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A B S T R A C T

Despite the significant progress made in understanding chronic
kidney disease and uraemic pathophysiology, use of advanced
technology and implementation of new strategies in renal re-
placement therapy, the clinical outcomes of chronic kidney dis-
ease 5 dialysis patients remain suboptimal. Considering residual
suboptimal medical needs of short intermittent dialysis, it is our
medical duty to revisit standards of dialysis practice and pro-
pose new therapeutic options for improving the overall effec-
tiveness of dialysis sessions and reduce the burden of stress in-
duced by the therapy. Several themes arise to address the
modifiable components of the therapy that are aimed at mitigat-
ing some of the cardiovascular risks in patients with end-stage
kidney disease. Among them, five are of utmost importance and
include: (i) enhancement of treatment efficiency and continu-
ous monitoring of dialysis performances; (ii) prevention of
dialysis-induced stress; (iii) precise handling of sodium and
fluid balance; (iv) moving towards heparin-free dialysis; and (v)
customizing electrolyte prescriptions. In summary, haemodialy-
sis treatment in 2030 will be substantially more personalized to
the patient, with a clear focus on cardioprotection, volume
management, arrhythmia surveillance, avoidance of anticoagu-
lation and the development of more dynamic systems to align
the fluid and electrolyte needs of the patient on the day of the
treatment to their particular circumstances.
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I N T R O D U C T I O N

Setting the scene

Despite the significant progress made in understanding
chronic kidney disease (CKD) and uraemic pathophysiology in-
cluding premature ageing [1–3], use of advanced technology [4]
and implementation of new strategies in renal replacement

therapy [5], the clinical outcomes of chronic kidney disease 5
dialysis patients remain suboptimal [6]. Annual crude mortality
ranges between 14 and 16% in the western world [7], being sim-
ilar to colon cancer [8], while hospitalization rates are 3–5 times
higher, accounting for 7–9 days/patient/year compared with the
non-CKD patient [9]. Cardiovascular events are the leading
causes of this mortality, accounting for 50–60% of death causes
[10]. Patient experience remains a challenge, and quality of life
is reduced and disease burden is of major importance when
compared with age-matched general populations [11–13].
These challenges for patients, physicians, care givers and health
authorities require continual analysis to improve the societal
and economic burden of end-stage kidney disease (ESKD)
management. These concerns were recently highlighted with a
strong call for moving away from a ‘one-size-fits-all’ approach
to dialysis and providing more personalized care that incorpo-
rates patient goals and preferences while still incorporating best
practices of quality and safe therapy [14].

Renal replacement therapy represents the overall manage-
ment of ESKD patients with three layers as shown in Figure 1:
the first layer is the blood purification that consists of repetitive
dialysis sessions as the basic element integrated in to a treat-
ment schedule; the second layer is the dialysis patient manage-
ment from a long-term perspective, supported by a medical
strategy and defined targets; the third layer is the disease man-
agement to provide optimal care to the majority of patients. We
believe renal replacement therapy may be optimized to improve
a patient’s outcome with a focus on cardiovascular protection
in the context of personalizing the therapeutic prescription.
Due to space limitation, while recognizing the value of perito-
neal dialysis (PD), in this review we concentrate on future prog-
ress of extracorporeal therapies [e.g. haemodialysis and
haemodiafiltration (HDF)] to reduce cardiac burden. The
advances in and future of PD will be treated in another chapter.
In the same perspective, some interesting features and future
development of haemodialysis (e.g. home haemodialysis, daily
dialysis and green dialysis) will not be treated here.
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Individualized patient profiles yield a specific risk that
can be estimated from various perspectives [15]. Factors impli-
cated in this risk stratification assessment include clinical
parameters (e.g. age, gender, anthropometry, past history and
comorbidities), cardiac biomarkers (e.g. left ventricular hyper-
trophy, vascular stiffness, Troponin and B-type natriuretic pep-
tide) as well as life-style [16]. Renal replacement includes
various methodology options classified either by solute flux
(haemodialysis low-, high-flux and HDF), by treatment time
and frequency or by facility location (incentre, self-care and
home therapy). Each bears specific risks that may affect patient
outcomes [17]. Individual practice patterns and disease man-
agement are strongly associated with outcomes in haemodialy-
sis patients [7].

Treatment modality and future options

Haemodialysis delivering 12 h of treatment per week on a
thrice-weekly basis is currently considered the standard of care
for ESKD patients in Western countries [7]. However, short
treatment schedules are not optimal [18, 19] despite being pop-
ularized in earlier decades as a compromise between treatment
efficacy, patient tolerance, acceptance and economic sustain-
ability [20]. Several experts have highlighted pitfalls and limita-
tions of short treatment schedules and made a causal link with
poor outcomes [21–23]. In line with these clinical facts, it has
been postulated that dialysis-related pathology (e.g. cardiovas-
cular disease, vascular calcification, b2-microglobulin (b2M)
amyloidosis and protein–energy malnutrition) observed in
long-term treated patients might be reflecting a so-called ‘resid-
ual syndrome’ due to the incomplete restoration of the internal
milieu homeostasis [24, 25].

From a medical perspective, it is interesting to note that re-
search activity exploring causes of this morbidity and mortality
has focused mainly on the accumulation and identification of
‘organic uraemic toxins’, while inorganic compounds more eas-
ily accessible to corrective action such as electrolytes (e.g.

sodium, potassium and proton) or inorganic phosphates were
neglected for many years [26–30].

As an aggravating factor or a disease modifier, it has recently
been shown that haemodialysis sessions were associated with
severe haemodynamic stress leading to repetitive ischaemic
insults, resulting in various organ damage [e.g. cardiac stun-
ning, leucoaraiosis (a pathological appearance of the brain
white matter on MRI, which is likely caused by repetitive hypo-
perfusion of the deep brain structures), gut ischaemia], proba-
bly contributing to the poor outcomes of dialysis patients [31].
In the ‘unphysiological context’ of intermittent renal replace-
ment therapy, haemodialysis is a cause of additional stress. The
first stress is a ‘biologic or cytokine storm’ that results from
blood interaction with a dialyser membrane and its extracorpo-
real circuit, a so-called haemoincompatibility, consisting of acti-
vation of protein and cell systems in cascade with the release of
various proinflammatory mediators. The second stress is a ‘bio-
chemical stress’ that reflects rapid biochemical changes occur-
ring as a consequence of solute, water and osmotic fluxes (e.g.
disequilibrium syndrome) with an intensity that is directly re-
lated to plasma–dialysate gradient and operating conditions
(e.g. blood and dialysate flow) during the treatment.

Considering the residual suboptimal medical needs of short
intermittent dialysis, it is our medical duty to revisit standards
of dialysis practice and propose new therapeutic options for im-
proving the overall effectiveness of dialysis sessions and reduce
the burden of stress induced by the therapy.

M O D I F I A B L E C O M P O N E N T S O F R E N A L
R E P L A C E M E N T T H E R A P Y

Five themes arise to address the modifiable components of the
therapy, which are aimed at mitigating some of the cardiovascu-
lar risks in patients with ESKD. They are schematically summa-
rized in Figure 2.

Enhancement of treatment efficiency and continuous
monitoring of dialysis performances

Enhancing global treatment efficiency beyond Kt/V urea
while expanding the scope of dialysis dose concepts to include
middle and large molecular weight compounds is currently the
main target to improve outcomes [1]. In this context, b2M is an
interesting compound that deserves to be routinely monitored
and incorporated into dialysis adequacy targets [32–35]. b2M
has a double meaning, both reflecting dialysis efficacy in terms
of solute mass removal, patient bioactivity and inflammation,
and also being a proxy for residual kidney function [36–38].
b2M is an excellent surrogate for middle molecules (11.8 kDa)
associated with a strong and independent outcome risk in CKD
dialysis patients [39, 40]. Post-dilution HDF offers today the
most advanced and efficient renal replacement therapy option
to target the removal of middle and large molecular weight tox-
ins [41]. Furthermore, recent interventional studies have evi-
denced clinical beneficial effects of HDF when adequate
convective dosing (>23 L/1.73 m2) in post-dilution mode is ad-
ministered, reducing the relative risk of all-cause mortality by
14% and cardiac by 23% [42]. In its last update, the National
Institute for Health and Care Excellence guideline recommends
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FIGURE 1: Renal replacement therapy integrated and patient cen-
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the use of HDF as first-line therapy for in in-centre patients
[43]. Furthermore, the Kidney Health Initiative consortium
resulting from the Food and Drug Administration and
American Society of Nephrology alliance recently launched to
foster renal care innovation has chosen HDF [44] to address the
unmet medical needs of ESKD patients in USA [45]. The HDF
acceptance rate is increasing in Europe and Japan with a current
share of�30% of renal replacement modalities [46]. New dialy-
sis modalities, combining use of medium cut-off membranes
and internal filtration to enhance clearance of middle and large
molecular compounds, are currently being explored to evaluate
their position among the current renal replacement therapy
options [47].

Increasing treatment time and/or frequency can enhance ef-
ficiency and improve haemodynamic tolerance. In addition, all
recent studies (observational and interventional) with primary
target focusing on weekly treatment time have confirmed that
longer treatment time was associated with beneficial clinical
outcomes [48–50].

Monitoring dialysis performances and dose delivery on a
regular basis, session-by-session using an embedded tool [ionic
online clearance measurement (OCM)] embedded in the hae-
modialysis machine provides an unmatched quality control op-
portunity (e.g. vascular dysfunction and dialyser clotting). In a
recent and large cohort study aiming to improve care practices,
Maduell et al. have shown that continuous monitoring of dialy-
sis performances by means of OCM while achieving or exceed-
ing the target recommended dose on a regular basis had a
significant positive impact on the life expectancy and hospitali-
zation hazard of dialysis patients [51]. In the quest for personal-
ized dialysis, scaling urea clearance delivered to body surface
area appears metabolically more appropriate. The current para-
digm to prescribe haemodialysis to achieve a urea clearance

adjusted to total body water volume is misleading. Resting en-
ergy expenditure is proportionally greater for women and
smaller people. Scaling dialysis for body surface area seems
more appropriate since urea generation and protein-derived
uraemic toxins depend upon resting energy expenditure.
Conventional prescription of haemodialysis efficiency based on
current Kt/V urea targets leads to less treatment delivered to
women, partly explaining their poorer outcome [52]. In the
same practical approach, while recognizing the importance of
the HDF convective dose on patient outcome, it is crucial to en-
sure that the optimal convective target dose scaled to body sur-
face area is also effectively and regularly delivered to the patient
[53–55].

In brief, advanced technologies embedded on the dialysis
machine are designed to improve patient care, to optimize
treatment delivery and to reduce care variations, all factors
known to affect patient outcomes.

Reducing or preventing dialysis-induced stresses

These are of crucial importance in the quest for cardiopro-
tection during dialysis. A dialysis session is haemodynamic and
biochemical stress for patients. We will briefly address these
issues and explore several approaches designed to prevent or
minimize their impact.

Functional imaging techniques (e.g. echocardiography,
cardiac MRI) and cardiac biomarkers kinetics (e.g. Troponin I)
have shown that cardiocirculatory stress starts quite early after
extracorporeal launch and worsens over the course of the treat-
ment [56, 57]. Several factors contribute to this cardiac stress
(e.g. modality, time, fluid management and electrolytes); how-
ever, it is recognized that ultrafiltration rate is the most promi-
nent [58, 59]. Briefly, ultrafiltration tends to contract volume,
which is compensated by vascular refilling from fluid stored in
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the extravascular space. Vascular refilling processes rely mainly
on the increase of circulating proteins and oncotic pressure, a
condition that favours fluid moving back into the circulatory
system. In other words, hypovolaemia results from the imbal-
ance of ultrafiltration and refilling rates, with poor outcomes
[60]. From a mechanistic view, preservation of haemodynamic
status during dialysis in response to fluid removal and hypovo-
laemia results from a synergistic increase of cardiac output (e.g.
increase of stroke volume, ejection fraction, strength and heart
rate), and peripheral vascular resistance and venous tone [61].
From a pathophysiologic view, haemodynamic response to
fluid removal in dialysis is more complex and involves others
factors such as thermal balance, dialysate electrolytes fluxes (e.g.
sodium, calcium, magnesium and potassium), patient
condition (e.g. cardiac failure, vascular system and sympathetic
tone activity), dialysis condition (e.g. lying or seating, removal
of vasoactive substances) and neurohormonal stress response
[62]. Furthermore, this response may be mitigated by various
factors (e.g. age, comorbidity and medication), which may
explain individual or temporal variations in haemodynamic
adaptation [63].

Considering the complexity of haemodynamic response to
fluid depletion in dialysis, it is easy to see that any active inter-
vention focusing only on one specific component may not be
successful. The multifactorial character of haemodynamic ad-
aptation may also explain why interventional studies focusing
exclusively on one component (e.g. volume control) using a
sensor assessing relative blood volume changes are incom-
pletely addressing the physiology [64]. Sensors measuring rela-
tive blood volume changes during dialysis sessions are useful
tools to support physicians and caregivers to detect critical vol-
aemic states or to estimate the amount of remaining fluid in the
extravascular space [65]. Expert systems developed to ensure a
feedback control loop of ultrafiltration based on blood volume
changes (e.g. ultrafiltration control) have been shown to im-
prove haemodynamic stability and to reduce incidence in some
studies, but not to improve outcome [66–68].

Several tools are currently available to facilitate haemody-
namic management but none of them has been shown to be in-
dividually able to ensure haemodynamic stability. It is expected
that the use of combined tools, supported by advanced analytics
and artificial intelligence, will address adequately this challenge
by 2030.

Uraemia is characterized by various biologic disorders that
include accumulation of organic waste products, so-called
‘uraemic toxins’, water and electrolytes imbalance (e.g. salt and
water retention, acidosis and hyperkalaemia), biochemical
modification of circulating or tissular compounds (e.g. oxida-
tive and chlorine stress, carbamylation process) and other meta-
bolic disorders (e.g. vitamin deficiencies, hyperparathyroidism
and erythropoietin deficiency). The uraemic syndrome, which
expresses clinical intensity of these disorders, is partially or to-
tally reversed by dialysis when adequately designed renal re-
placement therapy is delivered. This unphysiological and
unprecedented condition created by the dialysis/patient interac-
tion is referred to as the ‘disequilibrium syndrome’, which con-
tributes to dialysis intolerance and intradialytic morbidity (e.g.

fatigue, wash out syndrome and headache) [69]. We postulate
that such intradialytic hazard first may be quantified by solute
dialysate–patient (e.g. solute transfer from dialysate to patient)
or patient–dialysate (e.g. solute transfer from patient to dialy-
sate) ‘gradients’ as surrogate markers of ‘solute fluxes’ intensity,
and second that it may be tackled by changing operating proce-
dures during the dialysis session. In other words, by adjusting
the dialysis prescription either manually or automatically, it is
postulated that prescribers will be able to reduce biological
stress while keeping the same overall treatment efficacy for their
patients.

Handling sodium and water to restore patient sodium
and fluid volume homoeostasis

Restoring salt and water homeostasis by dialysis while not
harming the patient is still an unmet medical need [70]. Salt
and water management in a dialysis patient is usually summa-
rized by the ‘dry weight’ approach [71]. Although this clinical
approach has been associated with undisputed benefits on car-
diovascular outcome, it is now challenged by studies showing
potential organ damage that such an isolated approach may re-
sult in as a long-term outcome [72–74]. ‘Dry weight’ policy is
necessary from a clinical perspective, but it is not sufficient
from a pathophysiologic perspective to ensure a fully cardiopro-
tective action in dialysis patients. Regarding recent new findings
related to sodium toxicity sitting in various pools under differ-
ent forms (e.g. sodium osmotically active and sodium tissue
storage), a more precise and sodium-focused approach is re-
quired for dialysis patients [75]. Salt and fluid management
must be integrated into a holistic approach combining both di-
alysis prescription and global patient management. In the con-
text of dialysis, it has been shown recently that the use of
calibrated conductivity meters placed on dialysis paths sup-
ported by specific algorithms were able to determine the precise
contribution of sodium salt among the bulk of electrolytes. In
addition, the disposition of sensors on the dialysate path offers
a means to ensure a precise mass balance due to a closed-circuit
configuration, while use of an advanced analytic embedded in
the central processor unit provides a way to ensure direct han-
dling of sodium and water an according to targeted prescription
and patient baselines [76, 77]. Advances in the application of di-
alysis machine technology are yielding tools that will be stan-
dard in the next decade for handling directly sodium and water
during a haemodialysis session in a precise and personalized
way. This advanced technology has the potential for improving
cardiovascular outcomes [78].

Reducing blood–extracorporeal circuit interaction

This is of tremendous importance in the quest for improving
haemocompatibility while minimizing thrombosis risk in a so-
called ‘heparin-free dialysis’ approach. Although major prog-
ress has been already achieved with less reactive biomaterial in-
cluding synthetic polymer haemodialysers, less bioreactive
tubing material and improvement in circuitry geometry, further
progress is expected. In this field, four axes of research are cur-
rently in progress: the first is the suppression of blood–air inter-
face in the extracorporeal circuit by combining a very short
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circuit and introduction of a blood cassette that permits sup-
pression of venous bubble trap; the second is the incorporation
within the core polymer of an antithrombotic agent; the third is
the use of citric acidified bicarbonate dialysate as an adjunct to
the use of the antithrombotic polymer; and the fourth is to pre-
vent microbubble formation within the extracorporeal circuit.
By combining these different approaches, the bioreactivity of
the extracorporeal circuit will be significantly reduced, the
thrombotic risk minimized and heparin-free dialysis will be
possible.

Tailoring the electrolyte prescription to the patient’s
current condition

Tailoring the electrolyte prescription and dialysate composi-
tion to the patient’s current condition is a further aim for im-
proving dialysis by 2030. The clinical relevance of customized
prescriptions is even more important when efficient dialysis ses-
sions are delivered (e.g. high-volume HDF, nocturnal or daily
dialysis and home haemodialysis), implicating higher ionic
fluxes and more stringent mass balance but also considering the
higher risk population being treated (e.g. cardiac patients and
elderly). Therefore, further efforts are being developed to sup-
port physicians in fine-tuning the prescription of electrolytes in
dialysis patients. In addition, dialysate is a recognized source of
amino acid losses during dialysis and an additional source of
protein–energy wasting that needs to be addressed. Mitigating
these losses will enhance the ability to personalize the dialysis
prescription for the 2030 patient needing renal replacement
therapy.

T A K E H O M E M E S S A G E

In summary, haemodialysis treatment in 2030 will be substan-
tially more personalized to the patient with a clear focus on car-
dioprotection, volume management, arrhythmia surveillance,
avoidance of anticoagulation and the development of more
dynamic systems to align the fluid and electrolyte needs of the
patient on the day of the treatment to their particular circum-
stances. In addition, the need for more highly refined methods
of creating a more quickly accessible permanent vascular access
and the opportunity to develop assistance in cannulation and
removal of needles will enhance the reliability of the dialysis
procedure. It is anticipated that certain cardiac rhythms will be
monitored and that connected health platforms will provide
both human and artificially intelligent monitoring of numerous
aspects of the care being delivered. The opportunity to begin to
see dialysis treatment incorporate materials that are biologic in
nature will decrease more generalized inflammation and im-
prove the compatibility of the systems to the patient’s individual
needs. The ability to miniaturize components of dialysis treat-
ment will enable more choice by patients on the type and ca-
dence of their therapy and the degree to which that therapy
provides them mobility and freedom to participate in their life
outside of renal replacement. Within systems of care there will
not only be support for the individual treatment, but expecta-
tions that patients will be able to participate in their care and
have a higher quality of life beyond the lifesaving treatment.
Patients in this environment will expect that their care is quite

personalized to their life and the needs that they have to control
symptoms, participate in life-enabling activities within their
family or community, and to have close involvement and con-
tact from a holistic care team that is looking at success in ther-
apy from the viewpoint of living a successful life with kidney
failure, as opposed to simply avoiding death from kidney
failure.
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