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Research into human working memory limits has been shaped by
the competition between different formal models, with a cen-
tral point of contention being whether internal representations
are continuous or discrete. Here we describe a sampling approach
derived from principles of neural coding as a framework to under-
stand working memory limits. Reconceptualizing existing models
in these terms reveals strong commonalities between seemingly
opposing accounts, but also allows us to identify specific points of
difference. We show that the discrete versus continuous nature
of sampling is not critical to model fits, but that, instead, ran-
dom variability in sample counts is the key to reproducing human
performance in both single- and whole-report tasks. A proba-
bilistic limit on the number of items successfully retrieved is an
emergent property of stochastic sampling, requiring no explicit
mechanism to enforce it. These findings resolve discrepancies
between previous accounts and establish a unified computational
framework for working memory that is compatible with neural
principles.

visual working memory | population coding | resource model |
capacity limits

Working memory refers to the nervous system’s ability to
form stable internal representations that can be actively

manipulated in the pursuit of behavioral goals. A classical view
of visual working memory (VWM) held that it was organized
into a limited number of memory slots, each capable of holding
a single object (1, 2). This model was subsequently modified to
allow multiple slots to hold the same object and be combined on
retrieval to achieve higher precision (3). This “slots+averaging”
model incorporated aspects of an alternative view, which holds
that VWM is better conceptualized as a continuous resource
that can be flexibly distributed between different objects or
visual elements (4, 5), accounting for set size effects in delayed
reproduction tasks (6) (Fig. 1A) and flexibility in prioritizing rep-
resentations (7). Variable precision models (8, 9) additionally
proposed that the amount of memory resource is not fixed but
varies randomly from item to item and trial to trial. An alterna-
tive approach (10) sought to explain VWM errors from neural
principles as decoding variability in population representations
(11), with the limited memory resource equated to the total neu-
ral activity dedicated to storage. Here we show that each of these
influential accounts of VWM can be interpreted within a com-
mon framework based on the statistical principle of sampling
(12–18).

Sampling Interpretation of Population Coding
We first show how a population coding model (10) can, with
some simplifying assumptions, be reinterpreted in terms of sam-
pling (Fig. 1 A–C). We consider a mathematically idealized
population of independent neurons encoding a one-dimensional
(1D) stimulus feature θ, where the amplitude of each cell’s activ-
ity is determined by its individual tuning function. Neurons are
assumed to share the same tuning function, merely shifted so the
peak lies at each neuron’s preferred feature value ϕi ,

fi(θ) = f (θ−ϕi). [1]

Discrete spikes are generated from the cells’ activity via inde-
pendent Poisson processes. If we pick, at random, any spike
generated by the neural population in response to a stimulus
value θ, we can determine the probability that it was produced
by a neuron with preferred feature value ϕ. If we assume dense
uniform coverage of the underlying feature space by neural tun-
ing curves, this yields a continuous probability distribution p(ϕ)
over the space of preferred feature values (Fig. 1C). This dis-
tribution has the same shape as the neural tuning curves and is
centered on the true stimulus value,

p(ϕ)∝ f (θ−ϕ). [2]

Thus, if we associate each spike with the preferred feature value
of the neuron that generated it (the principle of population vec-
tor decoding; ref. 19), we can interpret the spiking activity of the
population as a set of noisy samples of the true stimulus value,
drawn from the distribution p(ϕ).

Retrieval of a feature value is modeled as decoding of the
spikes generated within a fixed time window. In the idealized case
with Gaussian tuning functions, the maximum likelihood (ML)
decoder generates an estimate by simple averaging of the spike
values,

θ̂ML =
1

n

n∑
j

ϕ(j), [3]

where ϕ(j) is the preferred feature value of the neuron that
generated the j th spike.

Due to the superposition property of Poisson processes,
the number of spikes—or samples—generated by the neural
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Fig. 1. Sampling interpretation of working memory models. (A–C) A theoretical account of neural population coding can be reinterpreted as sampling.
(A) The stimulus-evoked response of spiking neurons in an idealized population depends on their individual tuning (one neuron’s tuning function and
preferred value [∗] is highlighted). (B) Probability distribution over stimulus space obtained by associating a spike with the preferred stimulus of the neuron
that generated it. (C) Precision of maximum likelihood estimates based on spikes emitted in a fixed decoding window. Precision, defined as the width of the
likelihood function (Insets), is discretely distributed as a product of the tuning precision (ω1) and the number of spikes, which varies stochastically. Assuming
normalization of total activity encoding multiple items, larger set sizes correspond to less mean activity per item. (D and E) An account based on averaging
limited memory slots can also be described as sampling. (D) Allocation of a fixed number of samples or slots (here, three) to memory displays of different
sizes. (E) Precision is discretely distributed as a product of the tuning width, ω1, and the number of samples allocated per item.

population within the decoding window is also a Poisson ran-
dom variable. If the total spike rate in the neural population is
normalized (20), or fixed at a population level γ, it implements
a form of limited resource (10). This resource is continuous—
unlike the discrete number of samples—and can be distributed
between memory items, depending on task demands (e.g., pri-
oritizing one item that is cued as a likely target). We will focus
on the simplest case, in which the total spike rate is distributed
evenly among all memory items, resulting in a mean number of
samples available for decoding each stimulus that is inverse to
the set size N . This has been shown to quantitatively capture
the set size effect in single-report delayed reproduction tasks
(Fig. 2A).

The actual number of samples available in this model for
decoding each item in a single trial, nk , is a discrete random vari-
able independently drawn from a Poisson distribution, with its
mean determined by the spike rate for that item,

nk ∼Poiss
( γ
N

)
. [4]

The neural population model can therefore be interpreted as a
stochastic sampling model.

Fixed Sampling Models
The most prominent discrete representation account of VWM,
the slots+averaging model (3), can also readily be interpreted in
terms of sampling (Fig. 1 D and E). Each slot is postulated to
hold a representation of a single item with a fixed precision, and
so provides a noisy sample of the item’s feature value (or values;
the sampling interpretation is agnostic as to feature- vs. object-
based views of VWM; refs. 21 and 22). Multiple slots, or samples,
that correspond to the same object are averaged at retrieval to
enhance the precision of the estimated stimulus feature. Thus,
the format of representation and the decoding mechanism are
identical to the stochastic sampling model. There is one critical
difference, however: The slots+averaging model assumes that
the total number of samples available for representing multiple
items is fixed, that is,

N∑
k

nk =K . [5]

This has also been the most common assumption in previous
sampling-based models in the attentional and memory litera-
ture (refs. 12–14, but see ref. 23). We will refer to this as a fixed
sampling model.

20960 | www.pnas.org/cgi/doi/10.1073/pnas.2004306117 Schneegans et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.2004306117


PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

1 item

2

4

8

Error
0-π π

Pr
ob

ab
ili

ty
 d

en
si

ty

Error
0-π π

Pr
ob

ab
ili

ty
 d

en
si

ty

Error
0-π π

Pr
ob

ab
ili

ty
 d

en
si

ty

Error
0-π π

Pr
ob

ab
ili

ty
 d

en
si

ty

Error
0-π π

Pr
ob

ab
ili

ty
 d

en
si

ty

Error
0-π π

Pr
ob

ab
ili

ty
 d

en
si

ty

1st report 

2nd

3rd
4th

1st report 

2nd

3rd
4th

1st report 
2nd

3rd
4th

1 item

2

4

8

1 item

2

4

8

Single ReportSingle Report

Whole report

Stochastic samplingExample data

Four items, free order

Fixed sampling

Stochastic sampling Fixed sampling

A B C

D E F

Fig. 2. Response distributions and model fits in delayed reproduction tasks. (A) Distributions of response errors in a single-report task for a representative
participant at different set sizes (10). (B and C) ML fits of the data in A with the stochastic sampling model and fixed sampling model, respectively. (D)
Distributions of response errors in a whole-report task for a representative participant at set size four, showing how errors increase with the (freely chosen)
order of sequential report (24). (E and F) ML fits of the participant’s data with the stochastic sampling model and fixed sampling model, respectively. Fits
are based on results from all set sizes, not only the single set size shown in D.

Predictions for Precision and Error Distributions
We now consider the distribution of representational precision
in these models. For any particular set of samples, ϕ, the infor-
mation they provide about the stimulus is described by the
likelihood function, L(θ; ϕ) = pθ(ϕ|θ), equivalent to the con-
ditional probability of obtaining those samples given different
values of the stimulus. The width of the likelihood function is
a measure of uncertainty in the estimate: A set of samples with a
broad likelihood function (Fig. 1 C, Bottom Inset) is compatible
with many different feature values, whereas a narrow likelihood
function (Fig. 1 C, Top Inset) identifies a value more precisely.
While a pattern of samples may have a sharp likelihood function
with a peak far from the true estimate (a kind of “false alarm”),
statistically, this is unlikely.

If the sample values follow a normal distribution with variance
σ2 centered on the true stimulus value, then the likelihood func-
tion is also normal, with a width that depends only on the number
of samples available for decoding,

L(θ;ϕ)∝φ
(
θ; θ̂ML,

σ2

nk

)
. [6]

Furthermore, for a specified number of samples, the ML esti-
mate is distributed around the true stimulus value as a normal
with the same width as the likelihood,

θ̂ML|nk ∼N
(
θ,
σ2

nk

)
. [7]

This correspondence between uncertainty, as expressed in the
likelihood width, and trial-to-trial variability is not universal, but
does apply to all of the models considered in this study, and jus-
tifies defining the precision of an individual estimate (which we
will denote ω) as the precision of its corresponding likelihood
function (see SI Appendix, Fig. S1 for a detailed illustration).

Adopting this definition explicitly (see also refs. 25 and 26) allows
us to treat precision as a random variable with a defined proba-
bility function, describing variation in the reliability of estimates
while also predicting the distribution of errors across trials. This
will prove critical in fitting data from whole-report tasks (Fig. 2D
and below).

For the stochastic sampling model based on population cod-
ing, likelihood precision has a Poisson distribution (Fig. 1C),
scaled by the precision of a single sample which is determined
by the neural tuning function, ω1 = 1/σ2,

ω

ω1
∼Poisson

( γ
N

)
. [8]

Example distributions of decoding error are shown in Fig. 2 B
and E, where we have made a transition from 1D Euclidean
to a circular stimulus space, corresponding more closely to
the feature dimensions (e.g., orientation, hue) commonly used
experimentally. The distribution of errors can be described as a
scale mixture of normal distributions with precision proportional
to the sample count (SI Appendix, Fig. S1; due to the circular
stimulus space, this is a close approximation rather than exact:
see SI Appendix, Supporting Information Text). The dispersion
of errors increases with decreasing activity (e.g., as a result of
increasing set size; Fig. 2B), and the distribution deviates from
normality, with this effect being particularly evident at lower
activity levels (blue curve) where long tails are observed.

For the fixed sampling model, making the common assumption
that samples are distributed as evenly as possible among items (9,
27), we obtain a discrete distribution over, at most, two precision
values (Fig. 1E), which are multiples of the precision of one sam-
ple, ω1. As in the stochastic model, mean precision is inversely
proportional to set size, but, because the distributions over preci-
sion differ, the fixed and stochastic models make distinct, testable
predictions for error distributions (Fig. 2).
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Response Errors Discriminate between Models
We tested the ability of stochastic and fixed sampling models
to capture response errors in delayed reproduction tasks (SI
Appendix, Fig. S2). We fit the models to a large dataset of single-
report tasks originating from different laboratories (SI Appendix,
Table S1) and also to a set of whole-report experiments (24), in
which participants reported the feature values of all items in a
sample array, either in a prescribed random order or in an order
freely chosen by each participant on each trial. While only a sin-
gle study, the whole-report results include information regarding
correlations in errors between items represented simultaneously
in VWM that could differentiate the models. On free choice tri-
als, we assumed that participants gave their responses in order
of decreasing precision (corresponding to decreasing number of
samples and increasing likelihood width). This assumption is sup-
ported by previous findings that humans have knowledge about
the uncertainty with which individual items are recalled (8, 25).

Overall, the stochastic model fit data substantially better than
the fixed sampling model for both single-report (Fig. 3A; dif-
ference in log likelihood per participant, ∆LL = 16.3 ± 2.37
[M± SE]) and whole-report tasks (Fig. 3B; ∆LL = 162 ± 13.6),
indicating that stochasticity is critical for capturing behavioral
performance (see also SI Appendix, Fig. S3). The response error
distributions in the whole-report task with freely chosen response
order have previously been argued to provide evidence for a fixed
item limit (24), since they approach uniform distributions for the
later responses at high set sizes (Fig. 2D; see SI Appendix, Figs. S4
and S5 for full behavioral results and model fits). However, this
qualitative observation is also predicted by the stochastic sam-
pling model with responses ordered by precision, as the lowest
precision retrievals will be based on few, or no, samples (Fig. 2E).
Quality of fits could be further improved by taking into account
deterioration of recall precision with increasing retention inter-
vals (SI Appendix, Figs. S3J and S5), modeled as random drift of
encoded feature values over time (28) (SI Appendix).

In contrast, the quantitative changes in error distribution with
response order and set size were relatively poorly fit by the fixed
sampling model (Fig. 2F). In particular, when the set size exceeds
the fixed sample count, each item is represented by either one or
zero samples, so this model cannot reproduce the graded decline
in precision with response order that is also present in individual
participants’ data (and does not merely arise at the group level
due to averaging across participants with different capacities).

We tested two intermediate model versions in order to further
dissociate the specific aspects in which the fixed and stochastic
sampling models differ, and determine the significance of each
for capturing human performance. In the random–fixed model,
the total number of samples was fixed but distributed randomly
between items. This model provided an improved fit to data com-
pared to the fixed model with even allocation (moderately for
single-report, ∆LL = 3.07 ± 1.10; strongly for whole-report,
∆LL = 112 ± 11.9), but was still substantially worse than the
stochastic model in both cases (single-report, ∆LL = 13.2 ±
2.24; whole-report, ∆LL = 50.4 ± 7.03). In the even–stochastic
model, the total number of samples was a Poisson random vari-
able, but the samples were distributed as evenly as possible
between items. This model achieved a better fit to single-report
data than the stochastic model with independent sample counts
for each item (∆LL = 3.57± 0.697), but provided a much worse
fit to whole-report data (∆LL = 21.4 ± 4.12). Combining evi-
dence across all participants and tasks, the stochastic model with
independent sample counts was strongly preferred over this and
the other alternative models (total ∆LL > 1,450; Fig. 3C).

Generalizing the Stochastic Model
For the models examined above, typical fitted parameters indi-
cate that estimates are based on relatively small numbers of

samples (e.g., mean of∼13 samples based on fits to single-report
data). One result is that the precision of decoded estimates could
take on only a limited set of possible values, and error distri-
butions reflect a discrete mixture of distributions with different
widths. From a neural perspective, while consistent with the
remarkable fidelity with which single neurons’ activity encodes
visual stimuli (29, 30), such small sample counts nonetheless
seem unlikely when interpreted as spike counts (see Toward Bio-
physically Realistic Models). To investigate whether discreteness
and/or low numbers of samples are important for reproducing
human performance, we therefore implemented a generalization
of the stochastic model in which the number of samples was free
to vary.

The distribution over precision values in the generalized
stochastic model was obtained as a scaling of the negative
binomial distribution,

ω

ω1p
∼NegBin

(
γ

N

1

1− p
, p

)
. [9]

This distribution has previously been proposed to model neural
spiking activity (31), and it retains the characteristic relationship
between mean and variability in the scaled Poisson distribution:
The Fano factor (the ratio of variance to mean) is constant, equal
to the value of a single sample, Var[ω]/E[ω] =ω1. This distin-
guishes the stochastic models from the fixed sampling model,
where the Fano factor is at or close to zero (mean ∼0.25 of ω1

based on ML parameters and typical set sizes) and varies in an
idiosyncratic manner between set sizes, due to the varying com-
binatorial possibilities of allocating a fixed number of samples to
a fixed number of items (Fig. 3D, purple).

The parameter p in the generalized stochastic model controls
the discretization of the precision distribution: p = 1 corre-
sponds to the Poisson model described above and illustrated
in Fig. 4A (strictly, Eq. 8 is the limit of Eq. 9 as p→ 1),
while p< 1 corresponds to a stochastic model with a greater
mean number of samples, n̄ = γ/p, each with a lower individ-
ual precision, ω1p. The mean and variance in precision (E [ω] =
ω1γ/N and Var [ω] =ω2

1γ/N ), and thus also the Fano factor,
are independent of the discretization p. Examples of precision
distributions with different discretizations are shown in Fig. 4 B
and C.

As the discretization parameter becomes very small (p→ 0),
the number of samples becomes very large, and the distribution
of precision described by Eq. 9 approaches a continuous function
(Fig. 4D and SI Appendix), specifically the Gamma distribution,

ω∼Gamma
( γ
N

,ω1

)
. [10]

Two previous studies (8, 9) independently proposed that a
continuous scale mixture of normal distributions with Gamma-
distributed precision provided a good account of VWM data,
but did not provide a theoretical motivation for this choice of
distribution. In particular, ref. 9 proposed distributing precision
as Gamma(J̄1/N

α, τ), with J̄1, τ , and α as free parameters.
With α= 1, this is identical to Eq. 10 (see SI Appendix for
results regarding this parameter). We can now explain Gamma-
distributed precision as a limit case of the stochastic sampling
model with large numbers of low-precision samples.

Fig. 3 E, Top shows the results of fitting the generalized
stochastic model with different levels of discretization, p, to the
single-report dataset. The best fit was obtained with a discretiza-
tion roughly one-third that of the Poisson model, p = 0.39. How-
ever, varying discretization produced differences in fit an order
of magnitude smaller than those between fixed and stochastic
sampling (varying by ∼1.5 versus ∼15 log likelihood points).
Fitting the same model with p as a free parameter that could
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Fig. 3. Model comparison based on single- and whole-report data. (A) Mean difference in log likelihood of each model from the stochastic sampling model
(with independence between items), for a benchmark dataset of single-report experiments. More positive values indicate better fits to data. Error bars
indicate ±1 SE across participants. (B) The same comparison for a set of whole-report experiments. (C) Total difference in log likelihood between models
across single- and whole report experiments. (D) Fano factor (ratio of variance to mean) of precision distribution. A constant Fano factor is characteristic of
the stochastic model and contrasts with the varying Fano factor (dependent on set size and number of samples) in fixed sampling. (E) Mean difference in
log likelihood for differing levels of discretization in the generalized stochastic model (Top), and number of participants best fit with each discretization
level (Bottom). Differences in log likelihood are plotted relative to the maximum discretization (p = 1; Left) corresponding to the standard stochastic model
with Poisson-distributed precision. Lower discretization (p< 1) corresponds to more samples each of lower precision, converging to a continuous Gamma
distribution over precision as p approaches zero (Right). All models have the same number of free parameters and include a fixed per-item probability of
swap errors (SI Appendix).

vary between participants, we found that ML estimates of dis-
cretization were very broadly distributed (Fig. 3 E, Bottom),
with a majority of participants (72%) best described by a sam-
pling model with less discreteness than the Poisson, and a
minority (18%) better captured by the continuous limit (p→
0) than any discrete value of p we tested (as low as 0.0001,
corresponding to ∼100,000 samples). Formal model compari-
son was equivocal with respect to an advantage of including
the discretization parameter in comparison to either the Pois-
son model (i.e., p = 1; difference in Akaike Information Cri-
terion, ∆AIC = −0.61± 0.49; difference in Bayesian Informa-
tion Criterion, ∆BIC = +4.2± 0.46; negative values favor the
added parameter) or the continuous Gamma model (i.e., p→
0; ∆AIC = −3.3± 0.93; ∆BIC = +1.5± 0.89). Overall, these
results do not allow strong conclusions to be drawn regarding

the discreteness of sampling, which has relatively little effect on
error distributions (Fig 4, Insets) or the quality of fits.

Probabilistic Item Limits
In the fixed sampling model, at higher set sizes, a meaningful pro-
portion of estimates are random “guesses” based on no samples
(Fig. 5 A and B). Specifically, if an estimate was generated for
every item in the memory array, then, as set size N increased, the
number of estimates based on at least one sample, Sω>0, would
reach a maximum at the fixed total number of samples,

lim
N→∞

Sω>0 =K . [11]

This is a trivial consequence of sharing out a fixed number of
samples evenly between items.
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Fig. 4. Precision distributions in the generalized stochastic model, for
different levels of discretization, p, and different set sizes. (Insets) Construc-
tion of the corresponding distributions of response error (for set size eight),
with thin lines showing normal distributions with different precisions incre-
mentally accumulated in ascending order (magenta to blue). (A) Example
of discrete Poisson-distributed precision values (p = 1). For typical ML
parameters, estimates are based on a small mean number of samples (here,
γ = 12), each of moderate precision (ω1 = 1.5). (B and C) With decreasing dis-
cretization (p< 1), estimates are based on larger mean numbers of samples,
and discrete precision values are more finely spaced. (D) In the limit as dis-

In the stochastic model with Poisson variability (p = 1), the
number of samples available for each item varies probabilisti-
cally and independently of the other items. There is, again, a
probability of making an estimate based on zero samples,

Pr(ω= 0) = exp
(
− γ

N

)
, [12]

and the number of nonrandom retrievals in a set of N items has
a binomial distribution,

Sω>0∼Bin
(
N , 1− exp

(
− γ

N

))
. [13]

As set size increases, the mean number of estimates based on
at least one sample reaches a maximum at the expected total
number of samples (Fig. 5 C and D). However, unlike the fixed
sampling model, this limit is probabilistic, and (as illustrated
in Fig. 5C) the actual number will vary from one set of mem-
ory items to the next, converging to a Poisson distribution for
large N ,

lim
N→∞

Sω>0∼Poisson(γ). [14]

As we increase the expected number of samples by reducing
the discretization, p, the probability of zero samples falls to
zero: Pr(ω= 0) = pγ/(N (1−p)). However, if we choose a preci-
sion threshold that is less than or equal to the base precision
ω1, it can be shown that the mean number of items with above-
threshold precision converges to a finite positive number at large
set sizes (SI Appendix). This saturation is illustrated for differ-
ent levels of discretization and various precision thresholds in
Fig. 5 E–H.

Item limits or “magic numbers” (2, 24, 32) are usually consid-
ered synonymous with slot-based accounts, occurring when some
items must go unrepresented because other items have filled the
available capacity. The present results show that a probabilis-
tic item limit, that is, an upper limit on the average number of
items successfully retrieved that is not exceeded at any set size,
can arise even when the probability of success for one item is
independent of each other item. This holds true in the Poisson
sampling model if we define success as obtaining one or more
samples, but also more generally, even in a continuous model,
if we define success as exceeding a threshold level of precision
in estimation. Note, however, that the item limit does not, in
general, have a simple relationship to the underlying number of
samples. For example, the probabilistic limit at approximately
five items in Fig. 5E is obtained from a model with a mean of
24 samples.

Toward Biophysically Realistic Models
The idealized description of population coding on which we
based the stochastic sampling model overlooks a number
of important considerations in order to reveal relationships
between cognitive and neural-level accounts of VWM. For
instance, the statistics of spike counts in the neural system often
deviate from the Poisson distribution assumed in the original
population coding model in that they are “overdispersed” (i.e.,
Fano factor of >1). Such an overdispersion in the sample count
also occurs in the generalized stochastic model as the discretiza-
tion p decreases (in order for the Fano factor of the precision
distribution to remain constant, the Fano factor of the sample
count has to increase). Spike counts in visual cortical neurons
typically show a Fano factor in the range 1.5 to 3 (e.g., ref. 33),

cretization falls to zero, the mean number of samples becomes infinite, and
the distribution over precision approaches a continuous Gamma distribu-
tion. The ratio of variance to mean precision (Fano factor) is fixed (at ω1 =
1.5) across all set sizes and levels of discretization.
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corresponding, in our model, to discretization p in the range 0.33
to 0.75.

In real neural populations, there is also considerable variability
between individual cells’ tuning curves (34). Due to this hetero-
geneity, neurons differ in the amount of information each spike
provides about a stimulus. From a sampling perspective, this
means that estimates are based on samples that vary in precision,
and this has the effect of “smoothing out” the discrete distri-
bution of precision values predicted by the stochastic model (SI
Appendix, Fig. S6). This has similar consequences for estimation
error as decreasing p in the generalized model. We fit the single
report data with a variant of the population model with random
variability in the neurons’ tuning curves (affecting baseline activ-
ity, gain, and tuning curve width, as well as adding heterogeneity
in the coverage of the feature space by neural tuning curves; SI
Appendix), scaled by a global heterogeneity parameter ν. Incor-
porating biologically realistic heterogeneity into the population
model improved fits to data (∆AIC = 8.3 ± 1.8, ∆BIC = 3.4 ±
1.7 compared to the stochastic sampling model). The mean het-
erogeneity parameter in the ML fits was ν = 0.66± 0.08, where
ν = 0 means no heterogeneity, and ν = 1 was approximately
matched to heterogeneity of orientation-selective neurons in
recordings from primary visual cortex (34).

Finally, spikes in real neural populations are not independent
events as assumed by the sampling interpretation, but rather are
correlated within and between neurons. This will tend to result
in deviations from the simple additivity assumed by sampling.
An implementation of short-range pair-wise correlations in the
heterogeneous population model (see SI Appendix for details)
greatly increased the numbers of decoded spikes required to
reproduce behavioral data (on average, 168 times higher), with-
out changing quality of fit (∆AIC/BIC = 0.045 ± 0.28). We
note, however, that the exact consequences of spike correla-
tions for decoding depend on details of correlation structure that
are difficult to measure experimentally (35–37), and suboptimal
inference (in the form of a mismatched decoder) may play an
important part (38).

Discussion
Taking, as a starting point, a mathematical idealization of the
way neural populations encode information, we have shown
that retrieval of a visual feature from working memory can be
described as estimation based on a stochastically varying number
of noisy samples. Two other influential models of VWM can be
reconceptualized in the same framework: The slots+averaging
model, because it modified the original slot model to allow multi-
ple representations with independent noise, is directly equivalent
to a sampling model with a fixed number of samples (13). And
the variable precision model (8, 9) constitutes the continuous
limit of a sampling model as samples are made less precise
and more numerous, while maintaining the fixed proportional-
ity between the variance and mean of precision in the decoded
estimate.

Formulating all three models in the same mathematical frame-
work (a formal “unification”) allowed us to pinpoint specific
differences between them. We determined the effect of these
differences on the models’ ability to account for human behav-
ior by fitting multiple variants of the sampling model to a large
database of delayed reproduction tasks. We found that stochas-
ticity both in the total number of samples and in their distribution
among items has a major impact on the quality of fit, with the best
fits obtained if the number of samples is drawn randomly and
independently for each item in each trial. Note that this form of
stochasticity is poorly captured by the concept of memory “slots,”
because of the implication that a slot occupied by one item leaves
fewer slots available for other items—this would predict depen-
dencies between items in whole report that were not supported
experimentally.

On the other hand, contrary to the assumptions of continu-
ous resource models, we did find limited support for discreteness
of memory representations (3). The fully continuous model with
Gamma-distributed precision proposed in previous studies pro-
vided fits to data that were, overall, a little worse than the
discrete Poisson model, in both single- and whole-report tasks
(SI Appendix). When we attempted to fit discretization as a
free parameter, however, we found that ML estimates varied
widely between participants, and many were best fit by contin-
uous or near-continuous versions of the generalized stochastic
sampling model. So, while discreteness in memory representa-
tions is plausible—even inevitable if based on discrete spiking
activity—recall errors do not provide strong evidence for any one
particular level of discreteness, or, as a corollary, any particular
mean number of samples.

Our findings further highlight the need to distinguish between
two concepts that have previously been elided: discreteness in
representation and discreteness in allocation. In the stochas-
tic sampling model, the resource underlying capacity limits in
VWM is equated with the mean number of samples (or the
mean spike rate in the population coding interpretation), which
can be distributed among items in a continuous fashion, even
though the consequent number of samples obtained by each
item is a discrete integer. This view on memory resources was
strongly motivated by studies showing that prioritized items can
be represented more precisely in VWM, at the cost of decreased
precision for other items (7, 39–42). The stochastic sampling
model can account for such findings through an uneven distri-
bution of resources among memory items, corresponding to a
higher mean number of samples for some items at the cost of a
lower mean for other items. The actual number of samples avail-
able on an individual memory retrieval varies randomly about the
item’s mean. In the neural population model, this mechanism has
previously been shown to successfully reproduce data from tasks
in which one item is cued as the likely target (10).

While the stochastic sampling model is based on a highly
idealized implementation of population coding, it nevertheless
provides a link to a concrete neural mechanism that could form
the basis of VWM performance. We have shown that adapting
this model to achieve a higher degree of biophysical realism—by
introducing heterogeneity in neural tuning curves and correlated
spiking activity—improved the quality of fit to behavioral data. It
has recently been shown that more neurally realistic population
coding models preserve the key characteristics of the idealized
model, and that signatures of neural tuning may even be visible
in behavioral data (43).

Our results also provide a link between models of working
memory used in the psychological literature and more bio-
physically detailed neural models such as continuous attractor
networks (44–46), whose greater complexity typically precludes
quantitative fits to behavioral data. These models are, likewise,
based on principles of population coding and emphasize the
role of neural noise in explaining variability in working mem-
ory performance. They are capable of producing probabilistic
item limits similar to those described here, but it remains unre-
solved how these models could account for the graded variations
in recall fidelity that we have found to be essential for capturing
human behavioral performance.

In keeping with most previous work on VWM limits, we have
not here attempted to reproduce the variations in bias and pre-
cision that are observed for different feature values, exemplified
by the finding that cardinal orientations can be reproduced with
greater precision than obliques. However, previous work has
shown that these effects can be simply and elegantly captured
within the population coding framework via the principle of effi-
cient coding (47–49). The idea is that neural tuning functions
are adapted to the stimulus statistics of the natural environ-
ment in such a way as to maximally convey information in that

20966 | www.pnas.org/cgi/doi/10.1073/pnas.2004306117 Schneegans et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004306117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004306117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004306117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004306117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004306117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004306117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2004306117


PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

environment (effectively by distributing neural resources pref-
erentially to the most frequently occurring stimulus features).
Although it should be possible to formulate this model as a
modification of stochastic sampling, without reference to neu-
ral populations, it seems that the modifications required would
not have a natural explanation within the sampling framework.
These observations, and the results of incorporating heterogene-
ity described above, illustrate the value of connecting abstract
cognitive models to neural theory.

We also did not address here the question of how individual
features of a visual stimulus are bound together, which forms
another point of contention in the debate on the format of VWM
representations. In the model fits, we allowed failures of binding
memory in the form of swap errors to occur with a fixed rate,
although taking into account similarity of items with respect to
the cue feature is likely to improve model fits (50, 51). While the
discrete memory representations in slot models have tradition-
ally been associated with a strongly object-based view (1), the
sampling framework is agnostic as to whether objects or features
are the units of VWM storage. Both views are compatible with
the population coding interpretation, depending on whether the
neurons in question are sensitive to a single feature (52) or a
conjunction of features (51, 53).

A recent proposal that VWM errors can be explained in terms
of a perceptual rescaling of stimulus space can also be expressed
in terms of population coding, with some minor differences from
the version presented here (see ref. 54 for details and discussion).
In particular, the idea of retrieval based on normally distributed
“memory-match” signals maps exactly onto an idealized popula-
tion code with continuous-valued activity and constant Gaussian
noise (51, 55). This predicts a continuous distribution over preci-
sion, not dissimilar to the Gamma distribution. Continuousness
in representation does not appear a necessary component of this
account, however, and it should be possible to reformulate it with
arbitrary levels of discreteness, as in our generalized stochastic
model.

There are other models of working memory that address
capacity limits without explicitly postulating a limited memory
resource (56). Some accounts stress the importance of memory
decay over time, and active rehearsal to counteract this decay
(57, 58). These theories do not have a clear analogue in the
sampling framework, although effects of retention time have
been incorporated into the neural population model (28). Other
accounts have sought to explain capacity limits by interference
between different memorized items (59). While the sampling
framework does not explicitly address interference, the effect of
normalization could be described as a form of nonspecific inter-
ference between items. A model of feature binding based on the
neural population model shows some notable congruencies with

an interference account of VWM, and both models make simi-
lar predictions regarding swap errors (50, 51). Further research
will be needed to determine the exact relationship between these
models.

Taken together, our results reveal a surprising convergence
between prominent models of VWM. Despite the fact that these
competing models were independently motivated by different
behavioral and neural findings, they can be expressed within
the shared formal framework of sampling, which reveals spe-
cific distinguishing factors as well as shared general principles.
This convergence gives cause for confidence that the stochastic
sampling model captures key characteristics of VWM and will
provide a solid foundation for future research.

Materials and Methods
We fit computational models of VWM to behavioral data from a large
dataset of delayed estimation experiments. The dataset included 15 indi-
vidual single-report experiments (SI Appendix, Table S1; see SI Appendix,
Supporting Information Text for inclusion criteria), as well as four whole-
report experiments (SI Appendix, Table S2). Each model defines a parame-
terized distribution of response probabilities given the true feature values
of the target and nontarget items in each trial (SI Appendix). For fits to
whole-report data, we determined the probabilities of obtaining the given
combination of responses within a single trial, taking into account the cor-
relations of recall precision between different items within a trial predicted
by each model.

We obtained an ML fit of each subject’s data for each model. The stochas-
tic sampling, fixed sampling, and continuous sampling (Gamma) model, as
well as the fixed–random and stochastic–even variants, each have three free
parameters (including one parameter for the probability of swap errors). We
fit these to both the single-report and whole-report data using the Nelder–
Mead simplex algorithm (see SI Appendix for details). The generalized
stochastic model and the neural population model with heterogeneous tun-
ing curves have four free parameters each. For these models, we employed
a grid search to obtain fits only of the single-report data (fitting them to
whole-report data was not computationally feasible). We further evaluated
model variants employing a more accurate method for ML decoding for cir-
cular feature spaces (rather than the Gaussian approximation used for fits
reported in Response Errors Discriminate between Models), models without
swap errors, models with an additional free parameter for the power law in
set size effects, and models with a temporal decay of memory precision over
varying response delays in the whole-report experiments (SI Appendix).

Data Availability. Data and code associated with this study are publicly
available in Open Science Framework (60).
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