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Abstract

Background: 3D printing of anatomical models requires multi-factorial decision making for optimal model
manufacturing. Due to the complex nature of the printing process, there are frequently multiple potentialities
based on the desired end goal. The task of identifying the most optimal combination of print control variables is
inherently subjective and rests on sound operator intuition. This study investigates the effect of orientation, layer
and support settings on print time and material usage. This study also presents a quantitative optimization
framework to jointly optimize print time and material usage as a function of those settings for multi-pathological
anatomical models.

Methods: Seven anatomical models representing different anatomical regions (cardiovascular, abdominal,
neurological and maxillofacial) were selected for this study. A reference cube was also included in the simulations.
Using PreForm print preparation software the print time and material usage was simulated for each model across 4
orientations, 2 layer heights, 2 support densities and 2 support tip sizes. A 90–10 weighted optimization was
performed to identify the 5 most optimal treatment combinations that resulted in the lowest print time (90%
weight) and material usage (10% weight) for each model.

Results: The 0.1 mm layer height was uniformly the most optimal setting across all models. Layer height had the
largest effect on print time. Orientation had a complex effect on both print time and material usage in certain
models. The support density and the support tip size settings were found to have a relatively minor effect on both
print time and material usage. Hollow models had a larger support volume fraction compared to solid models.
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Conclusions: The quantitative optimization framework identified the 5 most optimal treatment combinations for
each model using a 90–10 weighting for print time and material usage. The presented optimization framework
could be adapted based on the individual circumstance of each 3D printing lab and/or to potentially incorporate
additional response variables of interest.

Keywords: Model orientation, Layer height, Medical 3D Printing, Print time, Material usage, Optimization, Inverted
vat photopolymerization, Anatomical Models

Background
Three-dimensional printing is increasingly employed to
manufacture patient-specific anatomical models, medical
devices and simulation models for training [1, 2]. There
are several categories of 3D printing technology. The
inverted Vat Photopolymerization (VP) technology is be-
ing used more frequently within academic medical cen-
ters due to its relative affordability as hospitals invest in
point-of-care 3D printing facilities. There are two main
types of VP technology including top-down laser-based
VP generally used in industrial machines with large build
volumes, and bottom-up laser based VP with relatively
smaller machines also frequently referred to by the ter-
minology desktop stereolithography (SLA) [3]. Bottom-
up LCD/DLP VP printers are also available in the desk-
top segment. The technology employed in this paper is
the bottom-up laser-based VP used in the Formlabs 3D
printers [4]. Given that 3D printing is a complex multi-
factorial process, there are often trade-offs between de-
sired end goals. For instance, model accuracy and sur-
face quality can be improved by reducing the layer
height and/or re-orienting the model, but frequently at
the expense of increased print time and cost [5–7]. Fur-
thermore, the same control variables used across models
can yield different output responses highlighting the
model-specific nature of the manufacturing process [8].
The organic and complex model geometries present in
anatomical models offer further unique challenges in
such decision making. Advanced technologies such as
machine learning and novel support generation strat-
egies have been employed in 3D printing to optimize re-
sponse variables such as energy consumption and
material waste [9–11].
Kamio et al. found that an increase in layer height re-

duced the print time and material cost for a mandibular
model without significant reduction in geometric accur-
acy [12]. Rubayo et al. found a significant difference in
print time between dental surgical templates manufac-
tured vertically vs. horizontally [13]. Some research
groups have studied the accuracy of medical models and
found the accuracy to be affected by multiple factors
such as orientation, layer height and the cure settings [4,
14–17]. However, a focused investigation of the effect of
different model geometries and critical print variables on
important response variables is lacking in the medical

3D printing literature. Furthermore, the decision-making
scheme surrounding model orientation and choice of
print settings to achieve desired end goals remains un-
clear for the 3D printing of anatomical models and im-
plants. For instance, optimizing for print time is crucial
when a 3D printed model is needed for an emergency or
trauma case.
The goal of this research was to investigate the effect

of model orientation, layer height, support density and
support tip size on print time and material usage in VP
3D printing based on print simulation for 7 anatomical
models. We propose an adaptable optimization frame-
work to jointly optimize both print time and material
usage which could be tailored based on the availability
of resources at the 3D printing laboratory. The frame-
work enables the identification of optimal combinations
of control variables using a quantitative approach and
could serve as a useful guide to the 3D printer operator.
The optimization scheme could also be further extended
to include other response variables of interest based on
the desired end goal.

Methods
Image segmentation and model STL creation
Image sets across anatomical regions and pathologies
were selected for this study as part of the clinical 3D
printing service line at the University of Cincinnati De-
partment of Radiology. These included models for: left
atrial appendage (LAA) occluder device sizing, minimally
invasive coronary artery bypass (MICAB) surgery, low
grade glioma (LGG) excision, renal cell carcinoma (RC)
surgery, mandibular osteonecrosis (MO) resection, hep-
atic pseudoaneurysm (HPA) surgery and basilar tip
aneurysm (BTA) clipping (Fig. 1). The models represent
a range of volumes from ~ 2 cc to ~ 100 cc (Table 1). All
data was completely de-identified and the research was
submitted to the hospital research ethics board, and the
study was considered exempt from further review, based
on the fact that no data in this study could be used to
identify any human being. The relevant anatomical re-
gions were segmented from CT and MRI derived
DICOM images using Materialise Mimics InPrint 3.0
(Materialise, Leuven, Belgium). The thresholding presets
for Bone (226 to 3071 HU), Blood Vessel (200 to 3071
HU) and Kidneys (20 to 135 HU) within the software
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were used for CT images. The segmentation of relevant
anatomical regions from MRI were performed using
semi-automatic and manual segmentation methods. The
LAA, HPA and BTA models were generated by con-
structing a 1.00–1.50 mm wall around the segmented
blood pool. All other models including the reference
cube were fully solid. The STL files were post-processed

in Materialise 3-matic 15.0 (Materialise, Leuven,
Belgium) where they were fixed, smoothed and wrapped.
The smoothing factor was set to 0.90. Spike removal was
performed on the RC and MO models with the spike
size and smallest detail both set to 0.25 mm. The LAA
model consisted of the appendage, atrium and pulmon-
ary veins; the MICAB model consisted of the heart, left
anterior descending artery, left interior mammary artery,

Fig. 1 The four orientations of all 8 models simulated in this study shown without support structures. Starting from the top-left, 0 to 45-degree
orientations of the (A) cube model, (B) left atrial appendage (LAA) model, (C) minimally invasive coronary artery bypass (MICAB) model, (D) low
grade glioma (LGG) model, (E) renal cell carcinoma (RC) model, (F) mandibular osteonecrosis (MO) model, (G) hepatic pseudoaneurysm (HPA)
model and (H) basilar tip aneurysm (BTA) model. Note that the models are not to scale and the corresponding STL volumes (A-H) are provided
in Table 1

Table 1 The 8 models investigated in this study with their
corresponding STL volumes and internal geometry type

Label Model Type STL Volume
(cc)

A Cube (reference) Solid 8.00

B Left atrial appendage (LAA) Hollow 30.25

C Minimally invasive coronary artery
bypass (MICAB)

Solid 100.33

D Low grade glioma (LGG) Solid 86.14

E Renal cell carcinoma (RC) Solid 73.92

F Mandibular osteonecrosis (MO) Solid 67.55

G Hepatic pseudoaneurysm (HPA) Hollow 3.47

H Basilar tip aneurysm (BTA) Hollow 1.98

Table 2 Summary of the Print Time (PT), Material Usage (MU)
and average support to total volume ratio for all 8 models

Model Avg. PT ± Std.
Dev. (min)

Avg. MU ± Std.
Dev. (mL)

Avg. Support/Total
Volume (%)

Cube 109.8 ± 33.3 10.3 ± 0.4 22.3

LAA 680 ± 188.6 56.5 ± 3.5 46.5

MICAB 876.1 ± 252.5 129.5 ± 3.3 22.5

LGG 565.3 ± 156.8 100.7 ± 5.0 14.5

RC 678.1 ± 198.0 94.4 ± 1.8 21.7

MO 610.2 ± 169.8 87.8 ± 2.6 23.1

HPA 272.7 ± 98.2 7.3 ± 0.8 52.5

BTA 165.9 ± 52.5 5 ± 0.4 60.4
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sternum and ribs; the LGG model consisted of the gli-
oma and white matter; the RC model consisted of the
tumor, kidney shell and arterial as well as venous
branches; the MO model consisted of the lower man-
dible; the HPA and BTA models consisted of the vessel
wall and corresponding aneurysms (Fig. 1).

Study design and print simulation in PreForm
The study consisted of 8 models spanning a range of vol-
umes, anatomical regions/pathologies and included 3 hollow
models (Table 1). A 20mm×20mm×20mm cube was in-
cluded as reference geometry. The Print Time (PT) and Ma-
terial Usage (MU) for each model was simulated in PreForm
3.9.0 (Formlabs, Somerville, MA, USA) with the resin set to
Clear and printer set to the Form 3 (Formlabs, Somerville,
MA, USA). Clear resin was used since it is the material of
choice for most anatomical models at our lab because it
allows the visualization of internal features. The PT and MU
values included the model, support structure as well as raft
for each print simulation. Four model orientations (ORN) –
0, 15, 30, 45 degrees, two layer heights (LH) – 0.05, 0.10
mm, two support densities (SD) – 0.80, 1.00 and two sup-
port tip sizes (STS) – 0.4, 0.5mm were tested for a total of
32 treatment combinations (4 ORN×2 LH× 2 SD× 2 STS)
per model. The 4 orientation levels were chosen to represent

common model orientation choices in inverted VP 3D print-
ing. The 2 layer heights are most commonly used for 3D
printing anatomical models. The lowest 0.025mm layer
height is typically only used when the highest accuracy is
needed such as for surgical guides or implants that form part
of an assembly. The 2 support densities and 2 support tip
sizes represent the commonly used levels that satisfy “print-
ability” in PreForm while resulting in good surface quality
(larger tip sizes result in reduced surface quality). Each of the
32 treatments per model was simulated only once since
there is no expected random error associated with this type
of simulation. The 0-degree orientation was defined for each
model as the most vertical orientation. The models were
then rotated about the X-axis (which runs front-to-back in
PreForm) in 15-degree increments (Fig. 1). The Z-height
therefore reduced with increasing ORN for each model. Each
model was placed in the center of the build plate for
consistency between simulations. Support structures were
generated both inside and outside the model since
during actual 3D printing these internal supports
would be needed for hollow models.

Data analysis and optimization
The PT and MU were averaged by the 4 control vari-
ables – ORN, LH, SD and STS to assess their effect on

Fig. 2 The response variables Print Time (PT) and Material Usage (MU) plotted against Orientation (ORN) for the Cube model. Sample size is
8 samples for each PT and MU average and the associated error bar

Fig. 3 The response variables Print Time (PT) and Material Usage (MU) plotted against Layer Height (LH) for the Cube model. Sample size is 16
samples for each PT and MU average and the associated error bar
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PT and MU. A weighted optimization of PT and MU
was performed with a weightage of 90% to PT and 10%
to MU with the goal to identify the combination of con-
trol variables that resulted in the minimal weight. PT
was given 90% weight since it is a more important par-

ameter, particularly when 3D printing models for urgent
procedures and for smaller 3D printing laboratories
seeking to maximize their throughput. The raw
optimization equations below were fed into Microsoft
Excel (Microsoft, Redmond, WA, USA) for computation.
The 5 most optimal solutions for each of the 8 models
were further analyzed. The optimization used the follow-
ing approach:

PTCenter ¼ Max PTð Þ þ Min PTð Þ
2

ð1Þ

PTCenter is an intermediate variable to store the
average of the endpoints of the PT dataset for a
model.

PTBottom ¼ Max PTð Þ− Min PTð Þ
2

ð2Þ

PTBottom is an intermediate variable to store half the
difference between endpoints of the PT dataset for a
model.

PTNormalized ¼ PT−PTCenter

PTBottom
ð3Þ

PTNormalized is an intermediate variable to store the
normalized PT of a single PT data point for a
model. MUNormalized was calculated similarly using Eq. 1,
Eq. 2 and Eq. 3 but using the corresponding MU values.

Table 3 The 5 most weighted (W) optimal treatment
combinations for the Cube model

ORN (Deg) LH (mm) SD STS (mm) MU (mL) PT (min) W

30 0.1 0.8 0.5 9.79 67 −1.0000

30 0.1 1 0.4 9.92 68 −0.9586

30 0.1 1 0.5 9.97 69 −0.9304

45 0.1 0.8 0.4 9.87 71 −0.9075

45 0.1 1 0.4 9.87 71 −0.9075

Fig. 4 The response variables Print Time (PT) and Material Usage (MU) plotted against Orientation (ORN) for the LAA model. Sample size is 8
samples for each PT and MU average and the associated error bar

Fig. 5 The response variables Print Time (PT) and Material Usage (MU) plotted against Layer Height (LH) for the LAA model. Sample size is 16
samples for each PT and MU average and the associated error bar

Ravi and Chen 3D Printing in Medicine            (2021) 7:23 Page 5 of 13



W ¼ 0:90� PTNormalized þ 0:10�MUNormalized ð4Þ
W represents the weight of the final optimization. The

lower the W, the more optimal the combination of input
variables which yield the corresponding PT and MU.

Results
The average PT ranged from ~ 2 to ~ 14.5 h and the
average MU ranged from ~ 5 to ~ 130mL for the 8
models (Table 2). The average support volume as a frac-

tion of total volume ranged from ~ 15 to ~ 60%. This
fraction ranged from ~ 15–23% for Solid models and ~
47–60% for Hollow models. The range of coefficient of
variation (std. dev./avg.) was higher for PT (0.28–0.32)
than MU (0.02–0.11) across the 8 models.

A – cube
The PT and MU both reduced with increasing ORN for
the Cube model (Fig. 2). The reduction in PT was more
substantial (~ 25%) compared to MU (~ 10%) between the
0 and 45 deg levels. An increase in LH had the most im-
pact on PT (~ 43% reduction) but very little effect on the
MU (< 0.1%) (Fig. 3). The 5 most optimal (weighted) treat-
ment combinations for the Cube model all consisted of
the 30 and 45 deg ORNs and 0.1mm LH (Table 3). These
optimal combinations consisted of both SD and STS levels
due to their relatively minor effect on both PT and MU.

B – left atrial appendage (LAA)
The PT reduced with increasing ORN for the LAA
model but the pattern was more complex for MU
with an initial reduction followed by a subsequent
rise (Fig. 4). The reduction in PT was more substan-
tial (~ 8%) between the 0 and 45 deg levels compared
to the increase in MU (~ 5%) between the 15 deg and
45 deg levels. An increase in LH caused a ~ 42% re-
duction in PT but barely any change (< 1%) in MU
(Fig. 5). An increase in SD caused an increase in both
PT of ~ 7% and in MU of ~ 12% (Fig. 6). The 5 most
optimal (weighted) treatment combinations consist of
the 0.1 mm LH and 0.80 SD with mostly larger ORNs

Fig. 6 The response variables Print Time (PT) and Material Usage (MU) plotted against Support Density (SD) for the LAA model. Sample size is 16
samples for each PT and MU average and the associated error bar

Table 4 The 5 most weighted (W) optimal treatment
combinations for the LAA model

ORN (Deg) LH (mm) SD STS (mm) MU (mL) PT (min) W

45 0.1 0.8 0.5 53.21 454 −0.9639

45 0.1 0.8 0.4 54.05 456 −0.9409

15 0.1 0.8 0.5 51.24 472 −0.9314

15 0.1 0.8 0.4 51.35 476 −0.9141

30 0.1 0.8 0.5 54.47 480 −0.8417

Fig. 7 The response variables Print Time (PT) and Material Usage (MU) plotted against Layer Height (LH) for the MICAB model. Sample size is 16
samples for each PT and MU average and the associated error bar
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(Table 4), and both levels of STS due to the minor
effect of this control variable.

C – minimally invasive coronary artery bypass (MICAB)
The PT and MU showed little change with ORN (<
3%) for the MICAB model. The PT reduced by ~

44% with increased LH while the MU remained un-
changed (Fig. 7). The PT and MU both increased
with increasing SD, by ~ 4.2% and 5.9%, respectively
(Fig. 8). The 5 most optimal (weighted) treatment
combinations consist of the 0.1 mm LH and 0.80 SD
with mostly smaller and larger ORNs (Table 5) as

well as both levels of STS due to the minor effect of
the latter 2 control variables.

D – low grade glioma (LGG)
PT and MU both increased with ORN for the LGG
model (Fig. 9). The maximum increase in PT was ~ 9.8%
(between 0 and 30 deg) and in MU was ~ 12.9% (between
0 and 45 deg). The PT reduced by ~ 42.5% with increased
LH but the MU remained unchanged (Fig. 10). An in-
crease in SD had a minor impact on both PT and MU (<
2.5% increase). The 5 most optimal (weighted) treatment
combinations consist of the 0.1 mm LH and smaller ORNs
(Table 6) as well as both levels of STS and SD due to the
minor effect of the latter 2 control variables.

E – renal cell carcinoma (RC)
The PT and MU both reduced with increasing ORN for
the RC model (Fig. 11). The maximum reduction was ~
7.7% in PT (between 0 and 30 deg) and ~ 2.9% in MU
(between 0 and 30 deg). The PT reduced by ~ 44.4%
with increasing LH while the MU remained constant
(Fig. 12). An increase in SD resulted in a ~ 2% increase
in both PT and MU. An increase in STS resulted in a ~
1–1.5% reduction in both PT and MU. The 5 most

Fig. 8 The response variables Print Time (PT) and Material Usage (MU) plotted against Support Density (SD) for the MICAB model. Sample size is
16 samples for each PT and MU average and the associated error bar

Table 5 The 5 most weighted (W) optimal treatment
combinations for the MICAB model

ORN (Deg) LH (mm) SD STS (mm) MU (mL) PT (min) W

15 0.1 0.8 0.5 125.6 612 −0.9320

0 0.1 0.8 0.4 126.88 606 −0.9309

0 0.1 0.8 0.5 126.43 611 −0.9224

30 0.1 0.8 0.5 126.34 612 −0.9207

30 0.1 0.8 0.4 127.03 609 −0.9194

Fig. 9 The response variables Print Time (PT) and Material Usage (MU) plotted against Orientation (ORN) for the LGG model. Sample size is 8
samples for each PT and MU average and the associated error bar
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optimal (weighted) treatment combinations consist of
the 0.1 mm LH and larger ORNs (Table 7) as well as
both levels of STS and SD due to the relatively minor ef-
fect of the latter 2 control variables.

F – mandibular osteonecrosis (MO)
The PT reduced and MU increased with increasing
ORN (Fig. 13). The maximum reduction in PT was ~
4.6% (between 0 and 45 deg) and the maximum increase
in MU was ~ 6.2% (between 0 and 45 deg) for the MO
model. An increase in LH resulted in a reduction in PT
of ~ 42.8% with constant MU. The PT increased ~ 3.5%
and MU increased ~ 3.2% when the SD was increased
(Fig. 14). The 5 most optimal (weighted) treatment com-
binations consist of the 0.1 mm LH, 0.8 SD and smaller
ORNs (Table 8) with both levels of STS due to the rela-
tively minor effect of the latter control variable.

G – hepatic pseudoaneurysm (HPA)
The PT and MU both showed a complex pattern with
respect to ORN (Fig. 15). The PT first reduced ~ 5.4%
from 0 to 15 Deg ORN and subsequently increased by ~
11.6% from 15 to 45 Deg ORN. The MU likewise re-
duced ~ 15.8% from 0 to 15 Deg ORN and later in-
creased by ~ 22.7% from 15 to 45 Deg ORN. The PT
reduced by ~ 52% with increased LH while MU reduced
by ~ 2.5%. The MU increased ~ 13% with increased SD
whereas PT increased ~ 1.2% (Fig. 16). The 5 most opti-
mal (weighted) treatment combinations consist of the
0.1 mm LH, 0.8 SD and both smaller and larger ORNs

(Table 9) with both levels of STS due to the relatively
minor effect of the latter control variable.

H – basilar tip aneurysm (BTA)
The PT reduced and MU increased with ORN (Fig. 17).
The PT reduced by ~ 11.3% and MU increased by ~
20.5% from 0 Deg to 45 Deg ORN. The PT reduced by
~ 47% with increased LH while MU increased by ~ 3.8%.
The MU increased ~ 5.3% with increased SD whereas
PT increased ~ 1.4%. The 5 most optimal (weighted)
treatment combinations consist of the 0.1 mm LH, 0.8
SD and mostly larger ORNs (Table 10) with both levels
of STS due to the relatively minor effect of the latter
control variable.

Discussion
The material cost of 3D printing the model with largest
MU is roughly ~US $20 (MICAB model) using the For-
mlabs VP material in our study which would be a minor
fraction of the total cost for a 3D printing laboratory sit-
uated in a developed country. However, this could be a
substantially larger fraction of the total cost in a devel-
oping country and therefore would warrant a larger
weighting of MU in contrast to the 90–10 (PT-MU)
optimization scheme employed in the present work.
However, the methodology presented in this study could
be easily adapted for such situations that demand a more
tailored weighting of PT and MU based on the specific
circumstance.
The Hollow models had more than twice the support

volume fraction as the Solid models primarily due to the
presence of support structures in the internal geometry
of these models. MU varied relatively little compared to
PT within each of the 8 models, which is because PT is
determined by the laser toolpaths, post-layer peel oper-
ation and miscellaneous operations all of which depend
on the number of layers (model Z height) and layer
cross-sectional area that are in turn sensitive to all 4
control variables investigated in this study. All of the
most optimal treatment combinations for each of the 8

Fig. 10 The response variables Print Time (PT) and Material Usage (MU) plotted against Layer Height (LH) for the LGG model. Sample size is 16
samples for each PT and MU average and the associated error bar

Table 6 The 5 most weighted (W) optimal treatment
combinations for the LGG model

ORN (Deg) LH (mm) SD STS (mm) MU (mL) PT (min) W

0 0.1 0.8 0.5 93.75 378 −1.0000

0 0.1 0.8 0.4 94.2 381 −0.9799

0 0.1 1 0.5 94.58 384 −0.9607

0 0.1 1 0.4 95.13 389 −0.9297

15 0.1 0.8 0.4 97.21 399 −0.8550
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models consisted of the 0.1 mm LH due to the reduced
number of layers compared to the 0.05 mm LH. The re-
duction in PT was in the ~ 40–50% range with increased
LH. In terms of ORNs both the smaller and larger levels
were present in the optimal solutions since this control
variable has a complex effect on PT and MU. A majority

of the optimal solutions occurred at 0.8 SD due to the
negative effect of this control variable on both PT and
MU, albeit not as dominant as ORN or LH. Both levels
of STS were present throughout the optimal treatment
combinations due to the minor effect of this variable on
PT and MU.
The Cube model showed a reduction in both PT and

MU with increasing ORN due to a reduction in Z-height

with increasing ORN (Fig. 1A). The 5 most optimal treat-
ment combinations occurred at the 0.1 mm LH and 30/45
Deg ORNs, and both these values were at the higher end
of the range for both control variables. However, it is im-
portant to note that the 45 Deg ORN for the Cube would
result in a flat surface on top of the support pillars and
likely lead to substantial warping and reduced print qual-
ity. The optimization scheme estimates that the 0.1 mm
LH, 30 Deg ORN, 0.8 SD and 0.5mm STS would result in
optimized PT and MU for the Cube model.
For the LAA model the MU initially reduced and then

increased with increasing ORN. This is due to the verti-
cal alignment of the pulmonary veins from 0 to 15 Deg
that resulted in fewer support pillars followed by in-
creasing angular alignment from 15 to 45 Deg ORN
(Fig. 1B). The PT and MU both increased with SD due
to the Hollow nature of the LAA model. The 5 most op-
timal treatment combinations consisted of both smaller
(15 Deg) due to the vertical alignment of the pulmonary
veins, and larger (30 and 45 Deg) ORNs due to the re-
duced Z-height. The optimization scheme estimates that
the 0.1 mm LH, 45 Deg ORN, 0.8 SD and 0.5 mm STS
would result in optimized PT and MU for the LAA
model.
For the MICAB model, the 5 most optimal treatment

combinations consisted of both smaller (0 and 15 Deg)

Fig. 11 The response variables Print Time (PT) and Material Usage (MU) plotted against Orientation (ORN) for the RC model. Sample size is 8
samples for each PT and MU average and the associated error bar

Table 7 The 5 most weighted (W) optimal treatment
combinations for the RC model

ORN (Deg) LH (mm) SD STS (mm) MU (mL) PT (min) W

30 0.1 0.8 0.5 91.13 461 −1.0000

30 0.1 0.8 0.4 92.09 466 −0.9510

45 0.1 0.8 0.5 92.49 467 −0.9348

30 0.1 1 0.5 93.13 470 −0.9034

15 0.1 1 0.5 92.85 477 −0.8854

Fig. 12 The response variables Print Time (PT) and Material Usage (MU) plotted against Layer Height (LH) for the RC model. Sample size is 16
samples for each PT and MU average and the associated error bar
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and larger (30 Deg) ORNs. This is due to the balance be-
tween fewer support pillars but larger Z-height in the
lower ORNs and higher support pillar count but lower
Z-height in the higher ORNs (Fig. 1C). The optimization
scheme estimates that the 0.1 mm LH, 15 Deg ORN, 0.8
SD and 0.5 mm STS would result in optimized PT and
MU for the MICAB model.
The PT and MU both increased with ORN for the

LGG model which is due to the largest flat surface (bot-
tom surface of the model) becoming more horizontally

aligned and requiring a larger raft as well as more sup-
port pillars. Therefore, any reduction in PT due to the
decrease in model Z-height with increasing ORN (Fig.
1D) was more than compensated for by an increase in
support and raft volume (the opposite effect was ob-
served in the Cube model). Four out of the 5 most opti-
mal treatment combinations for the LGG model
consisted of the 0 Deg (vertical) ORN. The optimization
scheme estimates that the 0.1 mm LH, 0 Deg ORN, 0.8
SD and 0.5 mm STS would result in optimized PT and

MU for the LGG model.
A similar balancing effect between reduced model Z-

height and increased support volume with increasing
ORN (Fig. 1E) was observed for the RC model as evi-
denced by the initially reducing PT and MU which sub-
sequently increased with increasing ORN. Three out of
the 5 most optimal treatment combinations consisted of
the 30 Deg ORN, although both 0.8 and 1.0 SD levels
were present. The optimization calculation estimates
that the 0.1 mm LH, 30 Deg ORN, 0.8 SD and 0.5 mm
STS would result in optimized PT and MU for the RC
model.

Fig. 14 The response variables Print Time (PT) and Material Usage (MU) plotted against Support Density (SD) for the MO model. Sample size is 16
samples for each PT and MU average and the associated error bar

Table 8 The 5 most weighted (W) optimal treatment
combinations for the MO model

ORN (Deg) LH (mm) SD STS (mm) MU (mL) PT (min) W

0 0.1 0.8 0.5 83.24 435 −0.9617

15 0.1 0.8 0.5 84.95 428 −0.9574

30 0.1 0.8 0.5 86.66 430 −0.9113

0 0.1 0.8 0.4 84.78 444 −0.8868

15 0.1 0.8 0.4 86.19 438 −0.8843

Fig. 13 The response variables Print Time (PT) and Material Usage (MU) plotted against Orientation (ORN) for the MO model. Sample size is 8
samples for each PT and MU average and the associated error bar
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The PT reduced whereas the MU increased with in-
creasing ORN for the MO model due to the reducing Z-
height and increasing support and raft volume (Fig. 1F).
The slender nature of the MO model resulted in a no-
ticeable increase in both PT and MU with increased SD.
The optimization scheme estimates that the 0.1 mm LH,
0 Deg ORN, 0.8 SD and 0.5 mm STS would result in op-
timized PT and MU for the MO model.

The PT and MU both showed “U” shaped patterns
with initially decreasing and later increasing values with
increasing ORN for the HPA model. This is again be-
cause of the initial benefit from reducing model Z-
height which is later more than compensated for by the

increased support and raft volume (Fig. 1G). The differ-
ences between PT and MU values at various ORNs are
larger compared to other models due to the relative
dominance of support/raft volume fraction (> 52%). The
optimization scheme estimates that the 0.1 mm LH, 15
Deg ORN, 0.8 SD and 0.5 mm STS would result in opti-
mized PT and MU for the HPA model.
The PT decreased and MU increased with increasing

ORN for the BTA model (Fig. 1H). The differences be-
tween PT and MU values at various ORNs were high
similar to the HPA model due to the relative dominance
of support/raft volume fraction (> 60%). The
optimization scheme estimates that the 0.1 mm LH, 30
Deg ORN, 0.8 SD and 0.4 mm STS would result in opti-
mized PT and MU for the BTA model.
The study has some limitations. First, this study pre-

sents a simulation-based approach for optimizing print
time and material usage for 8 different medical anatom-
ical models (7 medical and 1 reference cube) which ig-
nores other aspects such as print surface quality,
internal support structure removal, dimensional accur-
acy etc. Future research must factor such additional vari-
ables into the optimization scheme. Second, it is difficult

Fig. 15 The response variables Print Time (PT) and Material Usage (MU) plotted against Orientation (ORN) for the HPA model. Sample size is 8
samples for each PT and MU average and the associated error bar

Fig. 16 The response variables Print Time (PT) and Material Usage (MU) plotted against Support Density (SD) for the HPA model. Sample size is
16 samples for each PT and MU average and the associated error bar

Table 9 The 5 most weighted (W) optimal treatment
combinations for the HPA model

ORN (Deg) LH (mm) SD STS (mm) MU (mL) PT (min) W

15 0.1 0.8 0.5 6.13 167 −0.9993

15 0.1 0.8 0.4 6.15 167 −0.9979

30 0.1 0.8 0.4 6.26 171 −0.9596

30 0.1 0.8 0.5 6.28 171 −0.9583

15 0.1 1 0.5 6.87 171 −0.9179
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to “standardize” orientations across different models;
therefore, this study set the 0 Deg orientation as the ver-
tical most orientation for each model. Third, the orienta-
tion was varied in only one degree of freedom and
future studies should investigate additional degrees of
freedom. Fourth, only models from single patients were
used in the optimization framework and models between
patients with the same conditions could vary substan-
tially. Finally, the 90–10 weighting in the optimization
scheme is subjective and in developing nations this skew
would likely reduce due to availability of resources.
However, the methodology presented can be adapted to
concurrently optimize both print time and material
usage based on the availability of resources and desired
throughput for the 3D printing lab.

Conclusions
The research successfully investigated the simulated ef-
fect of orientation, layer height, support density and tip
size on print time and layer height for 7 different ana-
tomical models and 1 reference cube. Hollow models
demonstrated a higher proportion of support material
due to internal supports. The optimization framework
identified the 5 most optimal treatment combinations
for each model using a 90–10 weighting for print time
and material usage. The optimal solutions all included
the 0.1 mm layer height since the goal of the
optimization scheme was to minimize both print time
and material usage. Orientation had a complex effect on
both print time and material usage in certain models.

Support density and tip size had a relatively minor im-
pact on both response variables. The presented
optimization framework could be adapted based on the
individual circumstance of each 3D printing lab and/or
to potentially incorporate additional response variables
of interest.
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Table 10 The 5 most weighted (W) optimal treatment
combinations for the BTA model

ORN (Deg) LH (mm) SD STS (mm) MU (mL) PT (min) W

30 0.1 0.8 0.4 4.89 112 −0.8836
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30 0.1 0.8 0.5 5.06 112 −0.8621

15 0.1 0.8 0.5 4.66 116 −0.8537

45 0.1 0.8 0.4 5.51 109 −0.8494
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