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Abstract Mutations in the human telomerase reverse transcriptase (TERT) promoter are the most

frequent non-coding mutations in cancer, but their molecular mechanism in tumorigenesis has not

been established. We used genome editing of human pluripotent stem cells with physiological

telomerase expression to elucidate the mechanism by which these mutations contribute to human

disease. Surprisingly, telomerase-expressing embryonic stem cells engineered to carry any of the

three most frequent TERT promoter mutations showed only a modest increase in TERT transcription

with no impact on telomerase activity. However, upon differentiation into somatic cells, which

normally silence telomerase, cells with TERT promoter mutations failed to silence TERT expression,

resulting in increased telomerase activity and aberrantly long telomeres. Thus, TERT promoter

mutations are sufficient to overcome the proliferative barrier imposed by telomere shortening

without additional tumor-selected mutations. These data establish that TERT promoter mutations

can promote immortalization and tumorigenesis of incipient cancer cells.

DOI: 10.7554/eLife.07918.001

Introduction
Activation of telomerase is the critical step for the immortalization of more than 90% of all human

tumors (Greider and Blackburn, 1985; Counter, 1992; Kim et al., 1994). Non-coding mutations in

the promoter of the catalytic subunit of telomerase (TERT) emerged recently as one of the most

prevalent mutations in human cancer (Bojesen et al., 2013; Horn et al., 2013; Huang et al., 2013;

Killela et al., 2013; Fredriksson et al.,2014; Weinhold et al., 2014). Interestingly, all TERT promoter

mutations associated with cancer formation thus far generate novel binding sites for the ETS

(E26 transformation-specific) family of transcription factors and are located close to the translational

start site of TERT (e.g., −57A/C, −124C/T, and −146C/T) (Horn et al., 2013; Huang et al., 2013).

Transient transfection experiments using ectopic TERT Luciferase-reporter constructs suggest that

TERT promoter mutations can increase TERT transcription by 1.5–2 fold when assayed in tumor cells

(Horn et al., 2013; Huang et al., 2013). To date, the physiological events that select for these specific

mutations are still unclear, as they have been mostly investigated for their impact in tumor cell lines

that are already immortal, maintain telomere length, and have aberrant karyotypes. These tumor cell

lines have sufficient telomerase activity to maintain an immortal phenotype, but so do tumor cells

without these TERT promoter mutations. Thus, changes in telomerase levels and telomere length

provide incomplete information regarding the functional differences between cells that do or do not

carry TERT promoter mutations.

In untransformed human tissues, telomerase activity is restricted to embryonic cells and some

adult stem cell or progenitor compartments due to transcriptional silencing of TERT upon

differentiation (Gunes and Rudolph, 2013; Aubert, 2014). As a consequence, differentiated

somatic cells undergo progressive telomere shortening with cell division, which limits

their proliferative capacity and has thus been proposed as a tumor suppressor mechanism
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(Wright et al., 1996). Critically short telomeres are detected as sites of DNA damage leading to

cell death or replicative senescence (Palm and de Lange, 2008). Long-term inhibition of TERT

(Herbert et al., 1999) or interference with telomerase recruitment to telomeres (Nakashima et al.,

2013; Sexton et al., 2014) lead to cell death in telomerase-positive cancer and stem cells.

Inversely, ectopic telomerase expression is sufficient to immortalize normal human fibroblasts by

allowing them to bypass senescence (Bodnar et al., 1998; Morales et al., 1999). Since the

discovery of telomerase reactivation in cancer, many cis-regulatory elements and corresponding

transcription factors have been suggested to contribute to the regulation of TERT in healthy cells

and its aberrant expression in tumor cells (Greenberg et al., 1999; Ducrest et al., 2002; Lin and

Elledge, 2003; Kyo et al., 2008). GWAS analysis identified a specific set of TERT promoter

mutations in melanomas that all occur in a very small region close to the transcriptional start site

and each results in novel putative TTCCGG- ETS binding sites (Horn et al., 2013; Huang et al.,

2013). While ETS-factors are a large family of transcription factors that can recognize this binding

site, recent data suggest that TERT promoter mutations are bound predominantly by GABP

(Bell et al., 2015). This specificity does not appear restricted to melanomas as the same TERT

promoter mutations have emerged as a major driver in a multitude of human solid tumors

(Heidenreich et al., 2014), including glioblastomas, medulloblastomas, carcinomas of the bladder,

urothelial cancer (Borah et al., 2015), thyroid and squamous cell carcinomas of the tongue, as well

as in liposarcomas and hepatocellular carcinomas (Heidenreich et al., 2014). Based on this tumor

spectrum, TERT promoter mutations have been hypothesized to preferentially promote tumor

progression in tissues with relatively low rates of self-renewal (Killela et al., 2013). Several studies

have suggested that TERT promoter mutations can provide a biomarker to stratify human cancer

subtypes (Heidenreich et al., 2014; Borah et al., 2015). However, the mechanism by which these

eLife digest The bulk of the DNA in the human genome is divided between 23 pairs of

chromosomes. The ends of these chromosomes contain a repetitive stretch of DNA known as

a telomere. Every time a cell divides, a portion of the telomere is lost and can be restored by an

enzyme called telomerase.

If the telomeres shorten below a critical length, the cell can no longer divide and eventually dies.

Thus, long telomeres increase the number of times a cell can divide. In the majority of human

cells—with the exception of stem cells—telomerase activity is absent due to the down regulation of

the active protein component (called TERT) after birth. Therefore, the telomeres in these cells

shorten after each cell division. However, 90% of human cancers have very high TERT activity, which

enables them to divide continuously to drive tumor growth.

Genes are sections of DNA that code for proteins and other molecules. The start of a gene

contains a region known as the promoter, which controls when and where in the body the gene is

active. Cancer cells often contain mutations in the promoter of the gene that encodes TERT.

However, it remains poorly understood how these mutations lead to the formation of tumors.

Chiba et al. have now used a technique called genome editing to introduce mutations that are

commonly found in cancer cells into the promoter of the gene for TERT in human embryonic stem

cells. Unexpectedly, these changes did not increase the activity of the telomerase enzyme in these

cells, nor did they increase the length of the telomeres.

Chiba et al. next caused these genetically engineered stem cells to develop into more specialized

cell types—such as nerve cells. These ‘differentiated’ cells normally silence the gene that encodes

TERT, but the mutations prevented the gene from being silenced. This led to abnormally high levels

of telomerase activity and long telomeres. The experiments also showed that TERT activity in these

cells was similar to that found in cancer cells that can divide indefinitely.

Cells containing the promoter mutations were then injected into mice. The cells formed a mass of

tumors that contained very long telomeres. These results together suggest that cancer-causing

mutations in the gene for TERT stop this gene from being properly silenced in more specialized cells,

and that this, on its own, can promote the formation of tumors. These findings are likely to underpin

future efforts to treat cancers by targeting the expression and activity of the telomerase enzyme.

DOI: 10.7554/eLife.07918.002
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mutations promote tumor formation is unknown. The key outstanding questions are: (1) whether

TERT promoter mutations are sufficient to immortalize cells and (2) why TERT promoter mutations

occur in specific tumors subtypes.

Here we address these questions by genetically engineering human embryonic stem cells (hESCs)

to carry the three most prevalent cancer-associated TERT promoter mutations in an isogenic

background. The impact of these mutations was studied by measuring their effect on TERT

expression, telomerase activity, and telomere length in stem cells as well as in differentiated cell

types. We demonstrate that two out of three cancer-associated TERT mutations caused no effect and

only the most prevalent promoter mutations mildly increased TERT levels in hESCs, which did not

result in significantly increased telomerase activity. We find that increased TERT expression is not

functionally linked to an increase in active telomerase, as TR, the telomerase RNA component, but not

TERT is limiting in hESCs. However, the importance of these mutations in tumorigenesis becomes

clear when hESCs are differentiated into normally telomerase-negative cells. Under these conditions

all cancer-associated TERT mutations prevent repression of TERT, resulting in a retention of

telomerase activity relative to wild-type differentiated cells. Ultimately, the resulting TERT expression

led to aberrant telomerase enzymatic activity in terminally differentiated cells and abnormally long

telomeres, thereby bypassing the telomere shortening tumor suppressor pathway.

Results

Analyzing cancer-associated TERT promoter mutations in hESCs
We aimed to understand the molecular basis by which the cancer-associated TERT mutations

impact telomerase biology. To address this question, we employed CAS9- (clustered regularly

interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9) (Jinek et al., 2012)

mediated genome editing to derive human pluripotent stem cells (WIBR#3) that carry TERT

promoter mutations at the endogenous TERT locus. Initially we attempted conventional donor-

based genome editing strategies with sgRNAs targeting sequences proximal to the targeting

site. These attempts were however unsuccessful, likely due to the TERT promoter mutations being

in a genomic region with ∼80% GC content. This non-random base composition does not allow

for the design of specific sgRNAs without a large number of potential off-targets. We tested

several sgRNAs in proximity to TERT promoter mutations and found them to be toxic to cells

shortly after transfection into cancer cells and human primary fibroblasts. We overcame this

challenge by employing a two-step targeting approach (Figure 1A). In a first editing step we

homozygously deleted a 1.5 kb region in the TERT gene using two sgRNAs that cut at positions

−1462 and +67 relative to the first ATG (Figure 1A). In a second editing step we reintroduced the

deleted region either with or without the promoter mutations into the endogenous TERT locus

(Figure 1A,B).

As the first deletion step removed the translational start site as well as some coding sequence of

TERT, this targeting strategy resulted in telomerase-negative hESCs (TERTΔ/Δ) (Figure 1C). Correct

targeting was confirmed by Southern blot and PCR-sequencing of the genomic deletion

(Figure 1—figure supplement 1A,B). As expected from our previous characterization of TERT−/−

hESCs (Sexton et al., 2014), these cells proliferated normally for 3 to 4 months, followed by cell

death due to progressive telomere shortening with no survivors after 140 days (Sexton et al., 2014).

In a second targeting step we edited the newly formed genomic site with a specific sgRNA spanning

the new junction (−1462 to +67) to reinsert and restore the deleted region with either the wild-type

promoter or an altered region containing the most frequent cancer-associated TERT promoter

mutations: −57A/C, −124C/T, or −146C/T (Figure 1B). This complementation approach restored the

TERT gene and cellular viability of targeted cells. Accordingly, cells with a restored TERT gene

gradually outcompeted none-rescued parental TERTΔ/Δ cells and lead to substantial telomere

elongation by the time untargeted TERTΔ/Δ hESCs had died (Figure 1D). This complementation

strategy therefore successfully generated hESCs that differed exclusively at the TERT locus by

expressing TERT either from its wild-type promoter or from a promoter that contained one of the

cancer-associated point mutations.

We first analyzed the impact of the TERT promoter mutations on TERT mRNA levels by qRT-PCR

until cultures established stable TERT expression levels and all TERTΔ/Δ had died (Figure 1E). This

analysis revealed that the most frequent TERT mutation (−124C/T) resulted in a 2–3-fold increase in
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Figure 1. Generation of isogenic TERT promoter mutation-containing hESCs reveals a modest increase of TERT expression only for the −124C/T
mutation. (A) Schematic overview of the two-step approach used to genome-edit TERT promoter mutations in hESCs. First, TERT knock-out cell line

(TERTΔ/Δ) that lacks 1.5 kb upstream and 66 bp downstream of the first ATG was established using two CAS9/sgRNAs (sg-1 and sg-15). Second, an sgRNA

against the newly synthesized NHEJ-derived junction (−1462 and +67: sg1+15; see Figure 1—figure supplement 1B) were co-electroporated with donor

plasmids containing the deleted regions with or without the cancer-associated TERT promoter mutations. (B) Sequence analysis of targeted cells

confirmed successful restoration and introduction of the TERT promoter mutations. (C) Telomeric repeat amplification protocol (TRAP) assay of whole cell

extracts from TERTΔ/Δ hESC lines (n = 2) using 200 ng protein. TERTΔ/Δ #1 and #2 cells were collected at day 89 and day 146 after the first editing

respectively. IC: internal control. (D) Telomere restriction fragment assay of wild-type (WT), TERTΔ/Δ, and the targeted hESCs over a time course after

targeting (day 0: first editing step, day 73: second editing). TERTΔ/Δ #1 cells are telomerase-deficient, undergo telomere shortening and die around day

120 unless they regain telomerase activity through the second targeting step. At the first time point (day 101), the majority of the cells are untargeted

TERTΔ/Δ cells, therefore telomere length is heterogeneous and short. This short telomere length results in reduced hybridization intensity with the

TTAGGG radioactive probe. In contrast at the second time point (day 129), uncomplemented TERTΔ/Δ #1 died due to progressive telomere shortening

and the targeted populations are enriched. In this targeted population the restoration of telomerase resulted in substantial telomere elongation and an

Figure 1. continued on next page
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TERT expression when compared to the isogenic wild-type control. This increase is in agreement with

previous reports that evaluated these mutations using Luciferase reporter constructs (Horn et al.,

2013; Huang et al., 2013). Noticeably, the two other mutations did not result in similarly increased

TERT expression in hESCs. We confirmed this finding for an independent TERTΔ/Δ cell line

(Figure 1—figure supplement 2) and individual single cell-derived hemizygously targeted clones

(Figure 1—figure supplement 3). Interestingly, the promoter mutation cell lines carrying the −124C/T
mutation had elevated levels of TERT mRNA expression, without a equivalent increase in telomerase

activity (Figure 1F).

TR, but not TERT is limiting for telomerase in hESCs
A lack of a significant change in telomerase activity despite increased TERT levels in hESCs that

carry the −124C/T mutations suggested that TERT mRNA levels are not rate-limiting for

telomerase activity in hESCs. Similar observations were made previously for some tumor cell lines

in which telomerase activity is limited by levels of TR (Cristofari and Lingner, 2006; Xu and

Blackburn, 2007), and might explain the tissue-specific impact of TERT and TR mutations in

patients with dyskeratosis congenita (Batista et al., 2011; Strong et al., 2011; Armanios and

Blackburn, 2012). Telomerase biogenesis is a complex biological process that has been shown in

human pluripotent stem cells to depend on several activities that, when depleted, can become

limiting (Yang et al., 2008; Batista et al., 2011; Batista and Artandi, 2013). To test the

hypothesis that in wild type human pluripotent stem cells TR is the limiting factor for telomerase

activity, we ectopically expressed TERT, TR, or both from the AAVS1 safe harbor locus

(Hockemeyer et al., 2009, 2011) (Figure 2A). The introduction of such transgenes into this

locus in isogenic settings overcomes concerns of random integration of the transgene.

Overexpression levels were verified by western and northern blotting and qRT-PCR (Figure 2B,C;

Figure 2—figure supplement 1A) and quantitative analysis showed that TERT mRNA was

overexpressed >40 fold and TR levels by approximately 20 fold. TERT protein was detectable

by immunoblotting when overexpressed, contrasted to the lack of detectable endogenous TERT

protein. In addition, we determined telomerase activity levels (Figure 2D and Figure 2—figure

supplement 1B,C) and telomere length changes in hESCs 36 days after targeting (Figure 2E). TR

overexpression strongly increased telomerase activity and led to rapid telomere elongation in hESCs,

while overexpression of TERT alone did neither. However, when differentiated into fibroblasts or

neural precursor cells (NPCs), we observed the inverse behavior. In this setting, telomerase

activity levels were significantly increased when TERT was overexpressed while increased levels of

TR did not affect telomerase activity (Figure 2D). This finding showed that in hESCs TERT levels

were not limiting, and that increased TERT expression did not result in a significant increase of

telomerase activity or telomere length. Hence, hESCs are unlikely to reveal the impact of the TERT

Figure 1. Continued

overall increase in telomere signal intensity. 2 μg of genomic DNA after digestion with MboI and AluI were loaded in each lane. Quantification of the

average telomere length signal is indicated at the bottom of the gel. Throughout all figures we refer to non-targeted wild-type WIBR#3 hESCs as WT.

We refer to wild-type cells generated by reintroducing the wild-type promoter into TERTΔ/Δ as wt. (E) Relative expression levels of TERT mRNA by mutant

and wt promoter-containing hESCs over a time course after targeting measured by quantitative RT-PCR. Expression is relative to WT hESCs (black line).

Expression of TERT was normalized to GAPDH. Also shown is TERTΔ/Δ cells (green line) until day 123. This is the last time point in which RNA could be

isolated before TERTΔ/Δ cultures died. (F) TRAP assay of whole cell extracts from WT and promoter mutation-containing hESCs (day 147) using decreasing

amount of protein (200, 40, 8 ng).

DOI: 10.7554/eLife.07918.003

The following figure supplements are available for figure 1:

Figure supplement 1. Genotyping of TERTΔ/Δ hESCs prior to the second targeting that introduced the mutated promoter sequences.

DOI: 10.7554/eLife.07918.004

Figure supplement 2. Independent confirmation of promoter mutation experiments (shown in Figure 1C,D) using an independent TERTΔ/Δ#2 cell line.

DOI: 10.7554/eLife.07918.005

Figure supplement 3. The clonal analysis of TERT promoter mutation containing hESCs confirmed the results of the bulk analysis.

DOI: 10.7554/eLife.07918.006
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promoter mutations. Therefore, observation of the effect of TERT promoter mutations requires the

analysis of differentiated cells in which TERT down-regulation results in it becoming limiting for

telomerase activity.

Figure 2. Telomerase activity is restricted by levels of TERT in differentiated cells while TR is limiting in wild-type hESCs. (A) Targeting schematic of GFP,

3XFLAG-TERT (F-TERT), TR, and F-TERT+TR overexpression from the AAVS1 locus in wild-type hESCs. (B) Northern blot detection of total TR and 7SL in

targeted hESC lines. TR runs as a doublet in UREA PAGE. (C) SDS-PAGE immunoblot of total TERT and tubulin proteins in editing hESC lines from whole

cell extract. (D) TRAP assay of whole cell extracts from NPCs and fibroblast-like cells differentiated from GFP (G), F-TERT (T), TR (R), or F-TERT+TR (T&R)

overexpressing hESCs using 200 ng protein. (E) Telomere restriction fragment assay of GFP, F-TERT, TR, and F-TERT+TR overexpressing hESCs.

DOI: 10.7554/eLife.07918.007

The following figure supplement is available for figure 2:

Figure supplement 1. Quantification of TERT and TR expression levels and telomerase activity in the overexpression hESCs.

DOI: 10.7554/eLife.07918.008
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TERT promoter mutations abrogate TERT silencing and impair telomere
shortening
We differentiated edited hESCs into embryonic bodies (EBs) and eventually into fibroblasts and

determined TERT mRNA levels over a 15 day differentiation period (Figure 3A). All cell lines

differentiated with equal efficiencies, as evidenced by up-regulation of the differentiation marker

COL1A1 and repression of OCT4 transcription (Figure 3B,C). Although TERT expression was

successfully down-regulated in cells with wild-type TERT promoter, all three promoter mutation lines

retained significant levels of TERT expression (Figure 3A). This failure of TERT transcriptional silencing

became apparent as early as 3 days after the induction of differentiation and accumulated into

a fourfold increase in TERT expression in cells that carried the −57A/C or the −146C/T mutation and

an 8–12-fold increase in cells in which transcription depended on the endogenous TERT promoter

with the −124C/T mutation (Figure 3A,B). This failure to appropriately repress TERT transcription

during EB differentiation became even more apparent when the cells were differentiated into

fibroblast-like cells. As expected, TERT transcription was undetectable in differentiated wild-type

fibroblasts. In contrast, fibroblasts with the cancer-associated promoter mutations showed high levels

of TERT expression (Figure 3D). This difference was not due to impaired differentiation of cells with

the TERT promoter mutations, as these cells had silenced OCT4 and appropriately induced COL1A1

expression (Figure 3D). Importantly, while telomerase activity is not detectable in wild-type

fibroblasts, the aberrant TERT expression resulted in robust telomerase activity in fibroblasts that

contained the promoter mutations (Figure 3E). As before, we confirmed these findings in an

independent TERTΔ/Δ cell line (Figures 3—figure supplement 1A–D) and in individual single cell-

derived targeted clones (Figures 3—figure supplement 1E,F). Furthermore we confirmed that this

failure to repress TERT expression persists in fibroblasts as late as 45 days after differentiation

(Figures 3—figure supplement 2).

The failure to silence telomerase could be specific to the fibroblast differentiation paradigm or

a more general defect during differentiation. To address this issue, we first generated NPCs using the

highly robust dual SMAD inhibition protocol (Chambers et al., 2009), establishing NPCs that can be

maintained in culture for extended periods of time with low levels of telomerase expression. These

NPCs can be further differentiated towards terminally differentiated non-proliferating post mitotic

neurons that are characterized by the expression of the pan-neural marker proteins TUJ1 and NEUN.

Independent of their genotype, all cells were able to differentiate into NPCs and neurons showing equal

down-regulation of OCT4 expression and induction of neuronal marker genes (Figure 4A–C). However,

a striking difference became apparent in TERT levels as both NPCs and neurons that carried the TERT

promoter mutations failed to repress TERT transcription (Figure 4A,C and Figures 4—figure

supplement 1) and showed robust telomerase activity (Figure 4D). Even when neurons were

maintained in the presence of a mitotic inhibitor, the promoter mutations led to elevated TERT mRNA

and telomerase activity levels, suggesting that telomerase activity can accumulate in slowly and non-

dividing cells as late as 1 month after induction of terminal differentiation (Figure 4C,D).

Cancer-associated TERT promoter mutations result in telomerase levels
equal to those found in immortal tumor cell lines
Next, we assessed the impact of the aberrant telomerase activity of TERT promoter-mutation-containing

cells by directly comparing the telomerase levels in fibroblasts and NPCs that carried the promoter

mutations to the telomerase activity found in three established tumor cell lines (Figure 5A,B).

Remarkably, telomerase activity levels in −124C/T NPCs were equivalent to the activity found in

immortal Hela S3 cells and about 50% of the activity found in hESCs, HCT116, and 293T cells.

Importantly, telomerase activity in these cells was greatly increased relative to wild type cells. Moreover,

−124C/T fibroblasts had about 50% of the telomerase activity measured in HeLa S3 cells, 30% of that

found in 293T cells, and 25% of that of HCT116 colon carcinoma cells. These findings suggested that

TERT promoter mutations induce telomerase levels that are sufficient to enable immortalization or at

least significantly delay telomere length-induced senescence. Finally, we analyzed the functional

consequences of increased TERT expression by evaluating telomere length changes in hESCs, NPCs,

and fibroblasts derived from the isogenic set of TERT promoter-edited cell lines (Figure 5C,D, and

Figure 5—figure supplement 1A). All differentiated cell lines with cancer-associated promoter

mutations showed an increase in telomere length compared to the wild-type controls.
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Figure 3. Fibroblasts carrying cancer-associated TERT promoter point mutations failed to silence TERT expression

upon differentiation and have telomerase activity. (A), (B) and (C) Relative expression level of TERT, OCT4 or

COL1A1 in the promoter-mutated hESC-derived fibroblasts compared to WT hESCs over a time course of

differentiation (left panel). Relative expression level of TERT, OCT4 or COL1A1 compared to TERTΔ/Δ and WT

Figure 3. continued on next page

Chiba et al. eLife 2015;4:e07918. DOI: 10.7554/eLife.07918 8 of 20

Research article Developmental biology and stem cells | Genes and chromosomes

http://dx.doi.org/10.7554/eLife.07918


TERT promoter mutations suppress telomere shortening in tumors
To further explore the in vivo relevance of these findings in the context of long-term differentiation as

well as tumor progression, cells with TERT promoter mutations were assayed for teratoma tumor

formation in immune-compromised mice (Figure 5E and Figure 5—figure supplement 1B). For this

assay all cell lines were injected subcutaneously into NOD/SCID mice, allowing pluripotent cells to

differentiate and form a teratoma comprised of cells derived from all three germ layers. All cell lines

injected formed teratomas of approximately equal size, were explanted simultaneously (75 days after

injection), and analyzed for their telomere length. Using this unbiased approach, we again found that

cells with TERT promoter mutations carried aberrantly long telomeres, with the −124C/T mutation

having the strongest defect in silencing telomerase activity and retaining almost identical telomere

length as undifferentiated hESCs (Figure 5C,E and Figure 5—figure supplement 1B). These data

demonstrated the causal relationship between the TERT promoter mutations and telomere

maintenance and showed that the TERT promoter mutations can up-regulate TERT levels sufficiently

to suppress telomere erosion without additional tumor-selected changes.

Discussion

Cancer-associated mutations affect TERT upon differentiation
A key challenge in cancer research is to understand how mutations that sequentially occur in normal

cells eventually produce a tumor. For noncoding mutations identified by GWAS, this is a particular

challenge. Here we were able to dissect how the most frequent noncoding mutations in human cancer

exert their tumorigenic effect. We are able to do so because cancer genomics have identified

candidate mutations, genome editing is facile and robust, and we tested the effects in an otherwise

wild-type background, thus being able to attribute a phenotypic effect specifically to a single genetic

change.

Using genome editing of the endogenous TERT locus we generated a panel of three hESC lines

that differed exclusively at a single position in the TERT promoter associated with cancer. Analyzing

the impact of these mutations in hESCs, we showed that the most frequent mutation, −124C/T,
increased TERT mRNA levels in hESCs by about 2–3 fold. However, neither the −57A/C nor the

−146C/T mutation led to an increase in TERT transcription, despite the fact that these mutations

generate the same putative ETS-binding motif of TTCCGG. This suggests a strong positional effect

between the location of the ETS mutation and the core transcription initiation machinery. The

possibility of such context-dependent positional constraints between the TERT promoter mutations

and the core transcriptional machinery is further supported by the fact that a single point mutation at

position −89 (C/G, −31 bp upstream of the TSS) would result in the same TTCCGG sequence. The fact

that this mutation has as of now not been reported to be associated with cancer despite it being

between the −57 and −124 sites is likely due to the need of the core transcription factors to bind to

this site. It is intriguing to speculate why all promoter mutations are located in close proximity to the

TSS; it seems possible that TERT transcriptional regulation is closely linked with the core

Figure 3. Continued

fibroblasts over a time course of differentiation. The right panel shows the same data as in the left panels,

normalized to TERTΔ/Δ wt fibroblasts. Expression of TERT, OCT4, or COL1A1 was normalized to GAPDH. (D)

Quantitative RT-PCR of TERT, OCT4, COL1A1, and GAPDH in the fibroblasts carrying the promoter mutations

24 days after differentiation. Expression level is relative to WT hESCs. (E) TRAP assay of whole-cell extracts from WT

hESCs, and the fibroblasts carrying the TERT promoter mutations (24 days after differentiation) using 2 μg of protein.

DOI: 10.7554/eLife.07918.009

The following figure supplements are available for figure 3:

Figure supplement 1. Independent confirmation of the failure of TERT repression and telomerase activity upon

fibroblast differentiation shown in Figure 3 using an independent TERTΔ/Δ#2 cell line.

DOI: 10.7554/eLife.07918.010

Figure supplement 2. The failure of TERT repression in fibroblasts was retained throughout long-term culture.

DOI: 10.7554/eLife.07918.011
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Figure 4. Neural precursors and neurons differentiated from the promoter mutation hESCs failed to repress TERT and telomerase activity. (A) Quantitative

RT-PCR of GAPDH, TERT, NESTIN, and OCT4 in the neural precursors carrying the promoter mutations 20–25 days after differentiation from hESCs.

Expression levels are relative to the WT hESCs. (B) Phase-contrast and immunofluorescence images of neurons differentiated from wild-type hESCs or the

TERT promoter mutation-containing hESCs. Shown are cells 28 days after neural induction from NPCs and treated with mitotic inhibitor for 16 days.

The left panel shows IF staining against NeuN (red), Tuj1 (green), and DAPI staining (blue). (C) Quantitative RT-PCR of GAPDH, TERT, TUJ1, and OCT4 in

the neurons carrying the promoter mutations. The top panel shows expression levels of neurons 7 days after neuronal differentiation from NPCs.

The bottom panel shows expression levels of neurons 28 days after induction of neuronal differentiation from NPCs and treated with mitotic inhibitor

Figure 4. continued on next page
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transcriptional machinery rather than regulated through the canonical positioning of transcription

factors along an extended promoter. The experimental approach established in this study of genome

editing the TERT promoter provides an experimental system to uncover cis-regulatory elements that

are necessary for telomerase expression in stem cells and its transcriptional regulation upon

differentiation.

Increased expression of TERT mRNA in −124C/T containing hESCs did not lead to a significant

increase in telomerase activity or pronounced telomere lengthening, establishing that in hESCs TR levels,

but not TERT levels, are limiting for telomerase assembly and telomere lengthening. Therefore, immortal

hESCs are as uninformative with regard to cancer-associated TERT mutations as immortal tumor tissue or

cell lines. However, whereas upon differentiation wild-type hESCs efficiently silence TERT transcription,

resulting in loss of telomerase activity and telomere shortening, the cancer-associated TERT promoter

mutations were sufficient to maintain expression of TERT and resulted in telomerase activity levels

comparable to immortal cancer cell lines. These experiments uncover that the underlying cancer-causing

mechanism is likely a failure to repress telomerase upon differentiation into somatic cells. It is remarkable

that TERT promoter mutations are sufficient to up-regulate TERT expression without additional cancer-

selected changes in the genome such as increased levels of ETS factors.

An explanation for the tumor spectrum of TERT promoter mutations
TERT promoter mutations are not frequently found in leukemias and colorectal cancers (Heidenreich

et al., 2014). Direct evidence (Chiu et al., 1996; Schepers et al., 2011) as well as the pathology of the

telomerase-related disease dyskeratosis congenita in which patients with mutations in the telomere

maintenance pathway present with bone marrow failure as well as lung, intestinal, and skin

pathologies show that TERT is expressed in these highly proliferative tissues and is required for their

long-term self-renewal capacity and ability to maintain tissue homeostasis (Armanios and Price, 2012;

Aubert et al., 2012).

Tumor-initiating events in these cancers predominantly drive proliferation pathways that spur

formation of hyperplasia and niche-independent proliferation that allow incipient cancer cells to

outcompete their neighbors (Barker et al., 2009; Zhou et al., 2009; Merlos-Suarez et al., 2011;

Magee et al., 2012). In this setting, mutations in the TERT promoter or alterations in the telomerase

biogenesis pathway might be at first neutral, not providing a direct proliferative advantage as

telomeres are still long or telomerase is active (Figure 6A). During the genesis of these tumors,

telomere shortening might present a challenge at a later stage when cells have already outcompeted

their neighbors.

In contrast, tumor-initiating cells that are thought to not directly arise from a canonical telomerase-

positive stem cell compartment (e.g., liposarcomas), that undergo high numbers of divisions after

differentiating (e.g., neural-crest derived melanocytes), or that have to reenter a proliferation cycle in

response to chronic injury (e.g., urothelial cells and hepatocytes) could be challenged by the telomere-

dependent proliferative barrier comparatively early in their progression. In these cell types TERT

promoter mutations will provide an immediate and strong proliferative advantage over neighboring

cells. In this case telomerase activation occurs in cells in which telomerase is absent or low and which

have an otherwise mostly intact genome. In these cells activating TERT promoter mutations will be

present in most tumor cells and detected as a frequent and thus early event (Figure 6B).

It is important to note that this model depicts the very extreme cases of a TERT-positive adult stem

cell with long telomeres contrasted to the expected outcome of a TERT promoter mutation in

a telomerase-negative cell with short telomeres. Likely this sharp distinction between canonical

telomerase-positive stem cell compartments and telomerase-negative compartments is rather

Figure 4. Continued

for 16 days. Expression level is relative to the WT hESCs. (D) TRAP assay of whole cell extracts from NPCs (35 days after differentiation from hESCs) and

neurons (28 days after neuronal differentiation from NPCs and treated with mitotic inhibitor for 16 days) using 1 μg protein.

DOI: 10.7554/eLife.07918.012

The following figure supplement is available for figure 4:

Figure supplement 1. Clonal analysis of TERT promoter mutation NPCs confirmed results from bulk analysis.

DOI: 10.7554/eLife.07918.013
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Figure 5. Fibroblasts and neural precursors carrying cancer-associated TERT promoter point mutations showed

comparable telomerase activity to cancer cell lines, and telomere length was maintained over long-term culture and

tumor development. (A) and (B) TRAP assay of whole-cell extracts from cancer cell lines (HeLaS3, 293T, and HCT116),

WT hESCs, and the NPCs or fibroblasts carrying the TERT promoter mutations (24 days after differentiation for

Figure 5. continued on next page
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continuous in vivo. Telomerase expression, telomere length, and the number of cell divisions will differ

between tissues and with age and therefore the benefit of the TERT promoter mutation will be

complexly graded. Given this, it will be critical to determine exactly which cells of the human body are

telomerase-positive, when and how telomerase is silenced upon differentiation, and how many

divisions cells undergo in human tissue after becoming telomerase-negative.

Telomerase inhibition as a cancer treatment
Telomerase inhibition has been proposed as a target for cancer therapies. We demonstrate that TERT

promoter mutations are sufficient to de-repress TERT, providing a potential target to inhibit TERT

expression and telomerase activity.

In order to identify therapeutic approaches specific to these promoter mutations, a model system

in which TERT is dysregulated solely by these mutations is necessary. Our model system fulfills this

requirement and allows for a direct assessment of any potential inhibition by measuring TERT

expression following differentiation. In contrast, this approach will be challenging in cancer cells, as

TERT mRNA levels, telomerase levels, and telomere length vary dramatically regardless of whether

they carry any of the TERT promoter mutations. Further mechanistic studies in such tumor cells are

also challenged by the high frequency of concurrent TERT copy number variations, promoter

polymorphisms, and cancer-associated dysregulation of factors implicated in TERT regulation such as

MYC. As such, it will be challenging to evaluate the effectiveness of such an inhibitor due to these

potentially compensatory effects arising from these misregulations. As such, it is imperative to test any

potential therapeutic approach directed at these promoter mutations in a model system that only

carries these mutations in an otherwise wild-type background, such as the model system described

here. Specifically targeting the TERT promoter mutations is an attractive approach, as TERT promoter

mutations are exclusive to the tumor cells and are not present in surrounding normal tissue. Therefore,

any intervention that is targeted specifically against their mode of operation is expected to affect

tumor cell survival, but not the telomerase-positive adult stem cells of the patient.

Material and methods

hESC culture
Genome-editing experiments were performed in WIBR#3 hESCs (Lengner et al., 2010), NIH stem cell

registry # 0079. Cell culture was carried out as described previously (Soldner et al., 2009). Briefly, all

hESC lines were maintained on a layer of inactivated mouse embryonic fibroblasts (MEFs) in

hESC medium (DMEM/F12 [Lifetech]) supplemented with 15% fetal bovine serum [Lifetech], 5%

KnockOutTM Serum Replacement [Lifetech], 1 mM glutamine [Lifetech], 1% non-essential amino

acids [Lifetech], 0.1 mM β-mercaptoethanol [Sigma], 1000 U/ml penicillin/streptomycin [Lifetech], and

4 ng/ml FGF2 [Lifetech]. Cultures were passaged every 5–7 days either manually or enzymatically with

collagenase type IV [Lifetech] (1.5 mg/ml) and gravitational sedimentation by washing 3 times in wash

Figure 5. Continued

fibroblasts and 20 days for NPCs) using decreasing amount of protein (200, 40, 8 ng). For comparison, TRAP samples

in (A) and (B) were prepared simultaneously and samples from cancer cell lines are identical in (A) and (B). TRAP

signals relative to HeLa S3 were quantified and are shown at the bottom of the gels. (C) Telomere restriction

fragment assay of the hESCs and NPCs (65 days after differentiation from hESCs). Median telomere length signals

were quantified and shown at the bottom. It is important to note the telomere shortening in NPCs and fibroblasts in

wild type cells exceeds the initial telomere length difference found in the hESCs. (D) Telomere restriction fragment

assay of the fibroblasts (30 days after differentiation from hESCs). Median telomere length signals were quantified

and shown at the bottom. (E) Telomere restriction fragment assay of teratoma tumor tissue generated from wt and

promoter-mutation containing hESCs (75 days after injection). Median telomere length signals were quantified and

shown at the bottom.

DOI: 10.7554/eLife.07918.014

The following figure supplement is available for figure 5:

Figure supplement 1. Fibroblasts and teratoma tissue carrying cancer-associated TERT promoter point mutations

maintained telomere length over long-term culture and tumor development.

DOI: 10.7554/eLife.07918.015
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media (DMEM/F12 [Lifetech] supplemented with 5% fetal bovine serum [Lifetech], and 1000 U/ml

penicillin/streptomycin [Lifetech]).

Differentiation to fibroblast-like cells
For the formation of EBs hESC colonies were grown on petri dishes in fibroblast medium (DMEM/F12

[Lifetech]) supplemented with 15% fetal bovine serum [Lifetech], 1 mM glutamine [Lifetech], 1%

Figure 6. Model explaining the tumor spectrum associated with TERT promoter mutations. Shown are the differential outcomes of a cell acquiring

a cancer-associated TERT promoter mutation or a proliferation-inducing mutation dependent on telomere length of the cell. (A) In a cell with long

telomeres and telomerase activity, a proliferation-promoting mutation will result in a strong proliferative advantage and can act as the tumor-initiating

event. Cells with long telomeres arise from tissues that have a telomerase positive stem cell compartment such as the hematopoietic or intestinal system.

In contrast, mutations in the TERT promoter do not provide a proliferative advantage, they are neutral and do not promote tumor formation. Cell states

are depicted on the left; cells that acquire mutations are shown in red. A schematic depicting telomere length changes as a function of the number of cell

divisions is shown on the right. The dashed line indicates the critical telomere length at which cells are subjected to the Hayflick limit and stop proliferating

or die. The red line indicates the telomere length changes predicted for cells that acquire either a proliferation-promoting mutation (top) or a TERT

promoter mutation (bottom). The blue line indicates the telomere length changes predicted for wild-type cells. Indicated is a case where telomere

shortening is suppressed by the TERT promoter mutations. However, since these cell already have long telomeres and/or naturally express telomerase,

telomeres in neither wild-type cells or cells acquiring a proliferation inducing mutation will shorten to the point that the cells are subjected to the Hayflick

limit. (B) Schematic as shown in (A) but for a telomerase negative cells with short telomeres. A proliferation-promoting mutation will also provide a growth

advantage in telomerase-negative differentiated cells with short telomeres, however, these cells will enter replicative senescence or die. In contrast, a cell

with short telomeres acquiring a TERT promoter mutation can bypass the Hayflick limit (dashed lines), immortalize, and outcompete its neighboring cells.

Cell states are depicted on the left; cells that acquire mutations are shown in red. Schematic depicting telomere length changes as a function of the

number of cell divisions is shown on the right. The orange line indicates the telomere length changes predicted for wild-type cells. The table to the right

shows the frequency of TERT promoter mutations found in different types of tumors (adapted form Heidenreich et al., 2014). The table includes

references that report the specific tumor subtypes and frequencies used to generate this table.

DOI: 10.7554/eLife.07918.016
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non-essential amino acids [Lifetech], and penicillin/streptomycin [Lifetech, Carlsbad, CA]. After 9 days

EBs were transferred to tissue culture dishes to attach. Fibroblast-like cells were passaged with

Trypsin EDTA ([Lifetech], 0.25%), triturated into a single-cell suspension and plated on tissue culture

dishes. Cultures were maintained in fibroblast media and passed every 6 days.

Differentiation to NPCs and neurons
Before differentiation to NPCs, hESCs were cultured under feeder-free conditions on matrigel

[Corning]-coated plates in E8 media (DMEM/F12 [Lifetech]) supplemented with 64 μg/ml L-ascorbic

acid [Sigma], 19.4 μg/ml insulin [Sigma, St. Louis, MO], 14 μg/l sodium selenite [Sigma], 543 ng/l

sodium bicarbonate [Sigma], 1000 U/ml penicillin/streptomycin [Lifetech], 100 ng/ml FGF2 [Lifetech],

and 10.7 μg/ml Transferrin [Sigma]. hESCs were passaged with accutase [Invitrogen] and triturated to

a single-cell solution and plated on matrigel-coated plates at 50,000 cell/cm2. The dual SMAD

inhibition protocol for the differentiation of hESCs to NPCs was adapted from Chambers et al.

(2009). Differentiation was induced when cells reached 90–100% confluency.

NPCs were maintained in N2 media (50% DMEM/F12 [Lifetech], 50% Neurobasal Media [Lifetech]

supplemented with 0.75% BSA (wt/vol) [Sigma], N2 Supplement [Lifetech], 20 ng/ml insulin [Sigma],

1 mM glutamine [Lifetech], 1000 U/ml penicillin/streptomycin [Lifetech], 25 ng/ml FGF2 [Lifetech] and

40 ng/ml EGF [R&D systems]) and passaged every 5 days. For the terminal differentiation to neurons

NPCs were plated at 50,000 cells/cm2 on matrigel-coated plates in N2B27 media (50% DMEM/F12

[Lifetech], 50% Neurobasal Media [Lifetech] supplemented with 0.75% BSA (wt/vol) [Sigma],

N2 Supplement [Lifetech], B27 Supplement [Lifetech], 1 mM glutamine [Lifetech], 1000 U/ml

penicillin/streptomycin [Lifetech]). Neurons were treated with 250 nM mitotic inhibitor (Cytosine-β-D-
arabinofuranoside [Sigma]).

Gene targeting in hESCs
All targeting experiments were preformed as previously described (Hockemeyer et al., 2009, 2011).

CAS9 and all sgRNAs were expressed using the px330 plasmid (Cong et al., 2013). Cancer associated

TERT promoter mutation containing cell lines were generated by two targeting steps. First, 1–2 × 107

hESCs were co-electroporated with 15 μg of two CAS9 plasmids targeting −1418 to −1399 bp

(aaccgcccctttgccctag) and +110 to +129 bp (taccgcgaggtgctgccgc) from the TSS and 7.5 μg of a GFP-

expression plasmid was electroporated along with px330. Cells were sorted for GFP fluorescence

72 hr after electroporation. Single-cell derived hES colonies were isolated and their targeting was

confirmed by Southern blotting and PCR followed by sequencing. 120 clones were analyzed and three

homozygous targeted hESC lines (TERTΔ/Δ) were obtained. For the second targeting, px330 plasmids

were designed with sgRNAs against the newly formed NHEJ-derived junction site in TERTΔ/Δ cells and

electroporated with 35 μg of a repair plasmid that carried either the wild type TERT promoter element

(wt) or the respective TERT promoter mutations (57A/C, 124 C/T, 146C/T). After the second targeting,

cells were continuously passaged. Over a period of 120 days all TERTΔ/Δ lines that did not undergo the

second targeting step died due to critically short telomeres. However, cells that were correctly

targeted in the second targeting step regained TERT expression and outgrew untargeted cells. These

cells were analyzed in bulk or as single cell derived clones, after the parental TERTΔ/Δ control culture,

that did not undergo the second targeting step, had completely died. Targeting of individual clones

was confirmed by Southern blot analysis.

qRT-PCR
RNA was extracted with TRIzol (Lifetech) and treated with DNaseI (NEB). 600 ng RNA were converted

to cDNA with the iScript Reverse Transcriptase (BioRad) and random and poly A priming. TR cDNA

was prepared by gene specific reverse transcription. qRT-PCR was performed with KAPA SYBR fast

[KAPA Biosystems] or SYBR Select Master Mix (ABI) in 96-well or 384-well format with a total reaction

volume of 20 μl or 10 μl respectively. 2 μl cDNA from the iScript reaction mixture was used for the

detection of TERT mRNA. For measuring the expression levels of all other genes, cDNA was diluted

1:10 and 2 μl were used for qPCR.

Due to different expression levels of GAPDH between hESCs and differentiated cells, GAPDH data

are shown in the figures that required comparison of expression in different cell types. Relative

expression levels were calculated based on Δ/Δ Ct and/or ΔCt analysis. qRT-PCR primers used in this

study are summarized in Supplementary file 1.
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Immunofluorescence
For analysis by IF, cells were briefly rinsed with PBS, and fixed with 4% formaldehyde in PBS. Cells

were blocked with PBS 0.3% Triton X-100 with 5% horse serum. Fixed cells were incubated with

antibodies against NEUN (mouse, monoclonal, [Millipore], MAB377; 1:1500) and TUJ1 (B-III-Tubulin,

chicken, polyclonal, [Millipore], AB9354, 1:500), in PBS 0.3% Triton X-100 with 1% BSA over night.

After washing with PBS the cells were stained with secondary antibodies (Alexa Fluor 546 goat α
mouse, Alexa Fluor 488 goat α chicken [Lifetech]; 1:500), for 1 hr in PBS 0.3% Triton X-100 with 1%

BSA. Cells were then washed with PBS and stained with 1 ng/μl DAPI (Sigma) in PBS.

RNA detection, Southern blotting, and assaying telomerase catalytic
activity
RNA for northern blot was purified using TRIzol according to the manufacturer’s protocol (Lifetech).

Northern blot detection of TR was performed as previously described (Fu and Collins, 2003). 7SL

RNA was detected using 32P end-labeled probe (TGAACTCAAGGGATCCTCCAG) under similar

conditions as TR, except hybridization took place at 37˚C. Southern blots analysis was performed as

previously described (Hockemeyer et al., 2009, 2011) using a 3′- probe for TERT (6280 bp −6846 bp

downstream of the TERT first ATG) and probe T1 (amplified from hES genomic DNA with primers Fw:

GTGACTCAGGACCCCATACC and Rev: ACAACAGCGGCTGAACAGTC). PCR-based telomeric

repeat amplification protocol (TRAP) was performed as previously described using TS (AATCCGTCGA

GCAGAGTT) and ACX (GCGCGGCTTACCCTTACCCTTACCCTAACC) for amplification of telomereic

repeats and TSNT (AATCCGTCGAGCAGAGTTAAAAGGCCGAGAAGCGAT) and NT (ATCGCTT

CTCGGCCTTTT) as an internal control (Kim et al., 1994). Real-time quantitative telomeric repeat

amplification (QTRAP) was performed similar to previously published protocols (Wege et al., 2003).

Cell extract was generated from CHAPS lysis and samples were normalized using the BCA Protein

Assay Kit (Pierce). 200 ng of total protein was used per 20 μl QTRAP reaction, which was composed of

iTaq Universal SYBR Green Supermix (Bio-Rad) and 0.1 μg TS and 0.02 μg ACX primers. Samples were

incubated at 30˚C for 30 min before a 2 min 95˚C hot-start and 35 cycles of 95˚C for 15 s and 61˚C for

90 s. Relative telomerase activity was calculated by ΔCt to the reference sample.

Immunoblotting
After heating to 80˚C for 5 min, protein samples were cooled to room temperature and resolved by

SDS-PAGE. Protein was then transferred to nitrocellulose membrane and subsequently incubated with

mouse α-tubulin (1:500, DM1A, [Calbiochem]) and mouse anti-TERT (1:3000 [Geron]) in 4% nonfat milk

(Carnation) in TBS buffer (150 mM NaCl, 50 mM Tris pH 7.5) overnight at 4˚C. The membrane was

washed in TBS and incubated with goat α-mouse Alexa Fluor 680 (1:2,000, [Life Technologies]) in 4%

nonfat milk in TBS for 1 hr at room temperature. After extensive washing with TBS, the membrane was

visualized on a LI-COR Odyssey imager (Fu and Collins, 2003).

Detection of telomere length
For preparation of genomic DNA, hESC lines were washed with PBS, released from the feeder cell

layer by treatment with 1.5 mg/ml collagenase type IV and washed 3× in wash media by gravitational

sedimentation to minimize contaminating MEF cells. Genomic DNA was then prepared as described

previously (Hockemeyer et al., 2005). While this method removes the vast majority of MEFs, the

signal from mouse telomeres is disproportionate to human telomeres due to amplified relative length

and concentration into a smaller area (Kipling and Cooke, 1990). Because MEF telomeres are size-

resolved from human telomeres they do not interfere with analysis of hESC telomere length. Genomic

DNA was digested with MboI and AluI overnight at 37˚C. The resulting DNA was normalized and run

on 0.75% agarose (Seakem ME Agarose, Lonza), dried under vacuum for 2 hr at 50˚C, denatured in

0.5 M NaOH, 1.5 M NaCl for 30 min, shaking at 25˚C, neutralized with 1 M Tris pH 6.0, 2.5 M NaCl

shaking at 25˚C, 2× for 15 min. Then the gel was pre-hybridized in Church’s buffer (1% BSA, 1 mM

EDTA, 0.5M NaP04 pH 7.2, 7% SDS) for 1 hr at 55˚C before adding a 32P-end-labeled (T2AG3)3
telomeric probe. The gel was washed 3× 30 min in 4× SSC at 50˚C and 1× 30 min in 4× SSC + 0.1%

SDS at 25˚C before exposing on a phosphorimager screen.
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Teratoma tumor formation assays
Teratoma formation assays where performed as previously described in (Hockemeyer et al., 2008).
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