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A B S T R A C T   

The photovoltaic (PV) power generation sector has been growing rapidly as a result of the rising 
need for solar power and the advancement of PV technology. PV Power generation is affected by 
weather factors such as cloud cover, solar irradiation, temperature, breeze direction and speed, 
and the amount of rain or snow. As a result, a highly precise PV power predictor is essential to 
improve security and reliability in the face of financial penalties and ambiguity. Hence, this paper 
suggests a novel approach to improve the efficiency of PV-battery-powered DC systems by 
combining solar irradiance prediction using the Long Short-Term Memory (LSTM) algorithm with 
a power electronic converter design that incorporates a bidirectional port. The LSTM algorithm 
was employed to predict one week of solar data with a remarkable R2 score of 0.96. A steady-state 
analysis of the proposed Three-Port Converter (TPC) is performed for five different operating 
modes to guarantee optimal performance. The suggested system’s prediction performance was 
tested using several error metrics such as Mean Absolute Error (MAE), Mean Square Error (MSE), 
and Root Mean Squared Error (RMSE), which were computed as 0.0318, 0.0027, and 0.0526, 
respectively. Results from the above error measures show that the suggested approach performs 
more effectively in estimating solar irradiance. The Adaptive Neural-Fuzzy Interface System 
(ANFIS) and Incremental Conductance (IC) algorithms are employed for Maximum Power Point 
Tracking (MPPT) and assessed against various atmospheric conditions. From the MATLAB 
simulation results, the tracking efficiency of the ANFIS-based MPPT technique is 99.97 %, which 
is superior to the IC-based MPPT technique. Furthermore, it proved that the suggested approach 
improves the efficiency of PV-battery-powered DC systems, which is more appropriate for real- 
world applications such as DC microgrids and Electric Vehicles.   

1. Introduction 

The amount of energy and electricity consumed worldwide continues to rise due to population growth and economic development 
[1]. In Refs. [2–4], solar power has emerged as a promising alternative to conventional power sources, with advancements in 
photovoltaic cell technology resulting in improved efficiency, lower costs, and a lighter weight. The accuracy of weather predictions 
has also improved, enabling the translation of this information into actionable intelligence for the solar industry [5]. 

In the field of time series forecasting [6–8], various algorithms such as Auto-Regressive Integrated Moving Average (ARIMA), 
Prophet, Seasonal ARIMA (SARIMA), and LSTM have been employed to forecast irradiance. Among these algorithms, LSTM has shown 
significant promise due to its ability to forecast long-term and short-term data accurately. This forecasting approach boosts PV system 
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efficiency to 98 % [9]. Multiple Linear Regression (MLR) and Pearson’s Correlation Coefficient (PCC) were used in a hybrid machine 
learning system to test the solar power plant in Germany with capacities ranging from 100 kW to 8,500 kW [10]. A hybrid deep 
learning procedure is suggested to forecast the energy produced by the hybrid system [11]. To address the difficulty of highly variable 
renewable energy output, the improved convolutional long-short memory mixture network is suggested for PV energy forecasting 
[12]. 

The MPPT [13–15] is a significant factor in enhancing the effectiveness of the PV system, and PV power management systems rely 
heavily on accurate predictions of solar irradiation. To maximize the output power from PV cells, accurately tracking the system’s 
maximum power point (MPP) is essential. Studies have contrasted the Perturb and Observe (P&O), IC, and ANFIS techniques [16–19]. 
ANFIS has been found to have less converging time and fewer oscillations while varying solar irradiance, making it a more desirable 
option. 

A comprehensive review was conducted to characterize, assess, and compare the models, majority of the software programmes, and 
algorithms used to build PV systems over the last eight decades. This review aids in selecting the appropriate PV system design software 
programme for the user’s applications [20]. 

Traditional AC distribution [21–23] in residential settings can result in extra conversion losses, while a DC distribution system can 
offer more straightforward, dependable, and effective operation. Moreover, residential DC distribution has certain advantages over 
residential AC distribution, particularly with the implementation of dispersed generation and storage. 

DC microgrids offer greater control and flexibility over the distribution of power and can be designed to operate at different voltage 
levels, which can increase compatibility with different types of equipment and loads. DC microgrids can offer reduced electromagnetic 
interference compared to AC microgrids, making them suitable for applications where electromagnetic interference is a concern, such 
as in medical (pacemakers, MRI machines, or monitoring devices) or aerospace systems. 

Non-isolated DC-DC converters have been studied, and it has been found that when compared to non-isolated TPCs, TPCs with 
partial isolation can obtain significantly greater voltage gain [24–27]. These converters allow for the physical and electrical separation 
of the input and output circuits, increasing the system’s overall efficiency. The physical effects of controlling factors on the hydro
dynamic, velocity, and temperature characteristics of induced magnetic fields are discussed [28]. The effects of thermophoresis and 
Brownian motion are emphasised [29]. 

The novelty of our research work resides in combining LSTM algorithm-based solar irradiance prediction with a power electronic 
converter design that incorporates a bidirectional port to improve the efficiency of PV-battery-powered DC systems. The performance 
outcomes demonstrate that the suggested system has substantial improvement in evaluation metrics such as MAE, MSE, RMSE, and 
Coefficient of determination (R2). 

The significant contributions of this study are summarised as follows:  

1. The LSTM model is utilized for training on 5 years of data and uses the model to predict 1 week of solar data.  
2. Designed a three-port DC-DC converter that can accurately predict the DC power for a week, considering the predicted data as 

input.  
3. Studied the numerous modes of operation of the designed TPC and performed steady-state analysis to ensure its reliability. 

Nomenclature 

AC Alternating Current 
ANFIS Adaptive Neural-Fuzzy Interface System 
ARIMA Auto-Regressive Integrated Moving Average 
DC Direct Current 
DISO Double-Input Single-Output 
IC Incremental Conductance 
LSTM Long Short-Term Memory 
MAE Mean Absolute Error 
MLR Multiple Linear Regression 
MPPT Maximum Power Point Tracking 
MSE Mean Squared Error 
PCC Pearson’s Correlation Coefficient 
P&O Perturb and Observe 
PV Photovoltaic 
PWM Pulse Width Modulation 
R2 Coefficient of determination 
RMSE Root Mean Square Error 
SIDO Single-Input Double-Output 
SISO Single-Input Single-Output 
TPC Three-Port Converter  
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4. Adaptive Neural-Fuzzy Interface System (ANFIS) and Incremental Conductance (IC) algorithms are built for Maximum Power Point 
Tracking (MPPT), and they are tested at different atmospheric conditions. 

The rest of the paper is structured as follows: Section II addresses the solar irradiance prediction. Section III describes MPPT 
techniques. Section IV presents the modes of operation and steady-state analysis. Section V discusses the block diagram and simulation 
model of the proposed system. Section VI presents the proposed model design. Section VII provides results and discussion. Finally, this 
paper concludes in Section VIII. 

Fig. 1. Solar Irradiation Trends (a) Predicted and Actual Solar Irradiance Values (b) Solar Irradiance trends.  
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2. Solar irradiance prediction 

The solar data for the city of Chennai from 2016 to 2020 has been extracted from the HOMER software. The extracted data has been 
represented graphically in Fig. 1(a) and (b), which illustrate the solar energy trends over the five-year period. An LSTM model was 
trained to predict one week’s worth of data consisting of 336 data points, with 48 data points collected daily. The model architecture 
includes four input layers, four dropout layers, and one output layer. The predicted and true data are shown in Fig. 12, and the 
predicted data was saved into an Excel file. The Spreadsheet Link module in MATLAB is used to export data from Excel files and provide 
it as input to a PV panel. 

The model’s goodness of fit is determined by the coefficient of determination, or R2 score, which compares its performance with a 
simple baseline model that predicts the mean value. The MAE is utilized to calculate the average absolute disparity between the predicted 

Fig. 2. Flow chart of ANFIS controller.  
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and actual values. The RMSE, a variation of MAE, is found by squaring the average squared deviation from the forecasted value and the 
real value, which places greater emphasis on significant errors. The MSE measures the mean of the squared discrepancies between the 
anticipated and real values. All these metrics should be used in combination to assess the overall effectiveness of the model. 

Fig. 3. (a) Random 1000 samples of data collected (b) ANFIS model structure (c) The trained data (Red colour) is superimposed with the collected 
data (Blue colour). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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3. MPPT techniques 

3.1. ANFIS controller 

The ANFIS Controller’s working procedure is clearly depicted in Fig. 2, which illustrates the steps involved in implementing the 
controller [19]. The ANFIS learning algorithm is a hybrid approach that combines the gradient descent approach of neural networks 
with the least squares method of fuzzy systems. This combination allows the ANFIS controller to learn from data and adapt to changing 
conditions, making it a powerful tool for real-time control and decision-making. Fig. 2 is a helpful visual representation of the ANFIS 
controller, which can aid in the process of designing, implementing, and fine-tuning the controller for a given application. 

In this proposed work, a MATLAB code has been developed to train the ANFIS controller by choosing parameters specific to the 
solar panel, including maximum voltage (VMPS), open circuit voltage (VOCS), maximum current (IMPS), short circuit current (ISCS), 

Fig. 4. Flow chart of incremental conductance.  

Fig. 5. Proposed circuit diagram.  
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coefficients of voltage (α), and coefficients of temperature (β). 
To generate a dataset for training, a for loop is used to randomly generate 1000 samples of temperature (T) and irradiance (G) 

within predefined ranges (Tmin = 15, Tmax = 35, and Gmin = 0.001, Gmax = 1000), as illustrated in Fig. 3(a). The maximum current 
(IMP), maximum voltage (VMP), and maximum power (PMP) are calculated for each sample [17] using the given formulas: 

IMP(i)= IMPS ∗ (G /Gs)(1+(α(T − Ts))) (1)  

VMP(i)=VMPS + (β ∗ (T − Ts)) (2)  

PMP(i)=VMP(i) ∗ IMP(i) (3) 

The input and output data are stored separately in the input and output matrices, respectively, and combined into a single matrix 
data, for training the ANFIS controller. For each input, five membership functions with triangular membership types are assigned, and 
the output of the membership function is set constant. The ANFIS model structure is depicted in Fig. 3(b). Fig. 3(c) illustrates the 
superimposition of the trained data with the collected data. 

Fig. 6. First Mode (a) State-1 (b) State-2 (c) Current flow graph 
(a) State-1 (t0 < t < t1): In Fig. 6(a), Cd gets charged and charges the Lb, Sc is OFF, and the diode D acts in forward bias, and current flows through it, 
charging the Cc. Now the current charges the Cb, and the current goes through Sb as Sb is ON and Sa is OFF. From Sb, the current flows to La, and La 
gets charged, and at t = t1, Sa is ON, Sb is OFF, and Sc is ON, which makes the completion of state 1. 
(b) State-2 (t1 < t < t2): In this state, as shown in Fig. 6(b), Cd gets discharged and makes the Lb get discharged; now the diode goes OFF and Sc is 
ON, and the current flows through it, making the Cc discharged. Cb gets discharged, and the current flows through Sa and charges La, completing the 
steady-state analysis of mode 1 at state 2. The steady-state analysis of mode 1 is shown in Fig. 6(c). 
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3.2. Incremental Conductance controller 

An Incremental conductance controller is an algorithm used in the MPPT technique for photovoltaic systems to monitor the peak 
power point. It measures the PV panel’s output power and compares it to the previous measurement to adjust the system’s operating 
point for maximum power output. The flow chart for IC is depicted in Fig. 4. It is effective in variable conditions where the irradiance 
and temperature fluctuate [13]. It relies on the fact that the power curve from a PV array of solar panels has a zero slope (dP/dV = 0) at 
the MPP. It uses the concepts of conductance (I/V) and conductance increment (dI/dV) equality to search for the MPP and adjust the 
operating point of the system accordingly for maximum power output [14]. 

4. Modes of operation and steady state analysis 

4.1. Circuit diagram 

The solar system with a battery depicted in Fig. 5 can operate in five distinct modes based on the power derived from PV modules, 
which rely on irradiation and temperature. 

Fig. 7. Second Mode (a) State-1 (b) State-2 (c) Current flow graph 
(a) State-1 (t0 < t < t1): In this state, as shown in Fig. 7(a), Cd gets discharged and makes the Lb get discharged, now the diode goes OFF and Sc is ON 
and the current flows through it and makes the Cc discharged. From the battery, La gets charged, Sa is ON, and Sb is OFF, so the current flows through 
Sa, and Cb gets discharged, and it completes the steady-state analysis of state 1, making Sa OFF, Sb ON, and Sc OFF at t = t1. 
(b) State-2 (t1 < t < t2): In Fig. 7(b), Cd gets charged and charges the Lb, Sc is OFF and the diode D acts in forward bias, and current flows through it 
charges the Cc. From the battery, La gets discharged, which makes the completion of state Sb ON, letting the current get through it and charging the 
Cb, which makes the completion of State 2. The steady-state analysis of mode 2 is shown in Fig. 7(c). 
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4.2. Modes of operation  

(1) First Mode (PV to Battery & Load) 

In the first mode, the battery is charged while the PV panels produce excess power over the load’s consumption. The ANFIS-based 
MPPT controller uses a constant voltage charging approach to ensure that the batteries stay completely charged. In this first mode of 
operation, the TPC performs like a Single-Input Double-Output (SIDO) converter.  

(2) Second Mode (PV & Battery to Load) 

Fig. 8. Third Mode (a) State-1 (b) State-2 (c) Current flow graph. 
(a) State-1 (t0 < t < t1): In Fig. 8(a), Cd gets charged and charges the Lb, Sc is OFF and the diode D acts in forward bias, and current flows through it 
charges the Cc. Now the current charges the Cb, and the current goes through Sb as Sb is ON and Sa is OFF. From Sb, the current flows to La, and La 
gets discharged, and at t = t1, Sa is ON, Sb is OFF, and Sc is ON, which completes state 1. 
(b) State-2 (t1 < t < t2): In Fig. 8(b), Cd gets discharged and the Lb gets discharged; now the diode goes OFF and Sc is ON, and the current flows 
through it, making the Cc discharged. Cb gets discharged, and the current flows through Sa and charges La, completing the steady-state analysis of 
mode 1 at state 2. The steady-state analysis of mode 3 is shown in Fig. 8(c). 
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In the second mode, if the amount of energy generated by the PV panels is less than the amount of energy required by the load but 
the battery is charged completely, then the battery provides reserve power in addition to the PV power. The MPPT algorithm is used to 
maximize the PV panel’s power output, and the battery provides complementary power by operating in the boost mode of the buck/ 
boost bidirectional converter. In this mode of operation, the TPC works like a Double-Input Single-Output (DISO) converter.  

(3) Third Mode (PV to Battery) 

In the third mode, if the power supplied by the PV panels exceeds the power required by the demand and the battery is not fully 
charged, the excess power generated by the PV panels is utilized to energize the battery. The buck mode of the buck/boost bidirectional 
converter is used to energize the battery during this mode. In this mode of operation, the TPC operates as a Single-Input Single-Output 
(SISO) converter.  

(4) Fourth Mode (Battery to Load) 

In the fourth mode, if there is no power generated by the PV system during the night or on a rainy day, the battery alone discharges 

Fig. 9. Fourth Mode (a) State-1 (b)State-2 (c)Current flow graph 
(a) State-1 (t0 < t < t1): From the battery, as shown in Fig. 9(a) La gets charged and Sa is ON, Sb is OFF, so current goes through Sa and Cb gets 
discharged, and at t = t1, the state 1 analysis is completed, making the Sb turn ON. 
(b) State-2 (t1 < t < t2): In Fig. 9(b), from the battery La gets discharged and Sb is ON, and now the current passes through it, making the charging of 
Cb and the completion of the steady-state analysis of mode 4 at t = t2. The steady-state analysis of mode 4 is shown in Fig. 9(c). 
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Fig. 10. Block Diagram of Proposed model.  

Fig. 11. Simulation model of the proposed system.  
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to supply power to the load. In this mode, the TPC works as a SISO converter.  

(5) Fifth Mode (Shutdown) 

In the fifth and final mode, the entire system is shut down to protect the battery from damage and to protect the load from low 
voltage if the power supplied by the PV modules is less than the power needed by the demand and the battery is also deeply drained. 

5. Block diagram and simulation model of the proposed system 

In this proposed system, solar irradiation data is collected and used to train an LSTM model to predict solar data for a week, as 
shown in Fig. 10. The predicted solar data is then stored in an Excel file and provided as input to the PV panel through a spreadsheet 
link module. 

The PV module and ANFIS reference model both take irradiance level and operational temperature as inputs. The ANFIS reference 
model outputs a crisp value of the maximum available voltage from the PV unit at a specific temperature and irradiation level, without 
any load. 

The PI controller and Pulse Width Modulation (PWM) generator are connected in a feedback loop to generate a signal that is 
directed to the S3 switch in the PV system. The PI controller compares the reference voltage obtained from the ANFIS reference model 
with the actual output voltage obtained from the PV unit at a specific temperature and irradiation level. The difference between these 
two voltages, known as the error voltage, is then fed into the PI controller, which calculates the required output voltage to minimize the 
error voltage. The output voltage of the PI controller is then directed to the PWM generator. 

The PWM signal, which is generated by the PWM generator and has a duty cycle proportional to the required output voltage, is used 
to control the Sc switch in the PV system, as depicted in Fig. 11. The switch utilizes this signal to regulate the power flow from the PV 
module to the load, effectively controlling the amount of power delivered to the load. 

Additionally, a summing block with input voltages of 220V and the load voltage is connected to the PI controller, which is also 
connected to the PWM generator. The output signal of the PWM generator is then directed to switch Sa, while its complement is 
directed to switch Sb. 

6. Proposed model design 

The PV panel has a power output of 1 kW, with four modules connected in series per string and a single parallel string. This results 
in an input voltage of 126.56 V (4*31.64 V) for the PV panel. The battery system is made up of ten 12V batteries connected in series, 
providing a nominal voltage of 120V. The rated capacity of the battery is 40 Ah, with an initial state-of-charge of 50 %. The battery’s 
response time is 30 s. 

To design the boost converter, the load resistance is calculated using the output voltage of the load, which is 220V. The maximum 

Fig. 12. Graphical representation of predicted and actual values.  

Table 1 
Training data evaluation.  

Training Model R2 MAE MSE RMSE 

LSTM 0.9629 0.0318 0.0027 0.0526  
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Fig. 13. (a) Voltage waveforms of ANFIS and IC-based MPPT Techniques (b) Current waveforms of ANFIS and IC-based MPPT Techniques (c) Power 
waveforms of ANFIS and IC-based MPPT Techniques. 

I.A. K et al.                                                                                                                                                                                                             



Heliyon 9 (2023) e20667

14

output current is determined by using the output power (P) and output voltage (Vout), which are given in equation (4) as follows: 

Ioutmax =P/Vout (4) 

The switching frequency is set to 1 kHz. The ripple inductor current (ΔIL), is calculated using the formula given in equation (5) as 
follows: 

ΔIL = 0.01Ioutmax (Vout /Vin) (5)  

where, Ioutmax is the maximum output current, and Vin is the input voltage. 

7. Results and discussion 

The suggested system is simulated with the help of MATLAB software. The LSTM algorithm is used to forecast the solar data. Fig. 12 
shows the actual and predicted data for a week (25-12-2020 to 31-12-2020) that consists of 336 data points. The effectiveness of a solar 
prediction model is assessed using commonly used error metrics (like R2 score, MAE, MSE, and RMSE) and the results are depicted in 
Table 1. The previous research work [15] reported that the RMSE, MSE, and MAE are 0.057, 0.0033, and 0.0413, respectively, while 
other work [4] reported that the RMSE and R2 values are 3.17 and 0.93, respectively. Table 1 illustrates the considerable enhance
ments in error metrics (RMSE, MSE, MAE, and R2) of the proposed work compared to the aforementioned reported work. Moreover, it 
is clear that the higher R2 score of 0.9629 indicates a higher degree of accuracy in the forecasting model. On the other hand, the lower 
MAE, MSE, and RMSE values indicate that the forecasting model works effectively in predicting the solar irradiance. This forecasting 
process provides useful physical insights into the system’s behavior and its dependency on solar irradiation. Further, it facilitates more 
effective regulation of energy flows, enhancing both charging and discharging efficiency during periods of high and low or no solar 
irradiation, respectively. 

An ANFIS-based MPPT controller is implemented for a PV system, and its performance is evaluated against that of an IC-based 
MPPT controller. To test the different atmospheric conditions, three different irradiation levels were examined: low, medium, and 
high. The low-level ranges from 200 to 400 W/m2, the medium-level ranges from 400 to 800 W/m2, and the high-level ranges from 800 
to 1000 W/m2. This changing pattern of irradiation levels is simulated with the help of the signal builder block in MATLAB/Simulink, 
and it follows a specific pattern that starts at 1000 W/m2 and decreases to 800 W/m2 at 0.2 s to simulate cloudy weather. The levels 
then decrease to 600 W/m2 at 0.4 s, 400 W/m2 at 0.6 s, and 200 W/m2 at 0.8 s, and then back up to 1000 W/m2 at 0.9 s to depict the 
clearing of the cloudy region. The voltage, current, and power waveforms of both MPPT techniques (ANFIS and IC-based MPPT 
techniques) are illustrated in Fig. 13(a) and (b), and Fig. 13(c), respectively. From this, it is clear that the dynamic performance of the 
ANFIS-based MPPT technique is more stable than that of the IC-based MPPT technique. The convergence and settling times of both 
techniques (ANFIS and IC-based MPPT techniques) are shown in Table 2, and it shows that the ANFIS-based MPPT technique yields 
better convergence and settling times than the IC-based MPPT technique. However, it is also observed that the converging times of the 
ANFIS and IC-based MPPT techniques are almost the same for the 0–0.2 s and 0.8–0.9 s conditions. The short settling time of the ANFIS- 
based MPPT technique results in lower energy losses compared to the IC-based MPPT technique. 

The percentage tracking efficiency of the MPPT algorithm can be calculated [17] as follows: 

Percentage Tracking Efficiency=
(
Pmppt

/
Ppv

)
∗ 100 (6) 

Where Pmppt is the power output of the system when the MPPT algorithm is used, and Ppv is the power output of the system without 
the MPPT algorithm (i.e., using a fixed operating point). 

The tracking efficiency of the ANFIS-based MPPT technique is better than that of the IC-based MPPT technique, which is illustrated 

Table 2 
Comparison of converging and settling time of ANFIS and IC-based MPPT techniques.  

Time (Seconds) Converging time (sec) Settling time (sec)  

ANFIS IC ANFIS IC 

0–0.2 (1000 W/m2) 0.0014 0.0014 0.0380 0.0920 
0.2–0.4 (800 W/m2) 0.2017 0.2080 0.2168 0.2401 
0.4–0.6 (600 W/m2) 0.4017 0.4084 0.4159 0.4461 
0.6–0.8 (400 W/m2) 0.6017 0.6082 0.6220 0.6466 
0.8–0.9 (200 W/m2) 0.8003 0.8002 0.8096 0.8401 
0.9–1 (1000 W/m2) 0.9037 0.9248 0.9105 0.9817  

Table 3 
Tracking efficiency of ANFIS and IC-based MPPT technique.  

MPPT Technique Tracking Efficiency 

ANFIS 99.97 
IC 96.85  
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in Table 3. As a result, the ANFIS-based MPPT technique outperforms the IC-based MPPT technique. Thus, the ANFIS-based MPPT 
technique is chosen to evaluate the results obtained from the proposed system. 

The predicted data using LSTM for a week is given as input to the solar PV. During the daytime, the solar irradiation is high, so we 
can observe the positive voltage, current, and power of the PV panel as depicted in Fig. 14(a). As a result, the PV panel is producing 
more surplus power than the combined power of the load and the battery; the excess power is used to energize the battery. This results 
in a reduction in the battery current, and once the power delivered to the battery reaches 500 W, the battery starts charging, resulting 
in a negative current. Thus, both the first mode (PV to Battery & Load) and the third mode (PV to Battery) are achieved during this 
phase of operation. When the Battery unit is charging, we can also observe from Fig. 14(b) that the battery SOC increases. Since the 
amount of energy supplied by the PV panels is less than the amount of energy needed by the load, the battery is energized. As a result, 
the battery supplies backup power along with the PV power; here, the second mode (PV & Battery to Load) is achieved, as shown in 

Fig. 14. (a) PV panel output voltage, current, and power (b) Battery output voltage, current and SOC (c) DC load output voltage, current and power.  
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Fig. 14(b). Since the PV unit is not supplying power during the night and only the battery is depleting to power the load, the fourth 
mode (Battery to Load) is achieved, as shown in Fig. 14(b). Fig. 14(c) indicates that the load voltage is maintained at a range of 
219–225V, the current is maintained at a range of 2.27–2.32A, and power is obtained at a range of 497–520W. As a result, the physical 
insights (such as solar irradiance variability, solar power generation dynamics, battery charging and discharging, energy management) 
of PV-battery powered DC systems are gained through the proposed approach which leads to improved system performance and energy 
efficiency. 

8. Conclusion 

Solar energy is one of the cleanest sources of energy, but it faces problems such as low efficiency and power extraction due to 
variable weather conditions. The conventional MPPT methods have their own set of problems that prevent them from maximising 
power generation. ANFIS-based MPPT approaches are an effective solution to the problem of poor efficiency in PV systems and 
overcome the difficulties of conventional MPPT methods. In this work, the PV-battery-powered DC system efficiency is significantly 
enhanced with the help of the LSTM algorithm and a three-port converter, considering the ANFIS-based MPPT approach. The simu
lation findings show that the efficacy of the ANFIS-based MPPT technique is superior than that of the IC-based MPPT technique and the 
LSTM model also exhibited a good R2 score of 0.96 for solar prediction. Thus, the suggested system is more suitable for various real- 
world applications, such as DC microgrids, DC home systems, and solar-powered electric vehicle applications. However, the current 
study is restricted to simulation aspects; further, it can be validated by experimental results and extended by considering different 
datasets to predict monthly solar irradiance data. 
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