse DEG 
Promoters 
(Relative to 

Forager DEG 
Promoters)

Enriched in 
Nurse DEG 
Promoters 
(Relative 

to all 
Promoters)

Enriched in 
Forager DEG 

Promoters 
(Relative 

to all 
Promoters)

Predicted 
Transcriptional 

Activity

Predicted 
Function 

Consistent 
with Known 

Roles?

Upregulated in Nurses

MYOD N.S. Activator Yes55

cfp1 N.S. Repressor No

usf N.S. Repressor Yes44

Upregulated in Foragers

usp Activator & Repressor Yes36

atf3 Activator & Repressor Yes77

C/EBP (slbo) N.S. Repressor Yes78

deformed N.S. Repressor Yes79

N.S. N.S. Repressor No

retained N.S. Activator Yes80

Creb-B17A N.S. Activator Yes44

NF-κ B (dorsal) N.S. Activator Yes42

EGR (stripe) N.S. Activator Yes47

N.S. N.S. Activator Yes81

HES1 (hairy) N.S. Activator No

cwo N.S. Activator Yes82

Table 3.  Motif Enrichment and Predicted Function of Differentially Expressed TFs in Promoters 
Associated with Nurse and Forager Upregulated Genes.  – The motif(s) associated with the listed TF is/
are overrepresented in promoters associated with genes upregulated in the given context, relative to the 
given background.  – The motif(s) associated with the listed TF is/are not overrepresented in promoters 
associated with genes upregulated in the given context, relative to the given background (i.e. the motif(s) 
were overrepresented in the background context). N.S. – There was no significant difference in motif 
frequency between the promoters in the listed context and the background. TFs in  font had motifs 
that were not enriched in the same gene sets when analyzed with different backgrounds (i.e. may have been 
subject to C/G bias).
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The identification of clockwork orange (cwo), a critical component of the circadian regulatory circuit in 
Drosophila melanogaster52, as a putative regulator of behavioral maturation is also noteworthy. Although 
adult honey bees appear to possess endogenous biological rhythmicity from the moment they emerge 
from their cells, their locomotor behavior and metabolism are largely arrhythmic until shortly before 
the onset of foraging53. Correspondingly, circadian related gene expression begins at a low and relatively 
invariant level, gradually increasing and becoming rhythmic as the bee approaches the foraging state. 
Additionally, the ability to form time-dependent memory is critical for honey bees, since they forage on 
resources that are both spatially and temporally restricted. Not only must a forager remember where a 
previously visited floral patch is, it must know when a floral patch is producing nectar and pollen. A 
previous study assaying brain gene expression changes in foragers found that the expression of genes 
associated with circadian rhythmicity not only cycle as a result of the time of day, but can also be mod-
ulated by training a bee to forage at a particular time point, suggesting they play a critical, perhaps even 
causal, role in organizing the temporal aspects of a bee’s foraging behavior34. Since all nurse and forager 
samples were collected within a very short time window (less than 1.5 hours), variation in cwo levels due 
to time of day should be minimal, suggesting that this gene may instead be serving a crucial function in 
the onset of spatiotemporal learning in honey bee foragers.

Finally, several TFs associated with nervous system development in Drosophila were also identified as 
putative regulators of the foraging state, namely: hes1 (in flies known as hairy or deadpan), dri (retained), 
pax6 (eyeless), hoxA6 (deformed), and hoxA1 (labial). Additionally, motifs associated with two of these 
TFs (dri and hairy) have previously been identified as enriched in the promoter regions of genes that 
are associated with behavioral maturation37. Neural plasticity associated with behavioral maturation in 
honey bees is known to involve large increases in dendritic arborization in specific brain regions54, and 
the cooption of developmental transcriptional programs may be one way this plasticity is mediated.

Remarkably, motifs associated with five differentially expressed transcription factors (hes1 (hairy), 
pax6, NF-κB, egr and clockwork orange) were combinatorially enriched in the promoters of nearly 50% 
of the genes that were upregulated in foragers (Supplementary Figs S8 and S9, Supplementary Dataset 7). 
This suggests that a large proportion of the brain transcriptomic differences between nurses and foragers 
may be influenced by a small number of TFs, a pattern that also has been predicted by previous bioinfor-
matic analyses5. Moreover, the fact that such a large number of motifs were enriched in the same set of 
promoters implies that these five genes may co-regulate a coherent module of the regulatory architecture 
underlying behavioral state. It should be noted that the motif associated with one of these TFs (pax6) did 
not have the same level of enrichment when all OGS v3.2 promoters were used as the set of background 
sequences, suggesting that G/C bias may have had an influence in the detection of this particular motif 
(Table 3). Regardless, even if only the other four TFs are considered as putative co-regulators of such a 
significant proportion of the forager transcriptome, this is still a remarkable finding.

By contrast, only a single differentially expressed transcription factor, MyoD (nautilus), was associated 
with a motif enriched in more than 50% of the nurse upregulated genes. Traditionally known as a master 
regulator of cell fate in muscle cells55, MyoD has only recently been characterized in the nervous system, 
where its only known function is as a tumor suppressor in the cerebellum of vertebrates56. As such, this 
is the first discovery of the potential involvement of a MyoD ortholog as a key regulator of behavioral 
state, and elucidating its role in the insect nervous system will require additional study.

Alternative Transcriptional Start Sites and Behavioral Maturation. In order to determine 
whether alternative TSSs were associated with behavioral state, we analyzed their occurrence in nurse 
and forager upregulated genes. For our purpose, TSSs are defined as the CAGE cluster with the highest 
degree of coverage (i.e., the most transcribed) that is common to all samples within a group (Fig.  7). 
We first identified genes with multiple CAGE clusters across samples (Supplementary Fig. S10), and 
then compared the results of our TSS analysis at each of these loci to determine whether there were 
systematic differences in TSS usage between foragers and nurses. Differential TSS usage was defined as 
the existence of distinct common TSSs in nurse and forager samples separated by a mutual distance of 
at least 100 bp (Fig. 7).

Our data indicate that 646 out of the 12,453 expressed genes possessed alternative TSSs that were uti-
lized differentially between nurses and foragers (Supplementary Dataset 8). However, only 14.9% (96/646) 
of these genes were also found to be differentially expressed between nurses and foragers (Supplementary 
Dataset 8). One potential interpretation of this small proportion is that, if alternative TSS selection plays 
a substantial role in regulating behavioral maturation in the honey bee, it does so by mediating splicing 
or post-transcriptional regulation of the resulting transcripts rather than directly influencing the levels of 
transcript produced. Alternative TSSs have been shown to have a significant effect on isoform expression 
(through differential recruitment of splicing factors or the exclusion of 5’ exons)57, mRNA turnover, and 
the efficiency of translation58 in other species, so it is reasonable to speculate that they serve a variety 
of similar functions in the honey bee as well. Still, although the overlap between DEGs and alternative 
TSSs is small, the prevalence of genes with alternative TSSs is significantly higher in DEGs than in the 
whole transcriptome (Fisher's right-hand exact test using hypergeometric distribution. p-value <  3e-08). 
As such, it’s still possible that alternate TSSs play at least some role in regulating the rate of transcription 
during behavioral maturation.



www.nature.com/scientificreports/

1 2Scientific RepoRts | 5:11136 | DOi: 10.1038/srep11136

Additionally, the small number of identified alternative TSSs relative to previous studies is related, in 
part, to our use of highly stringent criteria for the identification of TSSs. While the beginning of each 
CAGE tag can be considered as a discrete TSS, clustering CAGE tags is necessary to avoid false TSSs59. 
Moreover, since we were interested in delineating the systematic differences in TSS between nurses and 
foragers, we clustered all CAGE tags within a 50 bp window to determine a consensus start site for each 
group of bees. This provided a much more coherent picture of the distinct trends in start site selection 
between these two groups. In order to prevent tags from overlapping consensus sites, we further required 
that each alternative start site be separated by a mutual distance of at least 100 bp. Relaxing either of 
these constraints dramatically increases the number of genes exhibiting alternative TSSs (Supplementary 
Figure S11). One should therefore consider the 646 genes with alternative TSSs to be a very conserva-
tive estimate of the link between behavioral state and TSS selection in the bee. Regardless, these results 
provide the first evidence that alternative TSSs reflect transcriptomic changes that are associated with 
sustained differences in behavior.

Gene Ontology (GO) analysis of the 646 genes with alternative TSSs show enrichment for a set of 
GO terms associated with nervous system development, neuronal development, axon guidance, wing 
development, oxidoreductase activity, lipid biosynthesis process and respiratory system development 
(Supplementary Dataset 9). These terms are strikingly similar to those obtained by GO analyses of DEGs 
(despite the low prevalence of DEGs exhibiting differential TSS usage) and are strongly suggestive of a 
role for alternative TSS usage in establishing and/or maintaining differences in nervous system function 
between nurses and foragers.

Figure 7. CAGE tags mapping, clustering and TSS identification. After sequencing, the CAGE tags 
were mapped to v3.2 of the honey bee Official Gene Set to form clusters (the 3’paired end reads are used 
to facilitate this mapping). A cluster was identified as a ‘common’ TSS for each group if it had the greatest 
number of CAGE tags relative to all other clusters and was present in all samples within the group. The 
location of the forager and nurse TSSs was then compared to determine whether differential TSS selection 
occurred as a consequence of behavioral state. Additionally, promoter regions identified using CAGE can 
be scanned for differences in TF binding site occurrence to gain insights into the regulatory architecture 
controlling each gene’s transcription.
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Conclusions
For the first time, we experimentally determined the TSSs and transcribed promoter regions associated 
with the regulation of behavioral plasticity in bees. We showed that the promoters of DEGs are enriched 
for motifs associated with many of the TFs we found to be differentially expressed, highlighting the 
potential importance of these TFs in regulating behavior. The coherent picture presented by our data 
and previous experimental and bioinformatics results reveals that CAGEscan provided us with highly 
detailed and convincing evidence about the functional architecture underlying the transcriptome during 
behavioral maturation. For instance, a number of these TFs were previously predicted to regulate behav-
ioral maturation, and nearly all of them are associated with functions that correspond to known aspects 
of behavioral maturation.

Additionally, we found that a small subset of these putative regulators of behavioral state might be 
responsible for organizing the majority of transcriptomic differences in nurses and foragers, a result that 
corresponds with previous regulatory network analyses5. These results contribute to a growing apprecia-
tion of the fact that many behavioral states are associated with (and presumably regulated by) extensive 
and distinct transcriptional signatures in the brain3,60. However, how such changes in RNA abundance 
lead to changes in neuronal function and, subsequently, behavior is a challenge that remains to be solved.

The fact that motif enrichment was assessed in actively transcribed promoter regions makes it all 
the more likely that the enriched motifs serve a functionally relevant role12 in the transcriptional reg-
ulation of behavioral state. This is supported by the number of putative regulators that have previously 
been implicated in controlling behavioral maturation (Table 4). Still, we must stress that our results are 
purely correlative. Future studies should attempt to assess the veracity of these predictions by making 
targeted manipulations of these TFs and ascertaining their effect on behavioral state and the expression 
of predicted target genes.

Additionally, while the ability to associate differential TF and target gene expression with motif 
enrichment in actively transcribed regions is strongly suggestive of regulatory function, one should not 
expect all of a transcription factor’s potential targets to be regulated in every context, particularly since 
genes are not commonly under the control of a single TF. Therefore, additional experiments are required 
to study how the combinatorial interactions between these TFs affect the expression of each target gene 
and give rise to contextually specific patterns of gene expression. Our findings implicate five TFs as 
putative co-regulators in nearly half the genes that were upregulated in foragers, which implies that 
TF co-association at the promoter may play a vital role in instituting or maintaining behavioral state. 
Because such combinatorial interactions have previously been predicted to play important roles in gov-
erning behavioral maturation6 and TF co-association at the promoter appears to drive evolutionarily 
conserved differences in contextually dependent gene expression during development13, dissecting these 

TF Name
Transcriptional 

Regulatory Network5 Cis-Motif Analysis37
Combinatorial Motif 

Analysis6

Table 4.  Comparison of CAGEscan and previous analyses identifying putative regulators of behavioral 
state in the honey bee.  - TFs predicted to regulate either nursing or foraging in both the cited 
analysis and the current study.  - TFs that are predicted by CAGEscan but not the cited study to 
regulate behavioral maturation. Black - The TF of interest was not assessed in the cited analysis.
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patterns of co-regulation using targeted manipulations of the putative regulators is a logical next step in 
elucidating how the brain transcriptome organizes behavior.

Similarly, the lack of motif enrichment for differentially expressed TFs should not be construed as 
evidence that they are not involved in the regulation of behavioral maturation, particularly since the 
assay used here cannot account for the potential presence of TF binding sites at enhancers distal to the 
gene promoter. Similarly, this limitation makes it likely that a significant number of real targets were 
not characterized by CAGEscan. Therefore, the analyses presented here should be used to motivate and 
inform future experiments to study physical occupancy of potential binding sites by the most promising 
TFs, as has been done previously for Ultraspiracle Protein36.

It should be noted that, unlike previous studies30,31, we did not control for the effect of age on gene 
expression. Since the transition from hive-bound to foraging tasks involves a developmental trajectory, 
this presents a potential confound for our findings. However, previous studies assessing the contribution 
of chronological age relative to other maturational determinants have found that age plays a relatively 
minor role in determining differences between nurse and forager brain transcriptomes30. Moreover, 
age-related differences in brain gene expression are most apparent in early adult life, generally long prior 
to onset of nursing and foraging behavior30. Our results also exhibit high concordance with the predic-
tions of a meta-analysis that assessed the link between maturational determinants (other than age) and 
transcriptomic architecture36. As such, we feel that while the potential age differential between nurses 
and foragers is doubtless responsible for some alterations in gene expression, it is unlikely to affect our 
overall conclusions.

Finally, applying CAGEscan we were able to identify reliable differences in TSS selection related to 
behavioral state for the first time. The transcripts for a substantial number of genes exhibit start sites 
unique to nursing or foraging behavior, and GO analysis indicates that these are relevant to nervous 
system function. While alternative TSSs may be regulating transcriptional rates in a comparatively small 
proportion of these genes, it’s also possible that they are contributing to the expression of alternative 
isoforms or other post-transcriptional regulatory processes that may contribute to the regulation of 
behavioral plasticity.

Methods
Sample Collection. All samples were collected from a single colony at the University of Illinois Bee 
Research Facility, Urbana, Illinois. Samples were the offspring of a queen inseminated with semen from a 
single drone, which (due to the haplodiploid genetics of the honey bee) results in worker offspring with 
75% average genetic relatedness. Behavioral identification was according to standard methods36. Bees 
that were observed entering honeycomb cells containing larvae were identified as nurses, immediately 
collected using forceps, and frozen in liquid nitrogen. Bees returning to the colony with loads of pollen 
on their hind legs were identified as foragers, captured using soft forceps and immediately frozen in 
liquid nitrogen. All collections (N =  25 nurses and foragers) were performed within a 1.5 hour timespan 
(from 10:00 to 11:30 a.m.) on the same day (July 29th, 2011). After collection, bee heads were freeze dried 
and brains were dissected in 80% ethanol chilled using dry ice61.

RNA extraction. Total RNA from individual bee heads was prepared by homogenizing the brain tissue 
using a motorized pestle and extracting the RNA using TRIzol (Life Technologies, Carlsbad, California, 
USA) and RNeasy Mini spin columns (Qiaqen, Venlo, Limberg, Netherlands), as per manufacturer 
specifications. All samples were treated with DNase (Qiagen). Sample quality was confirmed using a 
Nanodrop (Thermo Scientific, Walthan, Massachusettes, USA) and Bioanalyzer (Agilent Technologies, 
Santa Clara, California, USA).

CAGEscan Library Construction. CAGEscan libraries were generated from total RNA preparations 
of individual bee brains (16 samples including 8 nurses and 8 foragers), and the barcoded cDNAs were 
pooled into two libraries for sequencing using established protocol62 (Fig. 1). This protocol was modified 
slightly to reduce the rRNA content of CAGEscan libraries and to improve the selection of true 5’ ends 
by incubating the RNA in 5’-Phosphate-Dependent Exonuclease (Terminator, Epicentre, Madison, USA) 
to remove rRNA and truncated mRNAs. During cDNA synthesis a reverse-transcription primer and 
“template-switching” oligonucleotide with individual barcodes (Supplementary Table S8) plus specific 
sequences for template switching at the 5’ cap of mRNA were incorporated into the first strand cDNA by 
a reverse transcriptase. Since the primer and template-switching oligonucleotide added known sequences 
to the 5’ and 3’ ends of the cDNA, they could be used as templates for semi-suppressive PCR. Using this 
process, long strands of cDNA were selectively amplified to generate the second cDNA strand (molecules 
that were short or possessed the same adaptor sequences at their 5’ and 3’ ends self-hybridized prior to 
the PCR, precluding amplification). The length of cDNA fragments within the CAGEscan library prepa-
rations ranged from 200–700 bps.

Sequencing of CAGEscan Libraries. Sequencing of CAGEscan libraries was performed by the W.M. 
Keck Center for Comparative and Functional Genomics (University of Illinois at Urbana-Champaign, 
Urbana, Illinois, USA). Nurse and forager samples were combined into separate pools, and sequenced 
in different lanes and sequencing runs. Upon sequencing the forager samples, the quantity of reads 
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obtained was judged to be lower than desired, and additional input cDNA was used for the nurse sam-
ples. CAGEscan tags used in this study were paired-end reads of length 100 bp. Low quality and outlier 
reads were filtered out of the data sets using FASTQC (http://www.bioinformatics.bbsrc.ac.uk/projects/
fastqc), and CAGE tags with missing or incorrect adapters were omitted. In the sequence trimming 
process we removed the adapter sequence (21 bp, Supplementary Table S8) from the first mate of the 
paired-end sequences, and correspondingly pruned part the second mate, such that both mates had equal 
lengths (79 bps).

Mapping and Filtering CAGE Tags. The 79 bp paired-end reads obtained after trimming were 
aligned to the honey bee reference genome (version 4.5) using Bowtie2 v2.1.063 in order to calculate 
the estimated mean (588 bp) and standard deviation (767 bp) of the inner distance between mapped 
paired-end reads. These parameters were then used with the Tophat v2.0.864 splice junction mapper to 
improve our ability to align the reads to the reference genome, allowing for up to 2 mismatches and 2 
gaps per read. For the CAGE tag filtering process, we filtered out mapped reads that had a relatively 
high probability (p >  0.01/MAPQ <  20) of being mapped incorrectly. Paired reads also were excluded 
from further analyses when: 1) both mates mapped to alternate strands, 2) one mate was unmapped, 3) 
the mates mapped to different scaffolds or 4) there was an inner distance greater than (mean +  standard 
deviation) of the estimated inner distance between paired reads.

Gene Expression. The CAGE tags were mapped to the official honey bee gene set, OGSv3.232. A typ-
ical CAGE tag was considered to be associated with a gene if it intersected with the region that covers 
[-2000 bp, end of the gene], but may be restricted by the end of the upstream gene on the same strand. 
In these cases the tag was considered to be associated if it maps to the region [end of the upstream 
gene +  1, end of the gene]. As such, it is possible for multiple CAGE tags to be associated with one 
gene, or one CAGE tag to span two adjacent genes. To insure that the mapped reads provided sufficient 
coverage for differential expression analyses, their distribution was plotted using RSeQC65. We generated 
a gene expression data matrix using the association of tags and genes, where each row represents the 
expression levels for a gene and each column represents a nurse or forager samples. Only those genes that 
had non-zero expression level in at least two samples of any of the nurse/forager groups were used for 
downstream analyses. Using this matrix, we normalized gene expression by rescaling the number of tags 
from each sample to the minimum number of tags from across all samples to remove sequencing bias.

Gene Clustering Based on Expression. To determine the differences in brain gene expression 
levels between nurses and foragers, we performed two-way unsupervised hierarchical clustering using 
MATLAB to cluster genes and samples using an inner squared distance (minimum variance) algorithm. 
The Euclidean distance metric was used to measure the distances between gene profiles (rows) and 
Pearson’s correlation coefficient was used to measure the distance between sample profiles (columns). To 
obtain a statistical measure of how the clustering preserves the actual dissimilarities between samples, an 
unsupervised evaluation of hierarchical clustering using cophenetic correlation coefficient (CPCC) was 
performed. The CPCC is defined as:

CPCC
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where xij is the Euclidean distance between ith and jth observation and dij is the cophenetic distance, which 
is the height of the link that joins the two observations in the obtained clustering dendrogram; x and d 
are the averages of xij and dij, respectively. CPCC is the linear correlation coefficient between the observed 
distances (dissimilarities) in the samples and the cophenetic distances obtained from the clustering. In 
our case the CPCC was 0.78, suggesting that the clustering was not a technical artifact but represents 
actual biological differences between samples.

Variability of Gene Expression. We evaluated differences in brain gene expression between individ-
ual bees within the nurse and forager groups by calculating the per-gene variance in expression levels 
between the individuals within each group. The variance was calculated on scaled expression data using 
the Z-score, such that the expression values of each gene had a mean equal to zero and standard devia-
tion equal to 1. To examine if the variation in gene expression between forager samples was significantly 
different from the variation between nurse samples, we used the Wilcoxon Rank-Sum test between the 
two vectors of variances. Finally, we compared the samples using the per sample biological coefficient of 
variation (the square root of the dispersion parameter for the 500 most variable genes) and the per gene 
squared coefficient of variation (CV2) (the squared ratio of the standard deviation of gene expression 
across all group samples to the group average gene expression).

TSS Identification, Differential TSS Usage and Promoter Extraction. To define TSS positions, 
CAGE tags belonging to each sample were clustered using an iterative hierarchical clustering approach 
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with Paraclu v966 to form clusters covering regions of less than 50 bp (Fig. 7). Clusters that were more 
than 50 bp in length or were represented by fewer than 5 tags after rescaling were removed. Clusters with 
a maximum density/baseline density ratio of less than 2 also were excluded (since the signal strength 
was likely insufficient to represent a real TSS), as were clusters that were merely components of a larger 
cluster. We used these CAGE clusters to identify potential gene TSSs for the nurse and the forager groups 
independently of one another. Because more than one CAGE cluster could potentially be associated to 
a particular gene, we defined a gene’s TSS to be the starting position of the CAGE cluster that has the 
greatest overall number of CAGE tags and is present in all of the samples in a group. These sites therefore 
represent a set of common TSSs for the expressed genes in each of the groups. To determine whether 
there was differential TSS usage between nurses and foragers, we compared the common TSS for each 
group. Those genes with distinct TSSs for each group were judged to use alternative start sites as a con-
sequence of behavioral state. Due to the potential overlap of paired end reads in adjacent CAGE clusters, 
only TSSs with a mutual distance >100 bp were considered for this analysis.

Promoters were defined as regions covering [-2000 bp, 200 bp] relative to TSSs common within a 
group. The final promoter region was further constrained so that it did not overlap an upstream gene 
or exceed the stop codon of the downstream gene to which the promoter was associated. Despite this 
restriction on promoter length, 65% of all OGSv3.2 genes (and 75% of differentially expressed genes) still 
use the full promoter region. Only 19% of OGSv3.2 genes (and 13% of differentially expressed genes) 
have promoters of < 1000 bp length, and 9% of OGSv3.2 genes (and 5% of differentially expressed genes) 
have promoters of < 500 bp length.

Differentially Expressed Genes (DEGs). The brain gene expression profiles of eight nurses and 
eight foragers were determined from the raw count of the CAGE tags associated with the respective 
genes. We filtered genes with a low level of expression, keeping only those that had at least 1 tag per 
million reads in at least 2 samples. To remove sequencing bias due to coverage depth, gene expression 
data were normalized using the Trimmed Mean of M-values (TMM) method67. Differentially expressed 
genes were determined on a per gene basis. We always compared genes of the same length to find differ-
ences in expression between the samples of each group, and gene length had no influence on the results. 
This allowed us to normalize based purely on the distribution of reads across the genes using the TMM 
in edgeR68. Statistical analyses of gene expression data to identify DEGs were performed in edgeR using 
tagwise dispersion to estimate the variance within each gene. EdgeR’s implementation of Fisher’s Exact 
Test (which corrects for overdispersion and uses a negative binomial distribution) was then performed to 
evaluate differential expression, and the resulting p-values were adjusted for multiple comparison testing 
using the Benjamini-Hochberg false discovery rate (FDR <  0.05).

The honey bee brain is surrounded by a large exocrine organ called the hypopharyngeal gland (HPG), 
which presents a potential source of contamination. Moreover, the HPG’s size and level of activity varies 
substantially in nurses and foragers, making it possible for contamination to bias gene expression assays 
and increase Type I error. Since it is impossible to quantify potential contamination directly, previous 
studies of nurse-forager gene expression have excluded genes with a high level of expression in the 
HPG31. To determine whether this would be necessary for our data, we used RNAseq to quantify the 
expression of genes in the HPGs (relative to brain tissue) of nurses and foragers. The top 1%, 5%, 10%, 
and 20% (by log fold change) of genes upregulated in the HPG of each group were then compared to 
their respective CAGEscan DEGs to determine the level of overlap. Since contamination is far more likely 
in nurse samples, genes that were upregulated in forager HPGs but also in the top 10% of nurse HPG 
upregulated genes were excluded from the forager overlap analysis (if contamination had occurred, it 
would have resulted in the false identification of nurse, rather than forager, upregulated genes).

DEG Overlap with Previous Studies. To demonstrate the validity of data derived from CAGEscan 
and to provide a coherent picture of the genes that are most consistently differentially expressed in the 
brain as a function of behavioral maturation, we compared our results with those reported in two pre-
vious studies29,31. Previous studies were performed using two independently designed microarrays: one29 
containing ~9,000 probes based on honey bee expressed sequence tag data that predated the sequencing 
of the honey bee genome (Array Express Accession #A-MEXP-36), and a second31 with ~13,000 probes 
derived from gene annotations (OGS 2.0) for Assembly 2.0 of the sequenced genome (Array Express 
Accession #A-MEXP-755). For consistency, these datasets were reanalyzed by mapping the microarray 
probes to the current official honey bee gene set, OGSv3.232 using BLAT and Bowtie. Probes that could 
not be mapped to a unique gene were not used for further analyses. The microarray data were then 
corrected for multiple comparisons using a FDR cutoff of 0.05. In instances where multiple differentially 
expressed probes mapped to the same gene, the probes invariably exhibited the same direction of expres-
sion change across experimental groups. Therefore, duplicate probes were ignored. The significance of 
the overlap between each gene list was calculated using hypergeometric tests in SAS v9.4 and adjusted 
for multiple comparisons using a Bonferroni post hoc correction.

Functional Annotation of DEGs. Gene Ontology (GO)69 terms for the DEGs were determined using 
orthology to the Drosophila melanogaster genome, resulting in a total of 4,999 GO terms. GO enrich-
ment analysis was performed based on the frequency of terms associated with the forager/nurse DEG 
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list relative to the genomic background (all genes that had detectable levels of expression) using Fisher’s 
exact test, followed by FDR correction for multiple testing (FDR <  0.05). Analyses were performed using 
DAVID70 and the category-frequency of enriched GOs was analyzed using CateGOrizer71.

Identification of TFs and Motif Finding around TSSs. After analyzing differential expression, 
we identified TFs with Position Weight Matrix (PWM) models available in other organisms. To do so, 
we composed a list of 1,402 TFs (and their isoforms) associated with 676 PWMs from three differ-
ent sources. We used 1,000 Human TFs from HOCOMOCO v9 database72 associated with 426 PWMs, 
217 Drosophila TFs from Flybase73 associated with 73 PWMs, and 185 insect TFs from TRANSFAC 
Professional ver. 2012.274 associated with 177 PWMs (Table 5). Then we compared the protein sequences 
of these TFs to the 15,314 protein sequences of A. mellifera OGS3.2 using OrthoMCL75 to find ortholo-
gous TFs. To identify TFs that might be key regulators of the nursing and foraging behavioral states, we 
used Clover76 to assess whether associated motifs were overrepresented in the promoters of genes that 
were upregulated in nurses and foragers; motifs with similarity scores greater than 6 and a significance 
level of p-value <  0.05 were considered to be enriched. TFs that were differentially expressed and were 
associated with motifs enriched in genes upregulated in nurses or foragers were considered to be putative 
regulators of those respective behavioral states.

A previous informatics analysis uncovered a systematic bias toward high Guanine/Cytosine (G/C) 
content in the promoters of genes upregulated in foragers (relative to nurse associated promoters)that 
led to an overestimate of the number of overrepresented TF motifs associated with behavioral state37. 
To ascertain whether a similar bias exists in the CAGE tags that comprise our dataset, we compared the 
ratio of G/C to A/T nucleotides in the reconstructed promoters of forager and nurse upregulated genes 
using the Wilcoxon Rank-Sum Test. We then accounted for differences in G/C content by performing 
our cis-motif enrichment analysis using three different backgrounds. For the first test, the background 
consisted of promoters from genes upregulated in the behavioral state that was not being assessed (i.e., 
the promoters of forager upregulated genes used the promoters of nurse upregulated genes as a back-
ground) in order to emphasize the distinctions in motif distribution between these sets of promoters. 
We then performed two additional analyses to confirm the validity of these findings, using either: 1) all 
predicted promoters in OGS v3.2 or 2) randomized portions of the bee genome as the background for 
each set of promoters.
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