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Immune checkpoint inhibitors have revolutionized the clinical approach of untreatable
tumors and brought a breath of fresh air in cancer immunotherapy. However, the
therapeutic effects of these drugs only cover a minority of patients and alternative
immunotherapeutic targets are required. Metabolism of L-tryptophan (Trp) via the
kynurenine pathway represents an important immune checkpoint mechanism that
controls adaptive immunity and dampens exaggerated inflammation. Indoleamine 2,3-
dioxygenase 1 (IDO1), the enzyme catalyzing the first, rate–limiting step of the pathway, is
expressed in several human tumors and IDO1 catalytic inhibitors have reached phase III
clinical trials, unfortunately with disappointing results. Although much less studied, the
IDO1 paralog IDO2 may represent a valid alternative as drug target in cancer
immunotherapy. Accumulating evidence indicates that IDO2 is much less effective than
IDO1 in metabolizing Trp and its functions are rather the consequence of interaction with
other, still undefined proteins that may vary in distinct inflammatory and neoplastic
contexts. As a matter of fact, the expression of IDO2 gene variants is protective in
PDAC but increases the risk of developing tumor in NSCLC patients. Therefore, the
definition of the IDO2 interactome and function in distinct neoplasia may open innovative
avenues of therapeutic interventions.
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INTRODUCTION

Over the course of evolution, the metabolism of L-tryptophan (Trp), an essential amino acid for
mammals, has evolved to be a primary control node in the regulation of immune responses (1). In
this regard, the most important enzyme is indoleamine 2,3-dioxygenase 1 (IDO1), a monomeric,
heme-containing enzyme that catalyzes the initial, rate-limiting step in the degradation of Trp along
the so-called kynurenine pathway (2, 3). L-kynurenine (Kyn), the first product of this pathway,
promotes immunoregulatory effects via activation of the aryl hydrocarbon receptor (AhR) in
dendritic cells (DCs) and T lymphocytes (4–7). By degrading Trp, IDO1 also depletes the essential
amino acid in microenvironments, thus activating the general control non-depressible 2 (GCN2)
kinase pathway and the dysfunction of T cells (8, 9). In addition to catalytic activity, IDO1 is
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endowed with a signaling function that, upon tyrosine
phosphorylation of immune tyrosine inhibitory motifs (ITIMs)
in the small noncatalytic domain of the enzyme, allows the direct
interaction with Src homology region 2 domain-containing
phosphatase-1 and -2 (SHP-1 and SHP-2, respectively) and
confers long-term immunoregulatory properties on DCs (10,
11). The same domain also contains a YxxM motif that, once
tyrosine phosphorylated, binds the p85 subunit of class I
phosphoinositide 3-kinases (PI3Ks) that drive IDO1 trafficking
from cytosol (where exerts the catalytic function) to early
endosomes, thus favoring IDO1 signaling activity (12).

IDO1 is expressed in several human tumors and immune cells
infiltrating the tumor mass (13) and, for this reason, IDO1
catalytic inhibitors have been used as experimental drugs in
cancer immunotherapy (9, 14). One of these inhibitors,
epacadostat, was recently coadministered with pembrolizumab,
an immune checkpoint inhibitor, in patients with unresectable or
mestastatic melanoma in a phase III trial. However, the results
were disappointing, as epacadostat did not show the efficacy
observed in the previous phase II trial (15). Several causes may
have determined this failure, including an inadequate selection of
patients. However, considering its complex functional dynamics
as described above, IDO1 may represent a hard molecule to be
exploited as an effective drug target.

Some years ago, a paralog of IDO1, i.e., IDO2, was discovered. In
accordance with those studies, the IDO1 gene (expressed in
mammals and fungi) derived from the duplication of IDO2
(expressed in all organisms, including bacteria), thus considered
more ancestral than IDO1, and the two genes can be detected in
tandem in chromosome 8 in both humans and rodents (16).
Although it can also initiate the kynurenine pathway, IDO2 affinity
for the Trp substrate and catalytic efficacy in producing Kyn are very
low or almost negligible (17). Therefore, IDO2may contribute only a
minimal role to overall Trp metabolism (18). Nevertheless, IDO2 is
expressed at high levels in some human tumors and, therefore,
understanding its true function/s in neoplastic contexts may propel
the development of new drugs targeting enzymes of the kynurenine
pathway in cancer immunotherapy.
THE “MYSTERY” OF IDO2 FUNCTION:
HINTS FROM AUTOIMMUNE/CHRONIC
INFLAMMATORY DISEASES

Since the discovery of IDO2, the primary efforts of the scientific
community were addressed to deciphering its role in the
modulation of immune responses, assuming that a remarkable
sequence homology with IDO1 was accompanied by a parallel
analogy in the immunoregulatory functions. A first attempt to
discern the physiological and pathophysiological functions of
IDO2 was made through the generation of mice deficient in the
Ido2 gene. The characterization of these genetically deficient
mice highlighted that IDO1 and IDO2 show some important
differences. As a matter of fact, the ablation of IDO2 did not
affect Kyn circulating levels, suggesting a specific role for IDO2
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and distinct from the enzymatic function. IDO2 was essential for
IDO1-dependent induction of T regulatory (Treg) cells and, in
IDO1 knockout mice, a great amount of Ido2 transcripts were
subjected to alternative splicing, implying a mutual influence
between the two paralogues regarding their expression and
function (19). Nevertheless, in a classical model of hapten-
induced contact hypersensitivity (CHS), the contribution of
IDO2 in the adaptive inflammatory response was remarkably
different from that of IDO1, with a reduced response and a
significant impairment in proinflammatory cytokines
production in IDO2-deficient mice (19).

The positive role of IDO2 in the development of
inflammatory processes was further and elegant ly
demonstrated by means of a murine model of autoimmune
arthritis, i.e., the KRN.g7 mice, genetically deficient for either
the Ido1 or Ido2 gene, which revealed that IDO2, but not IDO1,
is necessary for arthritis development. IDO2-deficient mice
showed a delayed onset and reduced arthritis severity, due to a
reduction in pathogenic antibody-secreting cells and
corresponding decrease in autoantibodies (20). A thorough
analysis of the IDO2 involvement in the pathogenesis of
arthritis revealed that IDO2 participates in the initiation stage
of the response prior to the generation of autoantibodies;
however, no clues for the exact mechanism of action of IDO2
could be obtained. In the same experimental setting, the specific
silencing of IDO2 in B cells significantly reduced total arthritis
severity, confirming the role of IDO2 in disease initiation and
progression and pinpointing IDO2 as an innovative target for the
treatment of this autoimmune disease (21). Again, no evidence
emerged from these studies revealing the molecular mechanism
of IDO2 in regulating the autoimmune response in the arthritis
model. In line with these observations, in humans, the expression
of an IDO2 variant lacking catalytic activity is associated with
reduced risk of Crohn’s disease (7).

In contrast with these studies, in a model of psoriasis-like
inflammation, the manifestations of the disease were significantly
worse in the IDO2 KO mice (22). In fact, full active IDO2 was
endowed with the ability to control the production of pro-
inflammatory IL-17, thus contributing to the suppression of
skin inflammation. Therefore, the results obtained in the
murine model of psoriasis add more complexity than
reinforcing the hypothesis of a proinflammatory role of IDO2.

A perspective that could reconcile the apparent divergence of
the results obtained in different experimental models of
inflammation/autoimmunity is that the activity of IDO2 may
be strictly related to the physiopathologic context and cellular
microenvironment. In support of this hypothesis, a recent study
revealed that, in two different cohorts of patients with
aspergillosis, specific and different patterns of IDO2 single
nucleotide polymorphisms (SNPs) can be observed. More
specifically, in patients with cystic fibrosis, SNPs that
profoundly affect IDO2 expression and/or function did not
associate with an increased risk of aspergillosis, whereas the
same SNPs were required for optimal antifungal activity in
patients who have undergone hematopoietic stem cell
transplantation (23).
April 2021 | Volume 12 | Article 679953
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IDO2 EXPRESSION AND FUNCTION IN
TUMORS: A MATTER OF GENETICS

In general, overexpression of IDO2 in tumors appears to be less
frequent than IDO1 (13). More recently, human gastric,
colorectal, and renal carcinomas have been found to
constitutively express both IDO1 and IDO2 (24), and the same
has been observed in brain tumors (25). Interestingly, IDO2 is
particularly overexpressed in pancreatic ductal adenocarcinoma
(PDAC) (26) and non-small-cell lung cancer (NSCLC) (27).

A unique feature of the IDO2 gene in humans is the high
prevalence of two inactivating SNPs, which allow the opportunity
to carry out loss-of-function studies directly in humans and to
compare patients’ data with those from Ido2−/− and Ido2+/+

tumor-bearing mice. These SNPs are rs10109853, which leads
to a > 90% reduction in IDO2 catalytic activity (R248W), and
rs4503083, which generates a premature stop codon (Y359X) and
completely inactivates IDO2 activity (26). Large scale sequencing
analysis revealed that these two nonfunctional alleles of IDO2 are
frequently distributed in human populations of Asian, European,
and African descent. However, although both of these SNPs are
highly prevalent in human populations, their clinical significance
has remained unclear.

IDO2 in Mouse Tumors
Similarly to human cancer, IDO2 is not frequently expressed in
mouse tumors. However, the opportunity to use Ido2−/− mice as
compared to IDO2-expressing counterparts allows the study of
the function of endogenous IDO2 in tumor-bearing individuals.

Lewis lung carcinoma (LLC), isolated from a spontaneous
epidermoid carcinoma of the mouse lung, does not express IDO1
and IDO2. Therefore, when injecting LLC cells into IDO2 KO
mice, no IDO2 will be present anywhere in the organism. In
these conditions, tumor growth is suppressed, IFN-g secretion is
enhanced in the tumor bed, and the number of CD8+ tumor
infiltrating lymphocytes (TILs) is increased (28).

Endogenous IDO2 may also be involved in mechanisms
of tumorigenesis. To investigate this possibility, Nevler et al. (29)
used the KC transgenic mouse model (30) in which an inducible
oncogenic Kras allele is activated in pancreatic progenitor cells,
thus leading to the development of ductal lesions that recapitulate
the full spectrum of human pancreatic intraepithelial neoplasias,
putative precursors to invasive pancreatic cancer (PDAC). They
found that PDAC development was significantly decreased when
Ido2−/− alleles had been introduced into the KC strain via
interbreeding. No major changes could be observed for immune
populations infiltrating the tumor. Unexpectedly, the impact of
IDO2 loss in tumor growth was mainly associated with females. In
fact, no tumor development at all could be observed in Ido2−/−

females under study (29).
B16/BL6 melanoma is an example of mouse tumor cells that

express IDO2 (31). In order to understand the role of the enzyme
in this tumor, Liu et al. performed Ido2 gene silencing in vitro via
small interfering RNA (siRNA). Reduction of IDO2 expression
in B16/BL6 cells inhibited cancer cell proliferation, arrest of the
cell cycle in G1, increased the rate of apoptosis, and reduced cell
migration. These in vitro effects were accompanied by a decrease
Frontiers in Immunology | www.frontiersin.org 3
in NAD+ (a metabolite downstream the kynurenine pathway).
Addition of exogenous NAD+ to B16/BL6 cell cultures weakened
the effect of IDO2 downregulation. In vivo, B16/BL6 cells with
reduced IDO2 expression grew less than IDO2-competent cells
(31). The possible involvement of immune cells and of
endogenous IDO2 was not addressed in this study.

Thus, as a whole, the available data would indicate that IDO2,
either endogenous or expressed by the tumor, exerts
immunosuppressive and pro-tumor effects inmousemodels of cancer.

IDO2 in Human Pancreatic Ductal
Adenocarcinoma (PDAC)
PDAC is one of the most aggressive and lethal diseases. Less than
10% of patients with PDAC has a life expectance of five years
after diagnosis (32). Despite encouraging evidence for other
tumors, including non-small-cell lung cancer (NSCLC; see
below), the use of immune checkpoint inhibitors, such as anti-
CTLA4 (ipilimumab and tremelimumab) and anti-PD1
(nivolumab and pembrolizumab) antibodies, has shown poor
efficacy in PDAC as monotherapy. Although clinical trials are
undergoing with combinations of two immune checkpoint
inhibitors or one immune checkpoint inhibitor and
chemotherapy, the road to an effective immunotherapeutic
cure for PDAC appears full of obstacles (33).

IDO2 may represent an important drug target in PDAC
therapy. In fact, IDO2 is frequently upregulated in human
PDAC (29). In a recent study, the analysis of the prevalence of
the two IDO2-inactivating SNPs together with the treatment
outcomes indicated that, in PDAC patients having received
adjuvant radiotherapy, the “IDO2-deficient status” significantly
associates with improved disease-free survival (29). Therefore,
the IDO2 genotype has the immediate potential to influence the
PDAC care decision-making process through stratification of
those patients who stand to benefit from adjuvant radiotherapy.

An additional interesting aspect of IDO2 involvement in
PDAC is sexual dimorphism. In fact, along the same line of
Ido2−/− female mice in which development of PDAC is
significantly less than the male counterparts, female patients
with PDAC rarely harbor the IDO2-deficient status (29).
Therefore, these data would suggest that female patients with
PDAC should be taken into high consideration for
immunotherapy involving IDO2 inhibition.

IDO2 in Human Non-Small Cell Lung
Cancer (NSCLC)
NSCLC, representing the majority (approximately 85%) of lung
malignancies (34), is in general insensitive to standard
treatments with chemotherapeutic drugs. Therapy of NSCLC
has been partly improved by the use of nivolumab. In fact,
nivolumab treatment has been associated with longer overall
survival than the chemotherapeutic docetaxel among patients
with previously treated NSCLC, regardless of PD-L1 levels (35,
36). Nevertheless, the response rate was not more than 20%.
Amore recent study (37) indicated that, in patients with untreated
stage IV or recurrent NSCLC with a PD-L1 expression level of 5%
or more, nivolumab was not associated with longer progression-
free survival than chemotherapy. Therefore, although more
April 2021 | Volume 12 | Article 679953
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therapeutic options are available than PDAC, alternative drug
targets are also needed in NSLC.

In a recent study with 191 NSCLC patients, IDO2 was highly
expressed in 84% of samples and its expression was strictly
related to high PD-L1 levels (27). Perhaps most importantly, a
significant correlation between IDO2 high expression and poor
NSCLC prognosis was detected (27). Intriguingly, IDO2
expression was mainly associated with the basolateral side of
the tumor cell membrane, and only few cells stained for IDO2 in
the cytosol or nucleus. Therefore, these data would suggest a
“membrane-associated” function, which may be distinct from
the catalytic activity, similarly to IDO1 (12). Alternatively, the
nuclear topology may further suggest a gene modulatory
function by IDO2. In this regard, it is interesting to note that a
previous study indicated that the nuclear-associated staining of
IDO2 in the liver of conventional mice does not correlate with
any difference in Trp/Kyn levels (38), thus possibly excluding the
catalytic activity in nuclear-associated IDO2.

To evaluate the contribution of genetic variation in IDO2 to
the risk of NSCLC, we examined the frequencies of the two
common SNPs in IDO2 as described above, namely rs10109853
(R248W) and rs4503083 (Y359X). By resorting to a cohort
involving 145 NSCLC patients and 395 healthy matched
controls, we found that the R248W displays a significantly
Frontiers in Immunology | www.frontiersin.org 4
different genotype distribution between NSCLC patients and
controls, with the genotypes that include the minor allele
conferring almost a 2-fold increased risk of NSCLC (Table 1).
The Y359X SNP instead displayed only a trend towards
association with NSCLC and only when using a dominant
genetic model. Taken together, these results highlighted genetic
variation in IDO2 as a key determinant of susceptibility to
NSCLC. However, the IDO2 SNPs’ role appears to be distinct
in NSCLC as compared to PDAC. In fact, whereas the presence
of homo- or heterozygosity for the two SNPs increases the risk
for NSCLC, the same condition will protect from PDAC.

Because the R248W SNP is described to impair IDO2
catalytic activity and the Y359X SNP generates a premature
stop codon abolishing activity completely (26), the link observed
between both SNPs and the development of NSCLC would
support a relevant contribution of a defective enzymatic
activity of IDO2 to disease pathogenesis. However, there are
additional putative functional consequences of the IDO2 SNPs
worth considering. For example, while it does not affect gene
expression, R248W is described to act as a strong splicing
quantitative trait locus (sQTL) of IDO2 across several tissues,
but not the lung, in the Genotype-Tissue Expression (GTEx)
project (Figure 1). Although the role of splicing events in IDO2
function remains unclear, the fact that the risk allele of R248W is
TABLE 1 | Association test results of IDO2 genotypes and the risk of non-small-cell lung cancer (NSCLC).

Ref SNP Genotypes Controls (N=395) NSCLC (N=145) P-value
n (%)

n (%)
OR (95% CI)

T/T 251 (63.5) 79 (54.9) Reference
rs4503083 T/A 131 (33.2) 56 (38.9) 1.36 (0.91 – 2.03) 0.145
(Y359X) A/A 13 (3.3) 9 (6.3) 2.20 (0.91 – 5.34) 0.123

T/A+A/A 144 (36.5) 65 (45.1) 1.43 (0.97 – 2.11) 0.073
T/T 118 (29.9) 28 (19.3) Reference

rs10109853 T/C 192 (48.6) 88 (60.7) 1.93 (1.19 – 3.13) 0.008
(R248W) C/C 85 (21.5) 29 (20.0) 1.44 (0.80 – 2.59) 0.231

T/C+C/C 277 (70.1) 117 (80.9) 1.78 (1.12 – 2.84) 0.016
April 2021 | Volume 12 | Article
SNP, single nucleotide polymorphism; NSCLC, non-small-cell lung cancer; OR, odds ratio. One out of the 145 NSCLC patients had a missing genotype for rs4503083. Significant values
are in bold.
FIGURE 1 | Violin plots of intron-excision ratios across different human tissues according to rs10109853 genotypes in IDO2 (variant chr8_40005362_C_T_b38).
Data were retrieved from the Genotype-Tissue Expression database (GTEx Analysis Release v8). The colored region indicates the density distribution of the samples
in each genotype. The white line in the box plot indicates the median value of the intron excision ratio for each genotype.
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reported to influence the intron-excision ratio of IDO2 suggests
an effect on transcript diversity that may also help explain its
stronger association with NSCLC.
CONCLUSION AND PERSPECTIVES

IDO2 is a protein molecule that may represent an important
drug target in cancer immunotherapy. In fact, IDO2 has some
Trp catabolic activity, a catalytic function that, in the case of
IDO1, has been demonstrated to be responsible for
immunoregulatory effects. However, IDO2 is a very poor
producer of Kyn and, consequently, Trp catabolic activity by
this enzyme can very unlikely account for IDO2 biologic effects.
In this regard, IDO2 may represent a sort of “pseudoenzyme”,
i.e., a protein that is evolutionarily related to active enzymes, but
lacks relevant catalytic activity (Table 2) (39, 40). Interestingly,
the biological meaning of pseudoenzymes is currently the focus
of intense research (41). Some authors suggested that the IDO2
catalytic function may depend on factors (42) whose identity has
not been entirely identified yet and, therefore, it may have a
better performance in “certain” in vivo conditions. However, as
this is a hypothesis, the use of IDO2 catalytic inhibitors would be
premature in cancer immunotherapy. An alternative hypothesis
could in fact be that IDO2 preferentially uses substrates other
than Trp and therefore a completely new story should be written
for IDO2 as an enzyme. Disappointingly, no evidence for an
alternative IDO2 catalytic activity has been provided so far. A
great help in this regard may come from the crystallization of the
IDO2 protein, which, unfortunately, has not been obtained yet.

The fact that IDO2 biology is still far from being understood
also derives from the observations that this molecule appears to
play opposite functions in both autoimmune and neoplastic
diseases. In fact , in mouse experimental models of
autoimmunity/chronic inflammation, IDO2 is pathogenetic in
arthritis (20, 43) and protective in psoriasis (22). In humans, the
presence of an IDO2-deficient functional status exerts protective
effects in PDAC (29) but increases the risk of developing NSCLC
(this study). As a whole, these data would suggest that IDO2
plays a context-dependent effect. In other words, the presence of
cell- or microenvironment-specific factors as well as the direct
interaction with specific protein partners would dictate the
Frontiers in Immunology | www.frontiersin.org 5
outcome of IDO2-associated effects. In this regard, the
determination of the IDO2 interactome may be of great help.
Unfortunately, at this time, we just know which known IDO1
partners do not interact with IDO2 (Table 2). These include
SHP-1 and SHP-2 phosphatases that interact with IDO1 ITIM1
(mediating immunoregulatory IDO1 signaling activity in DCs
(10); i.e., absent in IDO2) and class I PI3Ks that bind IDO1 via
the YENM motif (mediating early endosome localization and
thus the signaling function of IDO1 in DCs and tumor cell
transfectants (12); also absent in IDO2). The ITIM2 motif is
instead present in both mouse and human IDO2, but its role is
still unknown. Interestingly, a recent study indicated that, upon
treatment with lipopolysaccharide (LPS), IDO2 exerts negative
regulatory effects on the IL-6 signaling pathway by reducing
STAT3 expression in macrophages and possibly in other cell
types in vivo (44). Notably, this effect occurred without changes
in Kyn levels (44) and therefore it could be of much interest to
clarify the molecular mode of action of IDO2 in this context.

In human neoplasia, although studies in only two types of
tumor have been performed, a relevant issue appears to be the
IDO2 genotype, whose analysis could provide a valuable
biomarker for informing treatment decisions (29). However,
even in conditions such as PDAC in which the IDO2 loss-of-
function seems to be protective, the fact that we do not know the
true function/s of IDO2 in distinct cells and cellular
microenvironments may have important consequences. As just
an example, the use of IDO2 catalytic inhibitors may induce
effects also in immune cells that should mount an effective anti-
tumor response in neoplastic patients. Moreover, given the lack
of information of a validated function, allocation of distinct
profiles of IDO2 expression to the identified molecular subtypes
of PDAC (45) cannot be performed yet.

In conclusion, although compounds that simultaneously
inhibit IDO1 and IDO2 have already been identified (46), we
believe that there is still a long road ahead before drug targeting of
IDO2 can be effectively and safely used in cancer immunotherapy.
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TABLE 2 | Main structural and functional features of human IDO1 and IDO2.

Features hIDO1 hID02 References

Structural Trp metabolizing activity Kcat (s
-1) 2.97 ± 0.20 Kcat (s

-1) 0.1 03 ± 0.006 (17)
Km (µM) 20.90 ± 3.95 Km (µM) 6,809 ± 9 1 7

Presence of signaling motifs
and their function

VPYCQL (ITIM1) Signaling activity Absent (10, 11)
VYEGF (ITIM2) Signaling activity, protein
degradation

MYEGV (putative ITIM)
Unknown

YENM Pl3K binding Absent (12)
Functional Frequency of expression in

tumors
High Low (13, 24, 26, 27)

Type of tumors Endometrial, cervical, renal, gastric, and
colorectal carcimonas Glioblastoma

Renal, gastric, and colorectal carcimonas Pancreas
(PDAC), lung (NSCLC carcinomas)

(13, 24, 26, 27)

Function in tumors Immune escape Not well defined, may be dependent on the genotype (9, 14, 29)
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