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Abstract: Active walls such as cilia and bacteria carpets generate background flows that can influence
the trajectories of microswimmers moving nearby. Recent advances in artificial magnetic cilia carpets
offer the potentiality to use a similar wall-generated background flow to steer bio-hybrid microrobots.
In this paper, we provide some ground theoretical and numerical work assessing the viability of
this novel means of swimmer guidance by setting up a simple model of a spherical swimmer in an
oscillatory flow and analysing it from the control theory viewpoint. We show a property of local
controllability around the reference free trajectories and investigate the bang–bang structure of the
control for time-optimal trajectories, with an estimation of the minimal time for suitable objectives.
By direct simulation, we have demonstrated that the wall actuation can improve the wall-following
transport by nearly 50%, which can be interpreted by synchronous flow structure. Although an
open-loop control with a periodic bang–bang actuation loses some robustness and effectiveness, a
feedback control is found to improve its robustness and effective transport, even with hydrodynamic
wall-swimmer interactions. The results shed light on the potentialities of flow control and open the
way to future experiments on swimmer guidance.

Keywords: microswimming; active wall; cilia carpet; controllability; optimal control

1. Introduction

The motion of biological and artificial bodies in a fluid at microscopic scale, or
microswimmers, has been a subject of growing interest in the last decades, with increasing
understanding of the mechanisms at stake in order to efficiently swim at this scale and
the rise of promising applications in the biomedical field, such as targeted drug delivery
or non-invasive surgery performed by swimming microrobots. To serve these purposes,
the need for propulsion and guidance of microdevices and biological particles is becoming
increasingly prevalent.

Microswimmers seldom move in a perfectly quiescent fluid, and their motion is largely
influenced by surrounding background flows. The general interactions of swimmers with
background flows have been extensively considered, both experimentally and theoretically [1,2].
In particular, microswimmers often move in the presence of active biological walls generating
an oscillatory flow, thanks to cilia beating in synchrony on walls [3,4] or on the body of
microorganisms [5] or the collective motion of a bacterial carpet [6]. Active walls also
play significant roles in reproductive processes such as peristaltic and ciliary pumping in
the oviduct and are considered to promote sperm and ovum transport [7–12] and induce
sperm rheotactic responses [13–15].

Furthermore, inspired by these examples of wall actuation in nature, the last few years have
seen the emergence of artificial cilia carpet operated by magnetic fields [16–19], which open
the way to practical wall-controlled guidance of both biological and artificial swimmers
in the near future. The general idea of using an external flow as a means of guidance of
a microswimmer has, to the best of our knowledge, only briefly been explored [20,21],
in particular using a variable shear flow as a means of control [22]. It, however, constitutes
a promising avenue to deal with situations where the use of more standard propelling
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strategies, such as chemical propulsion or direct magnetic guidance, which require active
engines or magnetic components embedded into the swimmer, is not possible or suitable.

Therefore, in this paper, we will address the possibility of guiding a generic microswimmer
by modulating the amplitude of an oscillatory flow generated by a neighbouring wall,
formulating a simple model and analysing its properties with the help of mathematical
control theory and numerical simulations. In addition to laying a formal mathematical
foundation that fosters understanding of microswimming at a theoretical level, the control-
theory standpoint can provide both guidance for designing microdevices and an optimal
way of controlling them. Former theoretical studies of microswimmer control produced
powerful results of controllability (the ability for a swimmer to reach any target from
an initial position) and optimal control (finding the best possible way of reaching the
target with respect to a given objective function); to cite only a few, we mention the works
about the general deformable body [23–27]; robots made of spheres [28] or rigid segments
connected by elastic joints, whether controlled by their deformation [29–31] or by an
external magnetic field [32–35]; and more recently, an ellipsoidal swimmer controlled by a
shear flow [22]. In line with these studies, the present analysis will thus seek to establish
the viability of wall-generated flow control as a means of guidance, while motivating
and informing future considerations of complex fluid and swimmer control problems and
providing guidelines for future experimental setups.

Hence, in the following, we will first describe our model of a spherical swimmer
moving in an oscillatory background flow, as proposed in [36]. Seeing it as a control system,
we will move on to examining the theoretical local controllability of the swimmer around
its reference trajectories, therefore warranting the soundness of searching for optimal
trajectories with classical optimal control tools. We address several practical objectives
and provide explicit approximate expressions for the structure of the optimal control and
for the minimal time when the swimmer is guided along a direction parallel to the wall.
Finally, in the last section, we move on to practical considerations, numerically exploring
the advantages of feedback control and studying the influence of the interactions between
the wall and the swimmer when assuming it behaves as a squirmer.

2. Model

We consider a spherical swimmer of radius a, facing a direction r with coordinates
in the lab frame (ex, ey, ez) and swimming at a constant speed Ufree = vr, with v ≥ 0.
We assume that the swimmer swims in the reference plane (ex, ez), so we simply have
Ufree = (−v sin θ, 0, v cos θ) and no angular velocity, namely Ωfree = θ̇ey = 0, with θ the
angle between ez and r—see Figure 1.

ex

ez

θ

r

Figure 1. Spherical swimmer in wall-induced oscillatory flow. The swimmer moves in the xz-plane
and has propulsive velocity v in the direction indicated by r, which makes an angle θ to the z axis of
the laboratory frame.
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The swimmer is assumed to be swimming in the presence of a wall on z = 0 that
generates an oscillatory flow field of the form u(t) sin(ωt− kx)ex, typically modelling
a metachronal wave created by a carpet of active cilia, with u(t) being a time-varying
amplitude that we will prescribe in order to influence the swimmer’s motion. Following [36],
the reciprocal theorem [37] allows us to nicely calculate the effect on this flow on the
swimmer’s motion:

Uwall
x = u(t)e−kz(1− kz) sin(kx−ωt), (1)

Uwall
z = −u(t)e−kzkz cos(kx−ωt), (2)

Ωwall
y =

1
2

u(t)e−kzk sin(kx−ωt). (3)

This wall-generated flow is represented in Figure 1, with flow cells centred at height
kz and of width π/k rotating in alternate directions. Thus, the dynamics of the swimmer is
governed by the following system of equations:

ẋ = Ufree
x + Uwall

x
ż = Ufree

z + Uwall
z

θ̇ = Ωwall
y .

(4)

In this system, the swimmer–wall hydrodynamic interactions may be neglected, since
the wall-induced flow is significantly larger in the practical situation, which will be further
discussed in the later section.

Defining the state X = [x, z, θ]T , we will write System (4) under the generic control
system form

Ẋ = f (X, u(t)), (5)

where f encodes the dynamics in (4). The time-varying amplitude u(t), which we will
refer to as the control, allows us to act on the swimmer’s state X, i.e., its position and
orientation. The purpose of this study is to determine the properties of this system from
the control theory point of view, i.e., the capacity of u to drive the swimmer to a required
state, and how to achieve it in practice. We will start by addressing the controllability of
system (4); in other words, the existence of controls that allow for steering it to a target
state. With this theoretical analysis set up, we will then move on to finding the optimal
controls for relevant objectives.

3. Results
3.1. Controllability Analysis

In this section, we examine the controllability properties of the flow-driven swimmer
in a local sense around reference trajectories Xref. The idea is to answer the following
question, which constitutes an important theoretical feature for a controlled system: can
we target any position and orientation within a neighbourhood of the swimmer path Xref
using a control of “small” amplitude that stays close to a reference value uref? Here, we will
focus on the particular and arguably more practical situation uref = 0, therefore seeking to
control the position and orientation of the free swimmer by generating a flow of “small”
amplitude with the neighbouring wall.

Consider an initial state X0 = [x0, z0, θ0]
T for the swimmer, and let Xref = [xref, zref, θref]

T

be the solution of the system starting at X0 with no flow, on the time interval [0, T], which
is simply given by Xref(t) = [x0 − vt sin θ0, z0 + vt cos θ0, θ0]

T : with no external flow,
the swimmer swims along a straight line.

Local controllability around Xref is schematised on Figure 2 and formally defined as
follows [38]: System (4) is said to be locally controllable around the trajectory (Xref) if,
for all ε > 0, there exists neighbourhoods V and W of X0 and Xref(T) such that, for all
Xi in V , and Xf inW , there exists a bounded control u defined on the time interval [0, T],
satisfying |u(t)| 6 ε for all t ∈ [0, T], and such that the solution of System (4) starting at
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Xi satisfies X(T) = Xf. Figure 2 provides a graphical illustration of this concept, with an
example of controlled trajectory (in a dotted line) linking an initial state in V and a target
state inW around the reference trajectory (in red).

Figure 2. Schematic representation of local controllability around a reference trajectory Xref, in which
the swimmer moves along the dashed trajectory between the neighbourhoods V andW whilst the
control u(t) is kept small. Informally, the system is locally controllable around the trajectory Xref if
such a dashed trajectory joining Xi and Xf exists for all states Xi ∈ V and Xf ∈ W .

To study the local controllability of System (4), we consider the linearised control
system of System (4) around Xref, with reference control uref = 0, that reads

Ẋ = A(t)X + B(t)u(t), (6)

with A = ∂ f (X,u)
∂X (Xref, 0) and B = ∂ f (X,u)

∂u (Xref, 0). It is well-known (see for instance [38]
(Theorem 3.6)) that the nonlinear system is locally controllable around Xref if the linearised
system (4) is (globally) controllable. To examine if this is the case, we can apply a simple
algebraic “Kalman-type” condition for time-varying linear control systems [39,40]: let
B1(t) = Ḃ− AB and B2(t) = Ḃ1 − AB1; then, System (6) is controllable in time T if and
only if there exists t ∈ [0, T] such that the matrix

(
B(t)|B1(t)|B2(t)

)
is invertible.

The determinant ∆ of
(

B(t)|B1(t)|B2(t)
)

can be obtained through straightforward
calculations:

∆(t) = 1
2 e3k(z0+tv sin θ0)k3vωc sin θ0
×
[
ωc(z0 + tv sin θ0) cos(kx0 −ωct) + v sin θ0 sin(kx0 −ωct)

]
,

(7)

with ωc = ω− kv cos θ0. We can see that the determinant vanishes if any of the parameters
among k, v, ωc, or sin θ0 is equal to 0. In those cases, the linearised system is not controllable.
Upon further investigation, we can see that two of these cases are actually trivially not
controllable, even globally: if k = 0, the swimmer’s orientation θ remains always constant
regardless of the control, indicating that a simple sliding motion of a wall is unable to
control the swimmer, and the wave-like spatial inhomogeneity is necessary for the wall
actuation, and if v = 0 (passive particle), the particle can only follow a single flow line.
Thus, the wave-like wall actuation is only able to control an active particle. For the two
other cases ωc = 0 (horizontal swimming speed equal to the velocity of the flow wave
front) and sin θ0 = 0 (vertical initial orientation), the controllability analysis alone does
not allow for concluding with certainty that the nonlinear system (4) is not controllable.
However, it suggests that these cases are unfavourable for driving the swimmer in an
arbitrary direction and call for extra care when trying to steer its trajectory in practice.

If all of the above parameters are nonzero, then the determinant ∆(t) does not vanish
(or, at worst, vanishes on isolated points), and therefore system (4) is locally controllable
around Xref.
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Overall, the controllability analysis shows that, except in a few unfavourable cases
described above, the flow generated by the active wall is able to locally influence the
trajectory of the swimmer, both in positional and rotational dynamics. We have therefore
theoretically validated the usability of this means of control and will carry on towards
constructive determination of optimally controlled trajectories.

3.2. Optimal Control

For practical guidance of a swimmer using the active wall flow, we will study optimal
control problems minimising the time required to reach a set target. Formally, given an
initial state X0 = [x0, z0, θ0]

T and a target X1, this problem can be stated as follows:

min T
s.t. Ẋ = f (X, u) on [0, T],

u ∈ [umin, umax],
X(0) = X0,
X(T) = X1.

(8)

We will focus on three situations (“Problems”) of interest that together allow for fully
steering the trajectory of the swimmer:

1. A displacement parallel to the wall, from x0 to x1 at fixed distance z0: X1 = [x1, z0, ∗]T ;
2. A change of orientation, from θ0 to θ1 at fixed distance z0: X1 = [∗, z0, θ1]

T ;
3. A change of distance to the wall, from z0 to z1: X1 = [∗, z1, ∗]T .

A star (∗) denotes the variables for which the final value is not fixed. Problem 1 is
a natural goal that one would wish to address in this situation, consisting of enhancing,
with the external flow, the transportation of the swimmer along the horizontal direction.
Problems 2 and 3 complete this main objective by adding the capacity of steering the
swimmer close to or away from the wall, addressing the practical issue of trapping a
swimmer near the wall or letting it escape. Note that Problem 3 is less constrained than
Problems 1 and 2, as only one variable is fixed at a final time; for that reason, it will be partly
contained in Problem 2, as we will see later. As we observe in the following, the capacity
to control the swimmer’s orientation via Problem 2 is also useful for guidance along the
wall (Problem 1) for a long distance by occasionally helping the swimmer to face back in
its goal direction.

Using classical optimal control theory, we address the time-optimal problem (8) by
writing the associated Hamiltonian H:

H = p · Ẋ + p0,

= u(t)e−kz
[(

px(1− kz) + pθ
2

)
sin(kx−ωt)− pykz cos(kx−ωt)

]
+v
(

py cos θ − px sin θ
)
+ p0,

(9)

where p0 6 0, and p =
[

px py pθ

]T
is non-trivial and a solution to the adjoint system

ṗ = ∂H
∂X . By virtue of the Pontryagin maximum principle, u must maximise H along the

trajectory, from which we deduce that it switches between values umin and umax, depending
on the sign of the term between brackets in (9), which we will denote by h(p, X). Hence
the optimal control is simply expressed as a so-called bang–bang function:

u(t) =


umin if h(p, X) < 0,
umax if h(p, X) > 0,
0 if h(p, X) = 0.

(10)

Note that if h(p, X) vanishes on an interval, one can quickly deduce that p = 0 on this
interval, which contradicts the non-triviality of p; thus, the third case of (10) is almost void
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here, and the control always switches between umin and umax. This is valid for any optimal
problem including the aforementioned objectives 1, 2, and 3; however, different values and
constraints on X0 and X1 yield different dynamics for the Hamiltonian, requiring ad hoc
analysis for each problem in order to determine the optimal control.

Let us now set umin = −umax and focus on Problem 1: moving the swimmer from x0
to x1 > x0 in minimal time, while keeping it at a distance z0. To further the analysis, we
assume that the wave velocity ω/k is sufficiently larger than the swimmer speed v and,
from Equation (1), the characteristic parallel flow speed at distance z0, defined by

V0 = umaxe−kz0(1− kz0), (11)

and that θ is close to −π/2, so that the swimmer is moving towards the target x1. These
assumptions imply that the dynamics of the adjoint vector p, as well as those of z and θ,
change slowly with respect to the timescale 2π/ω, so the sign changes of the bracketed
term in (9) are approximately given by those of sin(kx−ωt).

In other words, to maximise the Hamiltonian on a short timescale, the flow amplitude
u must switch between umin and umax every time sin(kx−ωt) changes sign, which occurs
when the swimmer crosses the border between two of the flow cells generated by the wall.
The time Tswitch elapsed between two switches can then be estimated as the ratio between
the wall wavelength π

k and the difference between the wall flow velocity and swimmer
effective horizontal velocity, yielding

Tswitch =
π

ω− k(v sin θ + vflow)
. (12)

In (12), the flow velocity term vflow accounts for the average velocity gained by the
swimmer while crossing the flow cell.

In order to estimate vflow, we consider the leading-order approximation of z and θ at
the small timescale Tswitch, hence simply assuming that the swimmer remains at a constant
distance from the wall z0 and orientation θ0. We then consider a time interval of length
Tswitch in which the control is set to the constant value umax, which consequently allows us
to explicitly solve the dynamics for x:

x(t) =
1
k

ωt− 2 arctan

ω0

ω
tan

(
ω0(t− T0)

2

)
− V0k

ω


+ vt sin θ0, (13)

with ω0 =
√

ω2 −V2
0 k2, and V0 is defined in (11). At the lowest order, the displacement

contributed by the flow between two switches is therefore given by ∆x = 2V0
ω , and the

average velocity vflow that the swimmer gains from the wall flow satisfies the equation

vflow =
∆x

Tswitch
=

2V0

π

(
1− k(v sin θ0 + vflow)

ω

)
, (14)

and hence we obtain, at the lowest order,

vflow =
2V0

π

[
1− k

ω

(
v sin θ0 +

2V0

π

)]
, Tswitch =

π

ω−
(

v sin θ0 +
2V0
π

) . (15)

Finally, the minimal time Tmin for the swimmer to reach x1 from x0 can be estimated as

Tmin =
x1 − x0

v + vflow
. (16)
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The expressions obtained above show a linear relationship between the switch time
T−1

switch and the frequency ω. Moreover, for small V0, Tmin is minimal when V0 is maximal,
which is achieved at z0 = 2/k, suggesting that this distance to the wall is optimal for
parallel displacement purposes. There, setting z0 = 2/k, we can give an estimation of the
optimal horizontal velocity boost b given by the flow

b =
vflow

v
=

2e−2

π
· umax

v
, (17)

which amounts to approximately 8.5% if umax = v, and up to a boost of 43% if umax = 5v,
as in Figure 3a.

To validate this analysis, we numerically computed the optimal controls for a range
of parameters, using the CasADi framework [41] and the in-built ordinary differential
equation solvers in MATLAB® (The Mathworks, Inc., Natick, MA, USA) [42] for the
solutions of the control system (4). For this numerical assessment, we set the swimmer
speed v and the wave number k to be of unit magnitude, which is equivalent to
nondimensionalise the system (4) with respect to v and the wall wave velocity ω/k; then,
in Figure 3, the value of ω, t, and V0 respectively represent, in non-dimensional variables,
the ratios ω/kv, tkv, and V0/v. The range of ω is taken to match the regime in which we
carried out our analysis (ω/k sufficiently larger than v, with a ratio of 4 seeming to be
already satisfying when looking at Figure 3). Figure 3 displays the results and shows good
agreement with the theory. Figure 3a,b shows the optimal trajectory and associated control
function u(t) for different values of V0 and ω, showing a characteristic aspect due to the
successive switches in u, and confirming our prediction that the optimal time Tmin depends
very little on the frequency ω. The relationships between the switching time Tswitch and ω
and between the optimal time Tmin and the characteristic speed V0 are shown in Figure 3c,
with remarkable agreement between the numerical values and the curves predicted by
Equations (15) and (16).

kx t kx t

(a) V0 = 0.62 (b) V0 = 0.34 (c)

Figure 3. Visualisation of the time-optimal trajectories for a displacement parallel to the wall with units of k = v = 1. Panels
(a,b) display various trajectories obtained by solving the optimal control problem, with the swimmer going from x0 = 0
to x1 = 2π/k. On each pair of graphs, the left panel shows the path of the swimmer within the flow field, and the right
panel shows the value of the control along time, with periodic switches. The trajectories for three different frequencies ω

(ω = 4, 8, 12) are displayed along with two different values of the characteristic speed V0 (0.62 and 0.34, respectively, on
panels (a,b), nondimensionalised with respect to the swimmer speed v). The top graph of panel (c) shows the relationship
between the control switch time Tswitch and the frequency ω. The blue and red dots correspond to numerically observed
values, while the lines plot the expression obtained in Equation (15). The bottom plot shows the relationship between V0

and the optimal time Tmin. The dots show the numerical values obtained with various values of V0 (varying z0 and umax),
and the line is the prediction given by Equation (16), showing remarkable agreement.
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We now move on to our second control problem: changing the orientation of the
swimmer from θ0 to θ1 with identical initial and final distance to the wall z0. A few
numerically computed trajectories realising this objective for various couples (θ0, θ1) are
displayed on Figure 4. While switches in the control occur with roughly the same period
Tswitch as for the parallel displacement problem, in line with the short timescale analysis
above, the observation of these trajectories in that case shows a more complex structure
emerging for this control problem, with three distinctive phases in the swimmer’s trajectory.
First, the control makes the swimmer approach the wall and then rotates it once it is close
enough to the wall, before driving it away from the wall again to reach the target distance
z0. During the first and last phases, the swimmer’s orientation almost remains constant,
seemingly indicating that an effective change of orientation cannot be obtained while the
swimmer is far away from the wall. This can be understood by looking at the rotational
component of the flow, Ωy (see Equation (4)), along the optimal trajectories, plotted on
the right-hand side of Figure 4. Approaching the wall allows Ωy to reach large absolute
values during the second phase and to generate net rotation by oscillating with non-zero
average. This “approach-rotate-escape” strategy is consistently observed regardless of the
initial and target orientation as well as the distance from the wall z0. Hence, controlling the
swimmer’s orientation requires efficiently controlling its distance to the wall, which is the
goal of Problem 3. We can therefore conclude that the solution to Problem 3 is contained in
Problem 2, with the approach and escape phases in Problem 2 corresponding to the optimal
motion of the swimmer towards or away from the wall. This analysis is confirmed by
numerical observations: trajectories solving Problem 3 closely resemble the ones obtained
for the approach and escape phases in the trajectories solving Problem 2.

(a)

(b)

(c)

Figure 4. Time-optimal trajectories for changing the swimmer’s orientation with units of k = v = 1
as in Figure 3. In each row is displayed an optimal trajectory from an initial orientation θ0 to a target
orientation θ1, while remaining at a distance z0 from the wall. The path followed in the xy-plane is
shown on the left panel, while the evolution of the orientation θ with respect to time is shown on
the middle panel, and the local rotational speed of the flow Ωy with respect to time is shown on the
right panel. The values of initial and target orientation (θ0, θ1) for rows (a–c) are respectively given
by (−π/4,−3π/4), (−π, 0), and (−π/2, π/2) and represented by red arrows on the trajectory plots
on the left. For each case, we can distinguish three phases: approach to the wall with little variation
of θ, rotation close to the wall, and going away from the wall again.
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This exploration of controllability and optimal control properties of the wall-driven
swimmer shows that the wall-generated flow can be expected to efficiently steer the
swimmer’s trajectory, both improving the swimmer’s speed when swimming parallel to
the wall and allowing it to change its orientation. However, this analysis assumes idealised
control and neglects the interaction of the swimmer with the wall. In the next section, we
address these issues by tackling the robustness of the control and studying the influence of
added far-field wall interactions.

3.3. Robust Driving Strategies

The optimal control analysis conducted in the previous section showed that a bang–
bang periodic control with period Tswitch allows for increasing the velocity of the swimmer
while driving it parallel to the wall. Thinking of the practical application of this result, one
may be tempted to use this control policy in an open-loop fashion, i.e., without changing the
policy depending on the initial or current state of the swimmer, so that u is given by

u(t) = umaxsgn

(
sin
(

π
t

Tswitch

))
. (18)

This strategy has the obvious advantage of not requiring any measurement of the
swimmer’s position or orientation but will typically be sensitive to measurement errors
and initial conditions for that same reason. In the case of the wall-controlled swimmer,
we saw in the optimal control study that the periodic control needs to be synchronised
with the swimmer position, so that it switches when the swimmer reaches the border
between two flow cells. If the synchronisation fails because of a small error on setting
Tswitch, the swimmer’s motion can become far from optimal. This is illustrated by the
numerical simulation displayed in Figure 5a, where the open-loop strategy is applied to
the swimmer for a short time and quickly shows desynchronisation, preventing it from
gaining extra velocity from the flow.

To recover better synchronisation between the swimmer and the flow, we move on
from this naive open-loop strategy to a feedback (or closed-loop) control policy, where the
flow amplitude u is allowed to depend on the state X. In line with the observation made in
the optimal control study that the control should switch sign along with sin(kx−ωt), we
then define

u(t, X) = −umaxsgn(sin(kx−ωt)), (19)

and apply this policy to drive the swimmer parallel to the wall. The resulting trajectory
is displayed in Figure 5b and resembles the optimal one obtained in the previous section
with good synchronisation between the flow and the swimmer and a horizontal speed
gain close to the optimal one. However, one can also observe in this figure that this simple
feedback strategy defined in (19) tends to rotate the swimmer towards the wall over several
periods and reduce its distance to the wall, with the risk of crashing into the wall after
some time. Such a phenomenon highlights the necessity of combining both strategies of
parallel displacement and change of orientation to compensate for the trajectory deviations
emerging even when using a feedback control.

The analysis carried on so far demonstrates the caution needed to use the optimal
controls in practice and provides solid grounds for the flow guidance of microswimmers,
using a simple model that neglects the influence of the swimmer’s motion on the
surrounding fluid in the presence of the neighbouring wall. As briefly explained in
Section 2, this is qualitatively justified by considering that the scale of these wall–swimmer
interactions is typically significantly smaller than the free-swimming velocity of the
swimmer, which itself is dominated by the background flow in our study; hence, the
wall interactions can be neglected as a first approximation. To further validate our results,
we will conclude this section by discussing the effect on the controlled trajectories when
taking this interaction into account.
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The wall–swimmer fluid interaction depends on the swimming strategy of the swimmer
itself, which we will model from now on as a standard “squirmer” [43,44] of radius a with
one characteristic parameter B2.

Following [36], at the leading order (far-field approximation), the additional effect of
the boundary on the squirmer’s motion is given by

Ub
x = −3a2B2

40z2 sin 2θ, Ub
z =

9a2B2

16z2 cos 2θ, Ωb
y = −3a2B2

40z3 sin 2θ, (20)

with a being the radius of the swimmer. By linearity, including these effects (20) in
Equation (4) is simply done by adding them together, yielding the new system

ẋ = Ufree
x + Uwall

x + Ub
x ,

ż = Ufree
z + Uwall

z + Ub
z ,

θ̇ = Ωwall
y + Ωb

y .
(21)

The swimmer is called a puller, a pusher, or a neutral swimmer if the characteristic
parameter B2 respectively satisfies B2 > 0, B2 < 0, or B2 = 0. Note that the wall effects (20)
vanish at the leading order in the case of a neutral swimmer, and we can reasonably neglect
the higher order terms in the context of this study.

When B2 6= 0, it is well known [45] by cell-wall hydrodynamic interactions that
pullers face towards neighbouring walls while pushers tend to swim parallel to them.
We subsequently investigated, in Figure 5c–e, the influence of this additional term in the
feedback control trajectories. As expected, in the pusher case (B2 = −20), displayed in
Figure 5c, the repulsive effect bends the trajectory away from the wall, although relatively
weakly; a larger (and possibly unrealistic) absolute value of B2 (B2 = −100) yields a
trajectory looking almost parallel to the wall in Figure 5d. Hence, this added repulsive
effect seemingly provides increased stability for the control. On the contrary, in the case
of a puller (B2 = 20), the trajectory bends faster towards the wall, reducing the average
horizontal speed of the swimmer and seemingly making the task of guiding it along the
wall more challenging.

It is worth highlighting that the values of the parameter B2 yielding a visible effect on
the swimmer’s trajectories in Figure 5 are notably large with respect to the other parameters
of the system, suggesting that the flow controls prescribed above are relatively robust with
respect to the wall effect on the squirmer’s motion. This observation also corroborates,
as predicted above, the choice of neglecting the boundary terms (20) for most of our
theoretical study.

(a) (b) (c) (d) (e)

Figure 5. Effect of feedback control and wall interactions on the controlled trajectories. All panels show the trajectory of the
swimmer starting at (0, 3,−π/2) until T = 5 with various parameter control policies (always with umax = 5). The grey
circle and red arrow respectively represent the swimmer and its orientation at the end of its motion. Panel (a) displays the
trajectory obtained with the open-loop control policy defined in Equation (18), aimed at reproducing the optimal control
determined in the previous section. The trajectory shows a bad synchronisation with the background flow, with little
improvement of the swimmer’s average horizontal speed compared with the free swimming case. A feedback control policy
is used in panel (b), defined as in Equation (19). The feedback helps recover synchronisation, but the swimmer’s orientation
slowly changes, with risk of crashing into the wall. Panels (c–e) show the effect of the wall interaction term B2 under the
same feedback control policy. When B2 < 0 (puller), as on panels (c,d), repulsion from the wall reduces the risk of crashing,
all the more so the larger |B2| is; on the contrary, if B2 > 0 (pusher), the swimmer is attracted to the wall.
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4. Discussion

In this article, we have theoretically and numerically addressed the control and
guidance of a microswimmer using the flow generated by a wall. We have described a
model of a simple spherical swimmer moving within a plane in the presence of a wall,
which itself generates an oscillatory flow with a variable amplitude that we control in order
to influence the positional and rotational dynamics of the swimmer and steer its trajectory.
Using classical tools of control theory, we have examined the local controllability of the
system around reference trajectories, thus partially validating its viability as a practical
means of control. Further, we studied the minimal time problem for several suitable
objectives, including moving along the wall, and obtained predictive results about the
structure of the optimal controls and the estimated speed boost in this situation, which are
remarkably confirmed by numerical simulations.

We then observed that the open-loop control strategy applied numerically has rather
low robustness to initial conditions and measurement errors, due to the high level of
accuracy required in the synchronisation between the swimmer position and the control
switches. To compensate for the disadvantages of open-loop control, we briefly explored
the possibility of using feedback control, with improved results approaching the idealised
optimal solutions.

Finally, we discussed the validity of our model by taking into account the influence of
the wall at far-field in the squirmer case. With our numerical observations confirming that
the influence of the wall on the swimmer’s trajectory remains modest, even for high values
of the squirming parameters, we conclude that they can be safely neglected for practical
purposes, though the repulsive effect of the wall on a puller may slightly help controlling
it when moving parallel to the wall.

Though we have restricted this study to planar motion, our model dynamics are
straightforwardly adaptable to three-dimensional motion in the presence of a wall along
the (x, y)-plane by linearly superposing the two flows u1(t) sin(ω1t − k1x)ex along the
x direction and u2(t) sin(ω2t − k2y)ey along the y direction, as well as the associated
solutions for the swimmer, with a suitable set of 3D coordinates. Then, the motion in a
given direction parallel to the wall should be obtained by tuning the controls u1 and u2 to
generate flow in this direction only, hence reducing to the 2D case. With the goal of this
study being to lay some simple ground guidelines for the novel idea of the guidance of
swimmers by wall-induced flow, we leave further exploration of more complex, 3D-specific
cases to future investigation.

In summary, in this paper, we have assessed the controllability and optimal control
properties of a spherical swimmer controlled by the modulation of an oscillatory flow
generated by a wall and described the key features of the optimal control for motion along
the wall, notably its periodicity. We have shown that the control of a swimmer with such
a setup is fully realisable and provided theoretical and practical guidelines, in particular
regarding feedback control and the influence of wall interactions, aimed at calibrating
future experimental work, with the hope of making efficient use of the emergent artificial
cilia carpets operated by a magnetic field [16–19]. Our results on how oscillatory flows
can used to boost a microswimmer’s speed could also help understand in more depth
the mechanisms at stake in biological contexts featuring microorganisms swimming near
active walls.
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