Lilium spp. pollen in China (Liliaceae): Taxonomic and Phylogenetic Implications and Pollen Evolution Related to Environmental Conditions

Yun-peng Du, Chi Wei, Zhong-xuan Wang, Shuang Li, Heng-bin He, Gui-xia Jia*
College of Landscape Architecture, National Engineering Research Center for Flowers, Beijing Forestry University, Beijing, China

Abstract

Recent molecular and karyologic studies have significantly modified delimitation of Lilium. However, despite the importance of pollen evolution in the genus comprehensive studies with electron microscopy and evaluation of pollen evolution are lacking. Therefore, we studied pollen morphology in a sample of 65 individuals from 37 taxa covering all the sections distributed in the world, using scanning electron microscopy. Our collection of 49 individuals from 21 taxa covering all five sections in China was also included in the database. We found pollen tetrads in L. bakerianum. Based on present and previous studies, our results suggest that pollen from L. formosanum should be classified as a new type, Formosanum. Combined with morphological and molecular evidence, pollen sculpture patterns appear to reflect phylogenetic relationships and are useful for species or subsection delimitation. Based on a comprehensive survey and correlation with potential functional implications, we propose the following hypothesis: evolution of an exine sculpture shows pollen type trends from Martagon \rightarrow Callose \rightarrow Concolor \rightarrow Formosanum. The evolutionary trend regarding pollen sculpture and size could be related to selective pressure to adapt to environmental conditions. Pollen size and shape showed a significantly positive correlation with annual precipitation, and smaller pollen grains appear to adapt better in habitats with extreme conditions. Evolution trends in exine sculpture do not appear to be definitively correlated with pollen size and shape.

Citation: Du Y-p, Wei C, Wang Z-x, Li S, He H-b, et al. (2014) Lilium spp. pollen in China (Liliaceae): Taxonomic and Phylogenetic Implications and Pollen Evolution Related to Environmental Conditions. PLoS ONE 9(1): e87841. doi:10.1371/journal.pone. 0087841

Editor: Paul Adam, University of New South Wales, Australia
Received July 10, 2013; Accepted January 1, 2014; Published January 31, 2014
Copyright: © 2014 Du et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding: This research was supported by Fundamental Research Funds for the Central Universities (Project No.BLYJ201207) (http://www.dost.moe.edu.cn/ dostmoe/), the project from the National Natural Science Foundation of China (Project No. 31071819) (http://www.nsfc.gov.cn/Portal0/default152.htm), and Special Fund for Forestry Scientific Research in the Public Interest (Project No. 201204609) (http://www.forestry.gov.cn/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gxjia@bjfu.edu.cn

Introduction

Approximately 110 to 115 Lilium species are distributed in the cold and temperate regions of the Northern Hemisphere [1,2], particularly in East Asia, the Himalayas and Hengduan Mountains, North America and Europe. A total of 55 species occur in China [2]. De Jong [3] and Patterson and Givnish [4] consider southwest China and the Himalayas to be the center of origin of this genus.

Classification of this genus has been historically complicated. Several classifications for Lilium have been proposed based on morphological characters. Detailed studies have been performed for East Asia, European and North American Lilium species [5-7]. Based on 13 morphological characters and two germination types, Comber divided this genus into the following seven sections: Martagon Rchb., Pseudolirium Endl. which is limited to North America, Liriotypus Asch. and Graeb. which is distributed across Europe and the Caucasus, Archelivion Baker, Sinomartagon Comber, Leucolirion Wilson, and Daurolirion Comber, representing the most widely accepted taxonomical divisions [8]. Wang and Tang recognized sect. Lophophorum (Bur. et Franch.) Wang et Tang out of sect. Sinomartagon Comber and included campaniform-flowered species [9]. Liang [10] and Haw [11] modified sect. Lophophorum to accommodate the Nomocharis-like Lilium species in sect. Sinomartagon

Comber. Chinese species were divided into five sections: Martagon, Archelirion, Sinomartagon, Leucolirion and Lophophorum.

Recently, molecular phylogenetic analyses and chromosome techniques have improved the understanding of several groups within the genus and modified the phylogenetic position of Comber's classification, such as placement of sect. Daurolivion Comber in sect. Sinomartagon, L. henryi in subsect. Leucolivion 6b, modification of sect. Lophophorum and relationship confirmation in sect. Liriotypus [12-13,16-21]. Preliminary research found that sect. Sinomartagon, which mainly occurred in China, was complicated and polyphyletic. As indicated by Patterson and Givnish [4], intercontinental dispersal details of the genus Lilium are not yet clear. The division of subsect. Sinomartagon 5c and sect. Lophophorum are controversial and will require further research. Nishikawa et al. $[18,19]$ suggested that L. henvyi be classified into subsect. Leucolirion 6a and that it showed similar morphological features with L. rosthornii, thereby demonstrating that the phylogenetic position of L. rosthorniï needs further study.

There are few relevant studies regarding pollen morphology which defines the taxonomic and reflect the evolution of the genus. According to the description within Lilium by Baranova [22] based on the number, shape and arrangement of columellae that form the muri, there are three morphological types of pollen: (1) Martagon (muri formed by rectangular columellae); (2) Callose
(muri formed by rounded columellae); and (3) Concolor (muri formed by separated rounded and polygonal columellae). Previous studies found that most Lilium species have single pollen grains. However, pollen tetrads were found in L. sempervivoideum H. Lév. and L. amoenum E. H. Wilson ex Sealy, and the size and sculptural elements confirmed the taxa as two subspecies in L. sempervivoideum [23]. The pollen morphology of L. lophophorum (Bur. et Franch.) Franch., L. henrici Franch., L. souliei (Franch.) Sealy and L. nanum Klotz. et Garcke supported placement in Lilium, which differs from Nomocharis in apture and sculptural elements, and showed an evolutionary aperture trend from monocolpate to porate [24]. Muratović et al. [25] showed that two related European species, L. bosniacum and L. carniolicum, share similar pollen morphology. In addition, pollen morphology of some Chinese species under scanning electron microscopy (SEM), including 9 species described by Li and Qin [26], 10 species and 3 cultivars by Zhang et al. [27], and 12 species and 6 cultivars by Wu et al. [28], could provide taxonomic implications within Lilium:pollen has not only the commonness of genus, but also the specificity of single species. Interspecific pollen size and morphological characteristics has some difference, which has a certain reference value for the classification of Lilium. For example, there are differences in pollen size among L. cernnum, L. lanciflium and L. pumilum. Also there are significant differences in pollen ornamentation and morphology between L. leucanthum and its variety L. leucanthum var. centifolium from Qinling Mountains. Results obtained by Wang et al. [29] and Liu [30] indicate that pollen size parameters of L. pumilum and L. concolor from different provenances showed different degrees of variation. Determining whether this is a universal phenomenon in other species or if it is an important characteristic of species from different provenances requires a large amount of data. Therefore, a comprehensive study of Lilium pollen morphology in China, particularly a comparative study between populations or provenances using SEM, was needed. Environmental constraints act on patterns of differentiation, as all character states are the consequence of interactions between phylogenetic and environmental constraints [31]. Pollen could be considered a functional unit, with the exine structure as a compromise between four main functions [32]: protective, harmomegathic (the ability to absorb bending stresses, as occur during desiccation), reservoir (the role in producing an adhesive surface or as recognition substances) and clustering. Based on a comparative survey in the Rhaponticum group (Asteraceae, Centaureinae), Hidalgo et al. [33] hypothesized that occurrence in habitats with extreme conditions appears to be the main factor in the evolution from one form of pollen to another.
By combining previous and present results, our aim is to provide palynology information regarding the extent of pollen morphological diversity within and between species/sections, link this information with current phylogenetic data, and contribute to a comprehensive understanding of the systematics and evolution of Lilium by: (1) verifying pollen types in Chinese species; (2) discussing these findings within a phylogenetic framework; and (3) correlating pollen morphology and size with habitat.

Materials and Methods

Ethics Statement

For conservation reasons, we collected only small amounts of Lilium pollen. Our activities did not have any adverse effects of Lilium populations, and permission for collecting was obtained from National Engineering Research Center for Flowers of China (No. 35 Tsinghua East Road Haidian District, Beijing, P.R. China).

Table 1 shows the origin of all species studied which were collected fresh. Our observations for 21 taxa represented by 49 samples were also included in the database. Division into the sections was based on studies by Comber [8], Gao et al. [13], Nishikawa et al. $[18,19]$ and Du et al. [16]) as follows: two species and one variety of sect. Martagon, nine species and three varieties of sect. Sinomartagon including L. dauricum Ker-Gawl (sect. Daurolirion Comber), eight species and one variety of sect. Leucolirion including L. brownii F. E. Brown ex Miellez (sect. Archelirion Comber), L. henryi Baker and L. rosthornii Diels (sect. Sinomartagon Comber), one species of sect. Archelirion, two species of sect. Liriotypus, three species of sect. Pseudolirium, and six species and one variety of sect. Lophophorum (Table 1).

To compare pollen features at the genus level, a database with results of the present study and those of Halbritter [34], Kosenko [35], Liang et al. [23,24], Muratović et al. [25], Wu et al. [28], Zhang et al. [27] and Zhang et al. [36] was established (Table 1). Because the results do not permit a calculation of all the parameters cited above, our observations from 49 samples representing 21 taxa was used only for statistical analyses.

Morphological observations were conducted using SEM. Pollen was directly attached to double-sided adhesive tape and examined under the microscope to locate the pollen. The sample was then taped to the object stage. Following gold spray coating, observation and image acquisition were conducted using a Hitachi S-3400 scanning electron microscope following the method described by Avetissian [37]. All microscopy procedures were performed at the Biotechnology Centre, Beijing Forestry University, China.

Biometric measurements were made using Image-Pro Plus 6.0 (Media Cybernetics, USA). For each sample, 10 (5 for L. brownii from Shennongjia, Hubei Province) fully developed pollen grains were measured. Parameters considered were the polar axis (P), equatorial diameter $(E), P / E$ ratio, lumina diameter and muri width (Table 1). The description of pollen morphology was based on the shape and sculpturing classifications of Baranova [22]. Arithmetic mean and standard deviations are shown for each parameter.

To investigate pollen evolution, pollen features from the database were superimposed onto a phylogenetic framework constructed by internal transcribed spacer (ITS) sequences. We selected 23 taxa, including Cardiocrinum gigantum as an outgroup based on preliminary study [16]. The other 16 taxa, including an outgroup of Northolivion bulbiliferum, were cited [13,18-20]. All of the sequence data from the ITS regions were double-checked visually, edited in BioEdit 5.0.6 [38], and aligned in Clustal X 1.83 [39] using default settings. Phylogenetic analyses were performed using maximum parsimony (MP) and maximum likelihood (ML). The MP tree was constructed with PAUP* 4.0b10 [40]. ML phylogenetic analysis was performed using RAxML v. 7.0 .4 with unique model parameters for ITS sequences [41]. A general time reversible model (GTR) was applied with discrete gamma distribution. Bootstrap pseudo replicates were performed 1000 times using the fast bootstrapping option and the best scoring ML tree. Phylogenetic trees were visualized using Treeview [42]. The best scoring tree was visualized with FigTree vl.3.1 (http://tree. bio.ed.ac.uk/).

SPSS 18.0 was used for statistical analyses. One-way analysis of variance (ANOVA) was used to evaluate whether or not differences in pollen characteristics from different provenances were significant. In those cases in which ANOVA revealed significant differences, a least significant difference (LSD) test was performed (Table 2). Correlation analysis was used to evaluate the
Table 1. Origin of the material and numerical results of the study.

Samples	Voucher	$\begin{aligned} & P \\ & (\mu \mathrm{~m}) * \end{aligned}$	$\underset{(\mu \mathrm{m})^{\#}}{E}$	P/E	Lumina ($\mu \mathrm{m}$)	Muri width ($\mu \mathrm{m}$)	Pollen type**
L.lancifolium Thunb.	Du 08001, Fushun, Liaoning, China	108.20 ± 7.57	41.55 ± 4.39	2.62 ± 0.21	4.24 ± 1.21	1.22 ± 0.20	Martagon
L.lancifolium Thunb.	Wang 11001, Shengnongjia, Hubei, China	113.20 ± 8.69	40.14 ± 2.67	2.83 ± 0.22	6.76 ± 2.04	1.50 ± 0.19	Martagon
L.lancifolium Thunb.	Du 09001, Foping, Shaanxi, China	110.97 ± 7.80	38.95 ± 2.82	2.86 ± 0.22	6.84 ± 1.98	1.49 ± 0.17	Martagon
L.lancifolium Thunb.	Du 11001, Chongqing, China	111.22 ± 11.17	40.76 ± 3.68	2.74 ± 0.30	6.75 ± 1.94	1.43 ± 0.21	Martagon
L.lancifolium Thunb.	Du 09002, Hanzhong, Shaanxi, China	111.25 ± 7.94	41.23 ± 4.12	2.72 ± 0.26	4.89 ± 1.24	1.37 ± 0.25	Martagon
L.lancifolium Thunb.	Du 11002, Yichang, Hubei, China	109.59 ± 7.84	42.08 ± 4.67	2.62 ± 0.20	6.58 ± 2.07	1.37 ± 0.18	Martagon
L.lancifolium Thunb.	Du 11003, Zigui, Hubei, China	109.91 ± 14.7	42.88 ± 5.24	2.57 ± 0.29	7.95 ± 2.50	1.35 ± 0.20	Martagon
L.lancifolium Thunb.	Du 09003, Taibai, Shaanxi, China	111.91 ± 9.26	42.65 ± 4.05	2.64 ± 0.23	6.45 ± 1.93	1.49 ± 0.25	Martagon
L.lancifolium Thunb.	Wang 11002, Yichang, Hubei, China	113.72 ± 8.91	39.62 ± 3.35	2.88 ± 0.28	6.64 ± 2.26	1.35 ± 0.23	Martagon
L.lancifolium Thunb.	Du 11004, Yichang, Hubei China	112.03 ± 6.39	41.74 ± 3.2	2.70 ± 0.24	8.15 ± 2.78	1.48 ± 0.21	Martagon
L.distichum Nakai et Kamibayashi	Jia 07001, Changbai Mountains, Jilin, China	88.34 ± 4.52	32.90 ± 2.66	2.70 ± 0.23	8.29 ± 1.97	1.46 ± 0.17	Martagon
L.distichum Nakai et Kamibayashi	Du 11005, Fushun, Liaoning, China	94.78 ± 5.78	36.23 ± 2.64	2.62 ± 0.17	6.86 ± 3.63	1.49 ± 0.20	Martagon
L.tsingtauense Gilg	Du 11006, Tsingtao, Shandong, China	104.70 ± 6.16	44.52 ± 2.23	2.36 ± 0.17	10.06 ± 2.27	1.64 ± 0.35	Martagon
L.dauricum Ker-Gawl.	Du 11007, Fushun, Liaoning, China	99.21 ± 4.72	37.85 ± 4.29	2.64 ± 0.24	6.57 ± 2.64	1.54 ± 0.20	Martagon
L.davidii Duchartre ex Elwes	Wang 11002, Baoxing, Sichuan, China	95.50 ± 4.35	33.36 ± 2.44	2.88 ± 0.23	6.18 ± 2.15	1.28 ± 0.16	Martagon
L.davidii Duchartre ex Elwes	Du 11008, Zigui, Hubei, China	94.22 ± 5.11	34.48 ± 2.82	2.75 ± 0.21	5.38 ± 1.87	1.17 ± 0.14	Martagon
L.davidii Duchartre ex Elwes	Wang 11003, Chongqing, China	85.56 ± 6.34	32.45 ± 3.95	2.66 ± 0.29	5.67 ± 1.88	$1.15 \pm \pm .16$	Martagon
L.davidii Duchartre ex Elwes	Du 11009. Lijiang, Yunnan, China	97.07 ± 5.95	33.92 ± 2.15	2.87 ± 0.17	6.78 ± 1.96	1.45 ± 0.96	Martagon
L.davidii var. willmottiaee (E. H. Wilson) Raffill	Jia 07002, Lanzhou, Gansu, China	95.64 ± 7.13	32.75 ± 3.00	2.93 ± 0.22	5.27 ± 0.56	1.23 ± 0.21	Martagon
L.davidii var.willmottiaee (E. H. Wilson) Raffill	Wang 11004, Heqing, Yunnan, China	88.14 ± 3.82	34.43 ± 2.28	2.57 ± 0.26	5.79 ± 1.51	1.20 ± 0.14	Martagon
L.duchartrei Franch.	Wang 11005, Baoxing, Sichuan, China	85.07 ± 10.81	33.31 ± 3.70	2.56 ± 0.23	8.31 ± 2.79	1.30 ± 0.15	Martagon
L. leichtlinii Hook.f. var. maximowiczii (Regel) Baker	Du 12001, Beijing Botanical Garden, Beijing, China	76.86 ± 5.36	31.45 ± 3.03	2.45 ± 0.18	5.78 ± 2.55	1.21 ± 0.14	Martagon
L. leichtlinii Hook.f. var. maximowiczii (Regel) Baker	Du 11010, Fushun, Liaoning, China	88.75 ± 5.26	34.63 ± 2.54	2.58 ± 0.23	7.39 ± 2.31	1.29 ± 0.17	Martagon
L. concolor Salisb. var. pulchellum (Fisch.) Regel	Du 11011, Fushun, Liaoning, China	71.03 ± 4.66	30.56 ± 2.42	2.34 ± 0.21	5.71 ± 1.53	1.21 ± 0.36	Concolor
L. concolor Salisb. var. pulchellum (Fisch.) Regel	Du 11012, Fushun, Liaoning, China	70.51 ± 5.13	30.59 ± 2.44	2.31 ± 0.11	3.50 ± 1.79	1.50 ± 0.20	Concolor
L.pumilum DC.	Jia 09001, Tongliao, Inner Mongolia, China	87.39 ± 7.00	32.66 ± 1.82	2.67 ± 0.12	4.96 ± 1.90	1.35 ± 0.22	Martagon
L.taliense Franch.	Jia 09002, Chongqing, China	79.54 ± 8.11	29.91 ± 2.39	2.59 ± 0.26	6.12 ± 2.03	1.15 ± 0.18	Martagon
L.taliense Franch.	Du 12002, Shangri-la,Yunna, China	69.85 ± 3.51	29.49 ± 3.42	2.40 ± 0.27	3.57 ± 1.1	1.07 ± 0.09	Martagon
L.wardii Stapf ex Stearn	Du 11013, Bomi, Tibet	87.77 ± 5.97	35.26 ± 1.97	2.49 ± 0.18	7.48 ± 2.20	1.46 ± 0.15	Martagon

Table 1. Cont.

Samples	Voucher	$\begin{aligned} & P \\ & (\mu \mathrm{~m}) * \end{aligned}$	$\underset{(\mu \mathrm{m})^{\#}}{E}$	P/E	Lumina ($\mu \mathrm{m}$)	Muri width ($\mu \mathrm{m}$)	Pollen type**
L.bakerianum Coll. et HemsI	Du 12003, Lijiang, Yunnan, China	78.40 ± 4.88	79.71 ± 15.81	1.03 ± 0.19	5.84 ± 3.42	1.46 ± 0.35	Concolor
L.brownii F. E. Brown ex Miellez	Wang 11006, Shennongjia, Hubei, China	120.13 ± 3.65	53.16 ± 6.50	2.29 ± 0.29	12.29 ± 4.49	1.69 ± 0.18	Martagon
L.brownii F. E. Brown ex Miellez	Du 09004, Foping, Shaanxi, China	103.18 ± 9.16	46.11 ± 4.43	2.25 ± 0.20	7.95 ± 2.74	1.68 ± 0.24	Martagon
L.brownii F. E. Brown ex Miellez	Du 11014, Yichang, Hubei, China	109.77 ± 4.24	50.91 ± 5.39	2.18 ± 0.23	10.44 ± 4.37	1.86 ± 0.28	Martagon
L.henryi Bake	Du 11015, Zigui, Hubei, China	92.67 ± 4.65	35.98 ± 2.70	2.59 ± 0.18	4.36 ± 2.40	1.11 ± 0.15	Martagon
L.henryi Bake	Du 12004, Beijing botanical garden, Beijing, China	96.47 ± 5.35	34.86 ± 2.62	2.78 ± 0.20	6.46 ± 2.03	1.37 ± 0.31	Martagon
L.rosthornii Diels	Jia 10001, Chongqing, China	98.01 ± 5.87	35.20 ± 2.38	2.79 ± 0.17	5.08 ± 1.60	1.06 ± 0.11	Martagon
L.rosthornii Diels	Du 12005, Yuanling, Hunan, China	92.31 ± 6.88	32.88 ± 2.28	2.81 ± 0.18	6.40 ± 2.20	1.20 ± 0.26	Martagon
L. regale Wilson	Du 11015, Maoxian, Sichuan, China	100.68 ± 6.00	41.09 ± 3.76	2.47 ± 0.24	9.32 ± 2.85	1.57 ± 0.29	Callose
L. regale Wilson	Wang 11007, Lixian, Sichuan, China	93.55 ± 4.40	42.62 ± 2.97	2.20 ± 0.15	9.94 ± 3.48	2.22 ± 0.46	Callose
L. regale Wilson	Du 11016, Wenchuan, Sichuan, China	95.78 ± 5.15	39.95 ± 2.88	2.41 ± 0.21	10.26 ± 3.55	1.52 ± 0.47	Callose
L.regale Wilson	Du 12006, Beijing botanical garden, Beijing, China	99.33 ± 5.16	40.16 ± 3.92	2.49 ± 0.22	8.93 ± 2.91	1.79 ± 0.25	Callose
L.sargentiae Wilson	Jia 11001, Chongqing, China	91.33 ± 4.65	33.03 ± 2.50	2.78 ± 0.25	6.29 ± 1.83	1.08 ± 0.21	Callose
L.sargentiae Wilson	Du 11017, Baoxing, Sichuan, China	95.11 ± 7.01	35.96 ± 2.25	2.65 ± 0.18	6.49 ± 1.97	1.16 ± 0.16	Callose
L.sargentiae Wilson	Du 11018, Baoxing, Sichuan, China	89.83 ± 5.75	33.60 ± 2.36	2.68 ± 0.15	6.50 ± 1.95	1.35 ± 0.14	Callose
L.sargentiae Wilson	Wang 11008, Chongqing, China	92.10 ± 4.90	35.67 ± 2.92	2.60 ± 0.26	6.52 ± 1.95	1.66 ± 0.23	Callose
L.sargentiae Wilson	Wang 11009, Chongqing, China	89.08 ± 6.62	33.28 ± 2.33	2.68 ± 0.20	7.34 ± 2.00	1.33 ± 0.19	Callose
L.leucanthum (Baker) Baker	Du 11019, Zigui, Hubei, China	98.82 ± 9.59	36.55 ± 3.72	2.71 ± 9.16	6.80 ± 2.05	1.46 ± 0.18	Callose
L.sulphureum Baker apud Hook. f.	Du 12007, Beijing botanical garden, Beijing, China	87.56 ± 4.58	38.69 ± 3.58	2.28 ± 0.23	6.40 ± 2.01	1.50 ± 0.30	Callose
L.formosanum Wallace	Du 12008, Beijing botanical garden, Beijing, China	122.30 ± 7.64	49.89 ± 4.22	2.46 ± 0.20	12.63 ± 3.71	1.22 ± 0.39	Formosanum (this study)
L.cernuum Kom.	Zhang et al.(2006)	108.9	44.9	2.43	4.99	2.1	Martagon
L. amabile Palib.	Zhang et al.(2006)	106.2	41.8	2.54	7.55	1.93	Martagon
L.leucanthum var. centifolium (Stapf ex Elwes) Stearn	Zhang et al.(2010)	74.3	35.1	2.12	3.3	2.4	Martagon
L. henricii Franch.	Liang and Zhang (1985)	70.5	47.0				Concolor
L.lophophorum(Bur.et Franch.) Franch	Liang and Zhang (1985)	70.5	65.8				Martagon
L.nanum Klotz. Et Garche	Liang and Zhang (1985)	84.6	61.1				Martagon
L.nanum Klotz. Et Garche var. brevistylum S. Liang	L.Liang and Zhang (1985)	58.8	49.4				Martagon
L.sempervivoideum Levl.	Liang and Zhang (1984)	103.4	117.5				Martagon

Table 1. Cont.

Samples	Voucher	$\begin{aligned} & P \\ & (\mu \mathrm{~m}) * \end{aligned}$	$\begin{aligned} & E \\ & (\mu \mathrm{~m})^{\#} \end{aligned}$	P/E	Lumina ($\mu \mathrm{m}$)	Muri width ($\mu \mathrm{m}$)	Pollen type**
L. amoenum Wilson ex Sealy	Liang and Zhang (1984)	112.8	122.2				Martagon
L. speciosum Thunb. var. gloriosoides Baker	Wu et al. (2007)	59.5	21.4	2.78	4.68	1.03	Martagon
L. martagon L.	Halbritter (1993)						Martagon
L. bosniacum (Beck) Beck ex Fritsch	Muratović et al. (2010)						Martagon
L. carniolicum Bernh. ex W.D.J. Koch	Muratović et al. (2010)						Martagon
L.canadense	Kosenko (1999)	74.8-76.8	51.8-55.8				Martagon
L.columbianum	Kosenko (1999)	71.0-76.8	44.1-46.0				Martagon
L.kesselringianum	Kosenko (1999)	101.8-107.5	53.7-59.5				Martagon

Table 2. Variance analysis of pollen morphology traits among species from different provenances.

Traits	Species										
	L.lancifolium	L.regale	L.davidii	L.sargentiae	L.brownii	L.davidii var. willmottiaee	L.distichum	L.henryi	L. concolor var. pulchellum	L.rosthornii	L. leichtlinii var. maximowiczii
P	0.551	9.278**	14.763**	3.613**	10.40**	6.705*	20.757**	6.786*	0.086	7.964**	31.007**
E	2.426*	2.830*	1.526	6.811**	5.539**	2.068	23.439**	2.061	0.001	10.597**	6.793*
P/E	3.764**	9.996**	3.347*	1.8	0.61	14.288**	2.165	12.115**	0.186	0.164	2.742
Lumina	10.289**	0.837	5.638**	1.502	14.393**	2.994	5.163*	41.913**	66.946**	16.479**	17.303**
Muri	3.62 **	51.346**	36.556**	65.017**	14.983	0.169	0.426	0.017	4.616*	21.425**	6.474*

relationship between pollen parameters and habitat (Our collection of 21 taxa, including 49 samples) (Table 3 and 4).

Results

Numerical results of the palynological study are summarized in Table 1. According to the Lilium classification by Comber [8], Nishikawa et al. [18,19] and Du et al. (2013) [16], palynological results for each section are as follows:

Martagon

Representatives of Martagon (Figure 1A-F) have pollen size ranging from L. distichum Nakai et Kamibayashi $(91.56 \times 34.57 \mu \mathrm{~m}$, P / E of 2.66) to L. tsingtauense Gilg ($104.70 \times 44.52 \mu \mathrm{~m}, \mathrm{P} / \mathrm{E}$ of 2.36). The shape can be long-ellipsoidal. L. tsingtauense and L. distichum pollen show similar exine sculptures with a slight difference in that the intersection of the muri presents a protuberant and enlarged columellae in L. tsingtauense pollen (Figure $1 \mathrm{E}-\mathrm{F}$). L. tsingtauense and L. distichum correspond to Martagon type pollen, which is in agreement with Baranova [22].

Sinomartagon

Triploid L. lancifolium pollen is relatively larger than the other diploid species in section Sinomartagon. The shape can be ellipsoid to long-ellipsoidal. Species belonging to Sinomartagon (Figure 1M-P; $2 \mathrm{~A}-\mathrm{P} ; 3 \mathrm{~A}-\mathrm{P} ; 4 \mathrm{~A}-\mathrm{P})$ show a decreasing tendency in size with regard to pollen features from subsect. 5a to subsect. 5 c as follows: L. lancifolium Thunb ($111.20 \times 41.16 \mu \mathrm{~m}, \mathrm{P} / \mathrm{E}$ of 2.72); L. davidii Duchartre ex Elwes ($93.09 \times 33.55 \mu \mathrm{~m}, \mathrm{P} / \mathrm{E}$ of 2.79); L. davidii var. willmottiae (E. H. Wilson) Raffill $(91.89 \times 33.59, \mathrm{P} / \mathrm{E}$ of 2.75$)$; L. duchartrei Franch ($85.07 \times 33.31, \mathrm{P} / \mathrm{E}$ of 2.56); L. leichtlinii Hook. f. var. maximowiczii (Regel) Baker ($82.81 \times 33.04, \mathrm{P} / \mathrm{E}$ of 2.52); L. pumilum DC (87.39×32.66, P/E of 2.67); L. concolor Salisb. var. pulchellum (Fisch.) Regel (70.77×30.58, P/E of 2.33); L. wardii Stapf ex Stearn (87.77×35.26, P/E of 2.49); and L. taliense Franch ($74.70 \times 29.70, \mathrm{P} / \mathrm{E}$ of 2.50) (Table 1).

SEM of pollen from this section showed differences in exine sculpture. L. concolor var. pulchellum clearly shows Concolor type pollen (Figure 4E-H), whereas pollen from other Sinomartagon species show rectangular columellae that correspond to Martagon type.

Leucolirion

Representatives of Leucolirion (Figure 1G-L; 5C-P; 6A-P; 7A-B) have pollen sizes ranging from $87.56 \times 38.69, \mathrm{P} / \mathrm{E}$ of 2.28 for L. sulphureum Baker apud Hook. f. to 120.13×53.16, P/E of 2.29 for L. brownii from Shennongjia in the Hubei Province. The exine is ornamented with reticulation, and the shape is ellipsoidal to longellipsoidal. Pollen from L. brownii, L. henryi and L. rosthorrii correspond to the Martagon type (Figure 1G-L; 5C-J). The pollen exine of L. regale Wilson, L. leucanthum (Baker) Baker, L. sargentiae Wilson and L. sulphureum show rounded columellae, corresponding to the Callose type (Figure 5M-P; 6A-P). Pollen of L. formosanum Wallace does not correspond to any of the pollen types proposed by Baranova (1985), and the exine surface is reticulate with solid muri or irregular-rugulate (Figure 7A-B). We suggest creating a new category of Formosanum type pollen.

Lophophorum

The division of Lophophorum remains controversial. Due to resource constraints, we selected L. bakerianum as the only representative. In a preliminary study, L. bakerianum was placed in the subsect. Lophophorum III [16]. Pollen tetrads were found in L. bakerianum (Figure 5A-B), observed as blunt quadrangles in a polar
view with a pollen size of $78.40 \times 79.71 \mu \mathrm{~m}, \mathrm{P} / \mathrm{E}$ of 1.03 . The exine ornamentation was reticulate with muri formed by separated rounded columellae, corresponding to the Callose type. This is the first study to report that pollen grains of L. bakerianum are tetrads.

Discussion

Pollen Morphology and Phylogenetic Implications Based on ITS Sequences

Within the genus Lilium, several diversified pollen exine sculptures were observed. Pollen sculpture patterns appear to reflect phylogenetic relationships and are useful for species or subsection delimitations within a section.

The phylogenetic tree was resolved into six groups based on ITS sequences (Figure 8). Group I is comprised of three clades. Present and previous molecular analyses $[18,19]$ and cytology studies [21,43-44] indicated that sect. Sinomartagon is complicated and polyphyletic, as supported by the pollen data (Figure 8). Species of sect. Sinomartagon (5a\&5b) and L. formosanum and L. brownii (sect. Leucolirion 6 b) formed a clade with strong support ([ML] BS $=81$, [MP] BS = 77). Sect. Sinomartagon species show two pollen types, Martagon and Concolor. Differences in the shape and arrangement of the types of columellae could have implications on species delimitation. L. concolor var. pulchellum clearly shows Concolor type pollen (Figure 4G-J), and the remainder show Martagon type pollen. Meanwhile, three subtypes were showed within Martagon type pollen (Figure 8A, B, C). Exine sculptures of L. davidii and L. davidii var. willmottiae showed spherical but dorsally and ventrally compressed, and loosely arranged columellae with protuberant and enlarged columellae at the intersection of the muri (Figure 3BN ; 99B). Muri of L. leichtlinii var. maximowiczii have regular longrectangular columellae (Figure 3O-P; 8C).
In addition, L. formosanum and L. brownii (Leucolirion 6b) formed a strongly supported clade ([ML] BS = 87, [MP] BS = 86) (Figure 8). In the cytological study, both L. formosanum and L. brownii lacked intercalary satellites on the first two pairs of chromosomes [43,46] However, the pollen of L. formosanum corresponds to the new Formosanum type, while L. brownii clearly shows Martagon type pollen.

In our analysis, L. taliense and L. wardii ([ML] BS $=80$, [MP] $\mathrm{BS}=85)$ formed a clade with L. amoenum, L. sempervivoideum and L. bakerianum ($[\mathrm{ML}] \mathrm{BS}=79,[\mathrm{MP}] \mathrm{BS}=84$) that was moderately supported ([ML] BS $=56,[\mathrm{MP}] \mathrm{BS}<50$) (Figure 8). In cytological studies, the L. taliense karyotype resembles that of L. wardii $[21,43]$. Morphologically, L. taliense and L. wardii showed a close relationship with each other, with a black line in the central groove of the tepals [2]. Pollen evidence from our study supports this result, as the pollen morphology of the two species is generally similar Martagon type (Figure 4K-P). Morphologically, L. amoenum, L. sempervivoideum and L. bakerianum show nodding or horizontal campanulate flowers, nectaries of inner tepals neither papillose nor with fimbriate projections, tepals without blotch at the base adaxially, and a papillose stem [2]. The L. bakerianum var. delavayi karyotype resembles that of L. sempervivoideum [43]. Pollen tetrads are present in L. amoenum, L. sempervivoideum [23] and L. bakerianum (Figure 5A-B). The similarity in pollen morphology also suggests a close relationship with this clade.

The Martagon clade was monophyletic with strong support ([ML] $\mathrm{BS}=98,[\mathrm{MP}] \mathrm{BS}=96$), which is consistent with previous studies by Gao et al. [13] and Nishikawa et al. [18,19]. Morphologically, they all show whorled leaves. Although the Martagon clade shows Martagon type pollen, there are minor differences among species in the Martagon clade in the protuberant
Table 3. Geographical and climate factors of provenances studied.

Samples	Voucher	Latitude (${ }^{\circ}$)	Longitude (${ }^{\circ}$)	Altitude (m)	Annual average temperature (${ }^{\circ} \mathrm{C}$)	Annual average sunshine (h)	Yearly precipitation (mm)
L. lancifolium Thunb.	Du 08001, Fushun, Liaoning, China	42.09	124.43	450	7	780	2300
L.lancifolium Thunb.	Wang 11001, Shengnongjia, Hubei, China	39.59	116.12	1200	12	1600	1858
L. lancifolium Thunb.	Du 09001, Foping, Shaanxi, China						
L. Iancifolium Thunb.	Du 11001, Chongqing, China						
L. lancifolium Thunb.	Du 09002, Hanzhong, Shaanxi, China						
L. Iancifolium Thunb.	Du 11002, Yichang, Hubei, China	31.00	110.58	721	13.6	1500	1669
L. Iancifolium Thunb.	Du 11003, Zigui, Hubei, China	31.05	110.54	1510	13.6	1500	1669
L. Iancifolium Thunb.	Du 09003, Taibai, Shaanxi, China						
L. lancifolium Thunb.	Wang 11002, Yichang, Hubei, China	31.01	110.57	1018	13.6	1500	1669
L. Iancifolium Thunb.	Du 11004, Yichang, Hubei China	31.02	110.57	1110	13.6	1500	1669
L. distichum Nakai et Kamibayashi	Jia 07001, Changbai Mountains, Jilin, China	42.07	124.45	450	7	780	2300
L. distichum Nakai et Kamibayashi	Du 11005, Fushun, Liaoning, China	41.47	124.44	475	7	780	2300
L. tsingtauense Gilg	Du 11006, Tsingtao, Shandong, China	36.09	120.37	426	12.1	775.6	2503
L. dauricum Ker-Gawl.	Du 11007, Fushun, Liaoning, China	42.06	124.48	365	7	780	2300
L. davidii Duchartre ex Elwes	Wang 11002, Baoxing, Sichuan, China						
L. davidii Duchartre ex Elwes	Du 11008, Zigui, Hubei, China	31.05	110.53	1557	13.6	1500	1669
L. davidii Duchartre ex Elwes	Wang 11003, Chongqing, China	29.03	107.12	883	17	1395	1079
L. davidii Duchartre ex Elwes	Du 11009. Lijiang, Yunnan, China	41.34	122.32	2533	16.5	1000	2400
L. davidii var. willmottiaee (E. H. Wilson Raffill	Jia 07002, Lanzhou, Gansu, China						
L. davidii var. willmottiaee (E. H. Wilson) Raffill	Wang 11004, Heqing, Yunnan, China	26.19	100.09	2408	15.5	1050	2253
L. duchartrei Franch.	Wang 11005, Baoxing, Sichuan, China	30.50	102.43	2859	14.1	994	789
L. leichtlinii Hook.f. var. maximowiczii (Regel) Baker	Du 12001, Beijing Botanical Garden, Beijing, China	41.46	124.42	324	7	780	2300
L. leichtlinii Hook.f. var. maximowiczii (Regel) Baker	Du 11010, Fushun, Liaoning, China	41.46	124.43	388	7	780	2300
L. concolor Salisb. var. pulchellum (Fisch.) Regel	Du 11011, Fushun, Liaoning, China	42.06	124.47	330	7	780	2300
L. concolor Salisb. var. pulchellum (Fisch.) Regel	Du 11012, Fushun, Liaoning, China	41.35	124.09	324	7	780	2300
L. pumilum DC.	Jia 09001, Tongliao, Inner Mongolia, China	33.24	108.76	813	10	938	1726
L. taliense Franch.	Jia 09002, Chongqing, China	29.03	107.12	1265	17	1395	1079
L. taliense Franch.	Du 12002, Shangri-la,Yunna, China	27.52	99.49	3191	11	650	2000
L. wardii Stapf ex Stearn	Du 11013, Bomi, Tibet	30.06	95.04	2053	8.5	977	1563
L. bakerianum Coll. et Hemsl	Du 12003, Lijiang, Yunnan, China	26.28	100.43	1848	13.6	600	2403

Table 3. Cont.

Samples	Voucher	Latitude (${ }^{\circ}$)	Longitude (${ }^{\circ}$)	Altitude (m)	Annual average temperature $\left({ }^{\circ} \mathrm{C}\right)$	Annual average sunshine (h)	Yearly precipitation (mm)
L.brownii F. E. Brown ex Miellez	Wang 11006, Shennongjia, Hubei, China	39.59	116.12	1200	12	1600	1858
L.brownii F. E. Brown ex Miellez	Du 09004, Foping, Shaanxi, China	33.24	108.76	813	10	938	1726
L.brownii F. E. Brown ex Miellez	Du 11014, Yichang, Hubei, China	31.01	110.57	1004	13.6	600	2403
L. henryi Bake	Du 11015, Zigui, Hubei, China						
L. henryi Bake	Du 12004, Beijing botanical garden, Beijing, China	28.49	110.23	875	13.6	600	2403
L. rosthornii Diels	Jia 10001, Chongqing, China						
L. rosthornii Diels	Du 12005, Yuanling, Hunan, China	27.54	99.57	396	16.6	1437	1200
L. regale Wilson	Du 11015, Maoxian, Sichuan, China	31.42	103.51	1504	11.2	491	
L. regale Wilson	Wang 11007, Lixian, Sichuan, China	31.26	103.09	1910	9	800	
L. regale Wilson	Du 11016, Wenchuan, Sichuan, China	31.27	103.33	1409	14	920	
L. regale Wilson	Du 12006, Beijing botanical garden, Beijing, China						
L. sargentiae Wilson	Jia 11001, Chongqing, China	29.03	107.12	918	17	1396	1079
L. sargentiae Wilson	Du 11017, Baoxing, Sichuan, China	30.36	102.84	1015	14.1	994	789
L.sargentiae Wilson	Du 11018, Baoxing, Sichuan, China						
L.sargentiae Wilson	Wang 11008, Chongqing, China	29.04	107.16	787	17	1396	1079
L. sargentiae Wilson	Wang 11009, Chongqing, China						
L. leucanthum (Baker) Baker	Du 11019, Zigui, Hubei, China	31.05	110.54	1525	13.6	1500	1669
L. sulphureum Baker apud Hook. f.	Du 12007, Beijing botanical garden, Beijing, China						
L. formosanum Wallace	Du 12008, Beijing botanical garden, Beijing, China						

[^0]| Traits | Latitude (${ }^{\circ}$) | Longitude (${ }^{\circ}$) | Altitude (m) | Annual average temperature (${ }^{\circ} \mathrm{C}$) | Yearly precipitation (mm) | Annual average sunshine (h) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P | 0.046 | 0.082 | -0.013 | 0.172 | 0.413* | -0.013 |
| E | -0.105 | -0.103 | 0.041 | 0.014 | -0.129 | 0.249 |
| P/E | 0.133 | 0.178 | -0.137 | 0.160 | 0.442** | -0.251 |
| Lumina | 0.010 | -0.073 | 0.039 | 0.073 | 0.024 | -0.091 |
| Muri | 0.126 | 0.048 | -0.035 | -0.199 | -0.189 | 0.134 |

Note: * represents the significant difference ($p<0.05$), and ${ }^{* *}$ represents the extremely significant difference ($p<0.01$).
doi:10.1371/journal.pone.0087841.t004
and enlarged columellae at the intersection of the muri in L. tsingtauense (Figure 1E-F, 8K).
Group II was weakly supported ([ML] BS <50, [MP] BS <50) and consisted of two Lophophorum clades. Lophophorum clade I consisted of L. lophophorum and L. nanum ([ML] BS $=77$ and [MP] BS $=71$). In palynological research, L. lophophorum and L. nanum are monocolpate or 2-3 porate and show similar pollen morphologies (Figure 8L) [24]. Representatives of L. henricii in subsect. Lophophorum II show Concolor type pollen with much smaller rectangular columellae between two separate irregular round columellae compared with L. concolor var. pulchellum (Figure 8M) [24]. Morphologically, representatives of the Lophophorum clade I show nectaries on the inner tepals with fimbriate/cristate projections on both surfaces, while representatives of subsect. Lophophorum II do not have this feature. The distinct pollen morphology of the species suggests a distinct relationship to support the molecular data [2].

In Group III, the Pseudolirium clade was resolved with strong support $([\mathrm{ML}] \mathrm{BS}=77,[\mathrm{MP}] \mathrm{BS}=86)$. Pollen morphologies from representatives of sect. Pseudolirium were similar, with loosely arranged columellae and protuberant and enlarged columellae at the intersection of the muri (Figure 8N) [35].

Group IV, consisting of L. kesselringianum, L. bosniacum and L. carniolicum, was robustly supported ([ML] BS $=97,[\mathrm{MP}] \mathrm{BS}=97$). The three representatives of European species (sect. Liriotypus) showed Martagon type pollen with densely arranged columellae forming the muri (Figure 8O) [25].

Group V was only comprised of L. duchartrei (Sinomartagon clade I) (Figure 8). Based on morphology, Comber classified it in subsection Sinomartagon 5a. However, in our ITS analyses, L. duchartrei showed a distant relationship with subsect. 5a species as well as other sect. Sinomartagon species (Figure 8), which is in accordance with previous studies [13,18-19]. L. duchartrei (Sinomartagon clade I) karyotypes have been shown to be dissimilar to subsect. 5a Sinomartagon clade I species [21,43]. L. duchartrei pollen resembles that of L. taliense and L. wardii in exine sculpture (Figure 4C-D; K-P). Given that the phylogenetic position of L. duchartrei is uncertain, classification as a subsection of sect. Sinomartagon may be reasonable.

In Group VI, L. speciosum var. gloriosoides in sect. Archelirion formed a weakly supported group consisting of representatives of Leucolivion 6a ([ML] $\mathrm{BS}<50$ and $[\mathrm{MP}] \mathrm{BS}<50$). Leucolivion 6a comprised two subclades ([ML] BS $=74$ and [MP] $\mathrm{BS}=75$). L. speciosum var. gloriosoides showed a distinct relationship with L. henryi and L. rosthormii in the ITS tree, although they all have Martagontype pollen (Figure 8). In addition, L. henryi and L. rosthornii, which have orange reflexed flowers with prominent papillae and pubescent nectaries, were resolved with strong support ([ML] BS $=98,[\mathrm{MP}] \mathrm{BS}=100)$. Species of L. leucanthum, L. sargentiae, L.
sulphureum and L. regale formed a clade with strong support ([ML] $\mathrm{BS}=95,[\mathrm{MP}] \mathrm{BS}=95)$. Pollen morphology from our study supports this result, as the pollen morphology of L. henryi resembles L. rosthornii as Martagon type (Figure 5C-H), while L. leucanthum, L. sargentiae, L. sulphureum and L. regale have all generally similar Callose-type pollen (Figure 5K-L; 6A-P).

Within Lilium, we noted that one section may show two or more different pollen types (Figure 8). For instance, sect. Sinomartagon shows two exine sculpture pollen types, Martagon and Concolor, and the former contains three different subtypes. No unique and uniform characters can be used to clearly distinguish sections or some subsections due to shared or overlapping characters.

Trends in Exine Sculpture Evolution and Factors Implicated in Pollen Evolutionary Trends

Changes in pollen morphology occur in response to selective pressure. Pollen grains should be considered a functional unit, with the exine structure as a compromise between the following four main functions [32]: protective, harmomegathic, reservoir and clustering. These functions are in response to physical components of the environment, such as water, nutrients, temperatures and growing season.

The genus Lilium is distributed in East Asia, the Himalayas and Hengduan Mountains, Europe and North America [1,2]. Patterson and Givnish [4] concluded that Lilium evolved in the Himalayas and then dispersed into Eurasia and North America, although intercontinental dispersal details are not clear [4]. In the karyotype study, the relatively primitive group (sect. Lophophorum (Bur. et Franch.) Wang et Tang) have no intercalary satellites on the first two pairs of chromosomes. As expected, the genus Notholivion which is commonly considered to be closely related to and more ancient than Lilium have also been found to lack intercalary satellites [$4,21,43,45,46]$, these species are distributed mainly in the Himalayas, which makes this region more likely as the origin of the genus Lilium. Besides, Stewart [45] pointed out that secondary constrictions correlated with chromatin distribution as well as with geographic distribution. In his study, most East Asian and Himalayan species were found to have intercalary satellites on the first two pairs of submedian centromeres, while all North American species and European species lack such feature [21,25,43,45,]. Hence, the situation among the Himalayan and Henduan Mountains species appears more complicated since they seem to have both types, even within the same section indicating that the Hengduan Mountains are more likely as the differentiation centre of the genus [43,45,47]. Pollen evidence from our study supports this hypothesis, as the pollen morphology of the species from the Himalayas and Hengduan Mountains contain all of the pollen types in the genus Lilium. It should be emphasized

Figure 1. SEM photographs of pollen grains of Lilium. Figs A, B, L. distichum (Jia 07001). Figs C, D, L. distichum (Du 11005). Figs E, F, L. tsingtauense. Figs G, H, L. brownii (Wang 11006). Figs I, J, L. brownii (Du 09004). Figs K, L, L. brownii (Du 11014). Figs M, N, L. lancifolium (Du 08001). Figs O, P, L. lancifolium (Wang 11001). Scale bars: $10 \mu \mathrm{~m}$.
doi:10.1371/journal.pone.0087841.g001
that the Formosanum type of pollen can be found in the genus Nomocharis, which is restricted to the Himalayas and Hengduan Mountains and it has been suggested that it be included in Lilium [13-16]. In contrast, the other regions possess a relatively singular
pollen type, which led us to investigate Lilium pollen-type evolution.

Based on a pollen study of 30 genera in Liliaceae, including 69 species, using light microscopy (LM), Nair and Sharma [46]

Figure 2. SEM photographs of pollen grains of Lilium. Figs A, B, L. lancifolium (Du 09001). Figs C, D, L. lancifolium(Du 11001). Figs E, F, L. lancifolium (Du 09002). Figs G, H, L. lancifolium (Du 11002). Figs I, J, L. lancifolium (Du 11003). Figs K, L, L. lancifolium (Du 09003). Figs M, N, L. lancifolium (Wang 11002). Figs O, P, L. Iancifolium (Du 11004). Scale bars: $10 \mu \mathrm{~m}$.
doi:10.1371/journal.pone.0087841.g002

Figure 3. SEM photographs of pollen grains of Lilium. Figs A, B, L. dauricum. Figs C, D, L. davidii (Wang 11002). Figs E, F. L. davidii (Du 11008). Figs G, H, L. davidii (Wang 11003). Figs I, J, L. davidii (Du 11009). Figs K, L, L. davidii var. willmottiae (Jia 07002). Figs M, N, L. davidii var. willmottiae (Wang 11004). Figs O, P, L. leichtlinii var. maximowiczii (Du 12001). Scale bars: $10 \mu \mathrm{~m}$. doi:10.1371/journal.pone.0087841.g003

Figure 4. SEM photographs of pollen grains of Lilium. Figs A, B, L. leichtlinii var. maximowiczii (Du 11010). Figs C, D, L.duchartrei. Figs E, F, L.pumilum. Figs G, H, L.concolor var. pulchellum (Du 11011). Figs I, J, L.concolor var. pulchellum (Du 11012). Figs K, L, L. taliense (Jia 09002). Figs M, N, L.taliense (Du 12002). Figs O, P, L.wardii. Scale bars: $10 \mu \mathrm{~m}$.
doi:10.1371/journal.pone.0087841.g004

Figure 5. SEM photographs of pollen grains of Lilium. Figs A, B, L.bakerianum. Figs C, D, L.henryi (Du 11015). Figs E, F, L.henryi (Du 12004). Figs G, H, L.rosthornii (Jia 10001). Figs I, J, L.rosthornii (Du 12005). Figs K, L, L. regale (Du 11015). Figs M, N, L. regale (Wang 11007). Figs O, P, L. regale (Du 11016). Scale bars: $10 \mu \mathrm{~m}$.
doi:10.1371/journal.pone.0087841.g005

Figure 6. SEM photographs of pollen grains of Lilium. Figs A, B, L. regale (Du 12006). Figs C, D, L.sargentiae (Jia 11001). Figs E, F, L.sargentiae (Du 11017). Figs G, H, L.sargentiae (Du 11018). Figs I, J, L.sargentiae (Wang 11008). Figs K, L, L. sargentiae (Wang 11009). Figs M, N, L. leucanthum. Figs O, P. L. sulphureum. Scale bars: $10 \mu \mathrm{~m}$.
doi:10.1371/journal.pone.0087841.g006
proposed the scheme of pollen exine sculpture evolution (Liliaceae) as follows: ornate \rightarrow retipilate \rightarrow reticulate \rightarrow ring-shaped reticulate \rightarrow scattered reticulate \rightarrow exineless ornamentation.

Regarding pollen morphology of the genus Nomocharis and Lilium under LM and SEM, Liang and Zhang [24] suggested the following evolution trend of pollen exine sculpture in the genus

Figure 7. SEM photographs of pollen grains of Lilium. Figs A, B, L. formosanum. Scale bars: $10 \mu \mathrm{~m}$. doi:10.1371/journal.pone.0087841.g007

Lilium: ornate \rightarrow retipilate \rightarrow reticulate, which is consistent with the hypothesis of Nair and Sharma [46]. In addition, retipilate was divided into three exine sculptures to form three Lilium pollen types, including Martagon, Callose and Concolor. These results led us to propose the following hypothesis of pollen evolution in exine sculptures within Lilium: Martagon type \rightarrow Callose type \rightarrow Concolor type \rightarrow Formosanum type. This also shows a reduction and simplification tendency.

In monocots, reduction and simplification of the exine structure is even more extreme than in dicots and culminate in certain evolutionary orders [48]. Zavada proposed major evolutionary trends of wall structure types in monocots as follows: primitive tectate-columellate (perforate or imperforate) wall structures give rise to monocotyledonous atectate or granular walls and eventual extreme reduction of the exine, which may be completely absent [48]. All morphological characteristics are the consequence of interactions between phylogenetic and environmental constraints [32]. There is no doubt that environmental constraints act on patterns of differentiation in Lilium [49].

In addition to environmental factors, are there other factors such as pollinator affecting pollen differentiation? Numerous recent findings on the intricate flower pollinator networks suggest that differentiation of flora structures and functions in plants are tightly connected with those of pollinators [50-53]. Flowers of Lilium are insect-pollinated. Brantjes and Bos's [54] report that both diurnal and nocturnal hawkmoths visit L. martogon. Skinner [55] observed pollinators of 13 American species of Lilium and recognized five types of pollination: butterfly pollination (L. humboldtii, L. kelleyanum and L. kelloggii), butterfly and hummingbird pollination (L. wigginsii, L. pardalinum and L. pardalinum ssp. vollmeri), hummingbird pollination (L. columbianum, L. occidentale and L. bolanderi), hummingbird and bumblebee pollination (L. parvum and L. maritimum) and hawkmoth pollination (L. washingtonianum and L. parryi). Additional studies reported various flower visitors, including fritillaries to L. concolor var. pulchellum [56], swallowtails to L. dauricum [56], nocturnal hawkmoths to L. formosanum [57] and L. japonicum [58], and hawkmoths and swallowtails to L. auratum [56,59]. Nevertheless, wild Lilium species are self-compatible. Autogamy might have ensured reproductive success for the species
in the environments where pollinators are comparatively rare [60] and the growing season short as well as where other conditions are selective. Pollen of L. martagon and L. dauricum with different pollinators are Martagon type (Table 1) [54,56]. Thus, for Lilium, the pollinators have little effect on changes of pollen morphology and size. Moreover, in Sonneratiaceae, the genus Duabanga has much smaller pollen grains than Sonneratia while both genera are bat-pollinated, hence absence of correlation with pollinator [32]. However, how floral traits as well as pollen grains of lilies are adapted to various pollinators remains to be studied in more detail.

As mentioned, environmental factors constitute a selective pressure that may produce changes in the pollen structure. The number and arrangement of the types of columellae could influence exine flexibility. Exines with loose arrangement of round columellae (Callose, Concolor) are relatively more flexible compared to exines with tight, rectangular columellae (Martagon). This exine structure corresponds to harmomegathic function and the ability to absorb bending stresses that may occur during desiccation [32].

Relationship between Pollen Size and Conditions in the Genus Lilium

Species at high elevations with relatively extreme conditions in the Himalayas and Hengduan Mountains have a relatively small pollen size (Table 1). Plants growing at high elevations with extreme conditions often have reduced morphological features [61,62], and pollen size also appears to show this tendency [33,63]. Furthermore, species native to Northeast China, such as L. leichtlinii var. maximowiczii, L. concolor var. pulchellum and L. dauricum, also have a relatively small pollen size (Table 1). A long winter and short growing season forces rapid completion of plant growth cycles. Hence, small pollen size also appears to be more efficient in tolerating relatively extreme conditions. In contrast, L. brownii and L. formosanum have relatively bigger pollen grains, likely because they occur in an environment suitable for slow development that allow pollen grains to grow to a larger size, as discussed by Muller [32]. Therefore, pollen size could be related to the selective pressure to adapt to environmental conditions. In

Figure 8. Mapping pollen exine sculpture characters on the ML tree of Lilium based on nuclear internal transcribed spacer (ITS) sequence data (adapted from Du et al. unpublished data). Values along branches represent bootstrap (BS) of ML and MP, respectively. A, B, C, D, Representatives of subsection 5a\&5b. (A) L.pumilum (Jia 09001). (B) L.davidii (Du 11008). (C) L. leichtlinii var. maximowiczii (Du 11010). (D) L. concolor var. pulchellum (Du 11012). E, F, Representatives of subsection Leucolirion 6b. (E) L.brownii (Wang 11006). (F) L.formosanum (Du 12008). G, Representatives of subsection 5c (G) L.taliense (Jia 09002). H, I, Representatives of subsection Lophophorum III. (H) L.sempervivoideum (Liang and

Zhang 1985). (I) L.bakerianum (Du 12003). J, K, Section Martagon. (J) L.distichum (Jia 07001). (K) L.tsingtauense (Du 11006). L, Representatives of subsection Lophophorum I. (L) L. Lophophorum (Liang and Zhang 1985). M, Representatives of subsection Lophophorum II. (M) L. henricii (Liang and Zhang 1985). N, Representatives of section Pseudolirium. (N) L.canadense (Kosenko, 1999). O, Representatives of section Liriotypus. (O) L. bosniacum (Muratović et al. 2010). P, Representatives of section Sinomartagon I. (P) L.duchartrei (Wang 11005). Q, Representatives of section Archelirion. (Q) L. speciosum var. gloriosoides (Wu et al. 2007). R, Representatives of subsection Leucolirion 6b. (R) L. regale (Du 11015). doi:10.1371/journal.pone.0087841.g008
addition, smaller pollen grains appear to survive better in habitats with extreme conditions.
Within the same species, pollen parameters from different provenances showed some variation (Table 1). Based on one-way ANOVA and LSD tests in 11 species (Table 2), results showed significant or extremely significant differences in pollen parameters in the same species from different habitats within the provenances, except for several single parameters in some species (Table 2). This may be explained as a consequence of interactions between phylogenetic and environmental constraints, as emphasized by Kawano and Kato [31].
Due to the wide variety of habitats in the distribution of Lilium, correlation analysis was performed to test which environmental factor is critical in influencing pollen parameters. The correlation analysis showed a significantly positive correlation between the polar axis and annual precipitation ($\mathrm{P}<0.05$) and an extremely significantly positive correlation between the P / E ratio and annual precipitation ($\mathrm{P}<0.01$) (Table 4). Hence, pollen size and shape showed a significantly positive correlation with annual precipitation. The absolute size of pollen grains influences harmomegathic function [64], which can be reduced to such a degree that exine elasticity alone can accommodate the necessary changes in volume to adapt to environmental conditions [30].
Pollen exine sculptures of different species in similar environmental conditions may be different types. For instance, L. concolor var. pulchellum possesses Concolor type pollen, whereas L. dauricum shows Martagon type pollen, and both occur in Northeast China
under similar environmental conditions. Species native to the Himalayas and Hengduan Mountains show all of the pollen types within Lilium. The evolutionary trend of exine sculptures is likely not definitively correlated with pollen size.

Conclusion

In conclusion, we suggest recognising a new pollen type, Formosanum, to accommodate pollen from L. formosanum. Pollen sculpture patterns appear to reflect phylogenetic relationships and are useful for species or subsection delimitation within sections. The reduction and simplification evolutionary trend of pollen sculpture and size could be related to the selective pressure to better adapt to environment conditions, especially extreme environmental conditions. In addition, the evolutionary trends of exine sculpture and pollen size and shape are not definitively correlated. Pollen size and shape show a significantly positive correlation with annual precipitation. However, additional studies are required to confirm these evolution hypotheses in a broad sample of the genus using techniques such as transmission electron microscopy (TEM) to observe strata of the exine.

Author Contributions

Conceived and designed the experiments: GXJ YPD. Performed the experiments: YPD ZXW. Analyzed the data: YPD SL HBH. Contributed reagents/materials/analysis tools: YPD ZXW CW. Wrote the paper: YPD.
17. Ikinci N, Oberprieler C, Güner A (2006) On the origin of European lilies: phylogenetic analysis of Lilium section Liriotypus (Liliaceae) using sequences of the nuclear ribosomal transcribed spacers. Willdenowia 36: 647-656.
18. Nishikawa T, Okazaki K, Uchino T, Arakawa K, Nagamine T (1999) A molecular phylogeny of Lilium in the internal transcribed spacer region of nuclear ribosomal DNA. Journal of Molecular Evolution 49: 238-249.
19. Nishikawa T, Okazaki K, Uchino T, Arakawa K, Nagamine T (2001). Phylogenetic analysis of section Sinomartagon in genus Lilium using sequences of the internal transcribed spacer region in nuclear ribosomal DNA. Breeding Science 51: 39-46.
20. Rešetnik I, Liber Z, Satovic Z, Cigić P, Nikolić T (2007) Molecular phylogeny and systematics of the Lilium carniolicum group (Liliaceae) based on nuclear ITS sequences. Plant Systematics and Evolution 265: 45-58.
21. Smyth DR, Kongsuwan K, Wisudharomn S (1989) A survey of C-band patterns in chromosomes of Lilium (Liliaceae). Plant Systematics and Evolution 163: 5369.
22. Baranova M V (1985) Palynoderm ultrastructure and morphological types of pollen grains in the genus Lilium (Liliaceae). - Botanicheskiy Zhurnal (Leningrad) 70: 297-304.
23. Liang SY, Zhang WX (1984) Pollen tetrads in Lilium with a discussion on the delimitation between L. semperviroideum and its Ally. Acta Phytotaxonomica Sinica 22: 297-300.
24. Liang SY, Zhang WX (1985) Pollen morphology of the genus Nomocharis and its delimitation with Lilium. Acta Phytotaxonomica Sinica 23: 405-417.
25. Muratović E, Bogunić F, Šoljan D, Martin J, Valles J et al. (2010) Stomata and pollen grain characteristics of two endemic lilies: Lilium bosniacum and L. carniolicum (Liliaceae). Phytologia Balcanica 16 (2): 285-292.
26. Li JQ Qin XP (1993) Studies on pollen morphological of some Lilies. Journal of Wuhan Botanical Research 11(2): 120-126.
27. Zhang LN, Lei JJ, Han L, Hu XY (2006) Study on Pollen Morphology and Ultrastructure of Lilium spp. Acta Agriculturae Boreali-occidentalis Sinica 15(6): 174-178.
28. Wu ZH, Shi JS, Xi ML, Liu GX (2007) Pollen characteristics and relationships of 12 species and 6 cultivars of Lilium. Journal of Zhejiang Forestry College 24(4): 406-412.
29. Wang X, Lei JJ, Guan JZ (2007) Study on pollen diversity within Lilium concolor Salisb. Heilongjiang Agricultural Science 1: 47-49.
30. Liu DY (2011) Study on the genetic diversity and utilization of the germplasm resource of Lilium pumilum DC. Phylogeny. Ph.D. Thesis, Beijing Forestry University.
31. Kawano S, Kato H (1995) Evolutionary biology of Trillium and related genera (Trilliaceae) II. Cladistic analyses on gross morphological characters and phylogeny of the genus Trillium. Plant Species Biology 10: 169-183.
32. Muller J (1979) Form and function in angiosperm pollen. Annals of the Missouri Botanical Garden 66: 593-632.
33. Hidalgo O, Susanna A, Garcia-Jacas N, Martin J (2008) From acaveate to caveate: evolution of pollen types in the Rhaponticum group (Asteraceae, Centaureinae) related to extreme conditions. Botanical Journal of the Linnean Society 158: 499-510.
34. Halbritter H, Hesse M (1993) Sulcus morphology in some monocot families. Grana 32(2): 87-99.
35. Kosenko V N (1999) Contributions to the pollen morphology and taxonomy of the Liliaceae. Grana 38: 20-30.
36. Zhang YL, Zhang QX, Xie SL (2010) Pollen Morphology of 8 Species in Lilium from Qinba Mountain Areas. Acta Agriculturae Boreal-occidentalis Sinica 19(1): 144-146.
37. Avetissian EM (1950). Simplified method of pollen preparation by acetolysis. Zhurn. Russk. Bot. Obshch. Akad. Nauk, 35(385): 6-7.
38. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symposium Series 41: 95-98.
39. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876-4882.
40. Swofford DL (2000) PAUP* 4.0: Phylogenetic analysis using parsimony (* and other methods). Version $4.0 \mathrm{b10}$. Sunderland, MA: Sinauer Associates.
41. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.
42. Page RMD (1996) Treeview: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357-358.
43. Gao YD, Zhou SD, He XJ (2011) Karyotype studies in thirty-two species of Lilium (Liliaceae) from China. Nordic Journal of Botany 29: 746-761.
44. Gao YD, Zhou SD, Jin X, Wan HJ (2012) Chromosome diversity and evolution in tribe Lilieae (Liliaceae) with emphasis on Chinese species. Journal of Plant Research 125: 55-69.
45. Stewart RN (1947) The morphology of somatic chromosomes in Lilium. American Journal of Botany 34: 9-26.
46. Nair P K, Sharma S (1965) Pollen morphology of Liliaceae. Fournal of Palynology 1: 38-61.
47. Zhou $\operatorname{SD}(2008)$ The phylogenetic classification and evolution of trib Lilieae (Liliaceae s.str.) in China. - PhD thesis, Sichuan University.
48. Zavada MS (1983) Comparative morphology of monocot pollen and evolutionary trends of apertures and wall structures. The Botanical Review 49: 333-378.
49. Hayashi K, Kawano S (2000) Molecular systematics of Lilium and allied genera (Liliaceae): phylogenetic relationships among Lilium and related genera based on the rbcL and matK gene sequence data. Plant Species Biology 15: 73-93.
50. Thien LB., Kawano S., Azuma H., Latimer S., Devall MS. et al. (1998) The floral biology of the Magnoliaceae. In: Magnolias and Their Allies (ed. D. Hunt) 37-58. International Dendrology Society and the Magnolia Society, Milborne Port, UK.
51. Gottsberger G (1999) Pollination and evolution in neotropical Annonaceae. Plant Species Biology 14: 143-152.
52. Knudsen JT (1999) Floral scent differentiation among coflowering, sympatric species of Geonoma(Arecaceae). Plant Species Biology 14: 137-142.
53. Williams NH, Whitten WM (1999) Molecular phylogeny and floral fragrances of male euglossine bee-pollinated orchids: a study of Stanhopea (Orchidaceae). Plant Species Biology 14: 129-136.
54. Brantjes NBM, Bos JJ (1980) Hawkmoth behaviour and flower adaptation reducing self pollination in two Liliflorae. New Phytolorogist 84: 139-143.
55. Skinner MW (1988) Comparative pollination ecology and floral evolution in Pacific coast Lilium (PhD dissertation). Harvard University, Cambridge.
56. Hayashi K, Kawano S (2007)Lilium dauricumKer-Gawler. In: Kawano S. (ed.).Life-History Monographs of Japanese Plants III. Hokkaido University Press, Sapporo, 1-23. (In Japanese with an English summary.).
57. Rodger JG, van Kleunen M, Johnson SD (2010) Does specialized pollination impede plant invasions? International Journal of Plant Sciences171: 382-391.
58. Chiba S, Shimizu T (2004) Life history of the near threatened Lilium japonicumThunb. in Nagano and pollinators. Bulletin of the Botanical Society of Nagano37: 1-8. (In Japanese).
59. Morinaga SI, Kumano Y, Ota A, Yamaoka R, Sakai S (2009) Day-night fluctuations in floral scent and their effects on reproductive success in Lilium auratum. Population Ecology 51: 187-195.
60. Arroyo MTK, Armesto J, Primack R (1985) Community studies in pollination ecology in the high temperate Andes of central Chile. II. Effect of temperature on visitation rates and pollination possibilities. Plant Systematics and Evolution 149: 187-203.
61. Hedberg O (1964) Features of Afroalpine plant ecology. Acta Phytogeographica Suecica 49: 5-144.
62. Cabrera AL (1968) Ecología vegetal de la puna. In: Troll C, ed. Geoecology of the mountainous regions of the tropical Americas. Bonn: Dummer in Kommission. 91-116.
63. Tate JA, Simpson BB (2004) Breeding system evolution in Tarasa (Malvaceae) and selection for reduced pollen grain size in the polyploid species. American Journal of Botany 91: 207-213.
64. Wodehouse RP (1935) Pollen Grains. New York: Mc Graw-Hill Book Company Incorporated. 323-340.

[^0]: Note: Climate parameters were obtained from the local meteorological bureau.

