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IR-780 Dye as a Sonosensitizer for 
Sonodynamic Therapy of Breast 
Tumor
Yekuo Li1,*, Qunfang Zhou1,*, Zhiting Deng2, Min Pan2, Xin Liu2, Junru Wu3, Fei Yan2 & 
Hairong Zheng2,4

Sonodynamic therapy (SDT) has become a new modality for cancer therapy through activating certain 
chemical sensitizers by ultrasound (US). Discovery and development of novel sonosensitizers are 
attracting extensive attentions. Here, we introduce IR-780 iodide, a lipophilic heptamethine dye with 
a peak optical absorption of 780 nm wavelength, which can function as SDT agents for breast cancer 
treatment. The in vitro cellular uptake, cell viability, and the generation levels of reactive oxygen 
species (ROS) were examined by using 4T1 breast cancer cells incubated with various concentrations 
of IR-780 followed by US irradiation. Our results showed a dose- and time-dependent cellular uptake 
of IR-780 iodide in 4T1 cancer cells. Significant lower viabilities and more necrotic/apoptotic cells were 
found when these cancer cells were treated with IR-780 iodide with US irradiation. Further analyzing 
the generation of ROS demonstrated significant increase of 1O2 level and H2O2, but not ⋅OH in the 
SDT-treated cells. The in vivo anti-tumor efficacy of SDT with IR-780 revealed significant tumor growth 
inhibition of xenografts of 4T1 cancer cells; it was further confirmed by histological analysis and TUNEL 
staining. Our results strongly suggest that SDT combined with IR-780 may provide a promising strategy 
for tumor treatment with minimal side effects.

Sonodynamic therapy (SDT) first discovered by Yumita et al.1, which utilizes low intensity ultrasound (US) to 
activate a group of photosensitive materials called sonosensitizer and to enhance their cytotoxic effects to targeted 
cells, is emerging as a promising cancer treatment therapy2. Different from photodynamic therapy (PDT), SDT 
uses non-thermal effects of ultrasound combined with a sonosensitizer. SDT has at least two decided advantages 
over PDT: (i) US as a mechanical wave can penetrate into deeply seated human soft tissue; (ii) US can be precisely 
focused on a specific tumor site and effectively activate the sonosensitizer. It has also been demonstrated that SDT 
can accurately kill the cancer cells with minimal damages to their neighboring normal cells3–5.

The exact mechanisms involved in activating sonosensitizers by US irradiation are not fully understood. It 
has been widely suggested that several possible mechanisms may be involved: (i) Inertial cavitation generated 
by collapsing microbubbles under excitation of high amplitude US and its concurrently happening sonochem-
ical reactions6,7; (ii) generation of free radicals either by direct thermolysis or reactions with H+/OH− from the 
thermolysis of water during SDT. The resulting free radicals subsequently produce peroxyl and alkoxyl radicals 
through reaction with oxygen, resulting in the chain peroxidation of membrane lipids and tumor cell damage8; 
(iii) the sonosensitizers can absorb US energy and be activated when they were exposed to US. The received 
energy by sonosensitizers would be released when they return to the ground state from the excited state. Oxygen 
molecules, when they acquire the released energy, will change into excited-singlet-state oxygens (a highly reactive 
agent) and initiate a series of oxidization reactions which eventually lead to the irreparable cellular damage9; (iv) 
ultrasound-induced apoptosis, i.e., the programmed death pathway will be also activated when enough reac-
tive oxygen species (ROS) are generated in tumor cells by US irradiation10–13. It has been demonstrated that 
the nano-sized TiO2 powder is an effective sonosensitizer; various kinds of ROS can be generated when it was 
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irradiated by US14. To date, more and more sonosensitizers are found and applied to the cancer treatment15. 
Some photosensitizers including porphyrin derivatives and phthalocyanins attract the most extensive attentions 
as sonosensitizers16,17.

IR-780 iodide, a lipophilic cation heptamethine dye (the molecular structure is shown in Fig. 1) with the 
peak optical absorption at 780 nm wavelength, has emerged as a potential fluorescent probe for in vivo tumor 
imaging due to its high fluorescence intensity, excellent stability and preferential accumulation in the tumor18. In 
addition, IR-780 can be used for photothermal therapy (PTT) because of its strong absorption at near-infrared 
wavelengths19. Recently, the PDT application of IR780 has also been reported20. In this study, we investigated the 
feasibility of IR-780 as a sonosentizer in the SDT. To our best knowledge, it is the first report about the application 
of SDT using IR-780 as a sonosensitizer for treatment of breast cancer.

Materials and Methods
Materials. The heptamethine cyanine dye IR-780 iodide, Hydroxyphenyl fluorescein solution (HPF) and 
DMSO were purchased from Sigma-Aldrich (St. Louis, MO, USA). Cell Counting Kit-8 (CCK-8) was obtained 
from Dojindo Laboratories (Tokyo, Japan). Annexin V-FITC Apoptosis Kit was purchased from Biovision 
(Biovision, USA). MitoSOXTM Red mitochondrial superoxide indicator and 5-(and-6)-chloromethy-2′ ,7′ -dichlo-
rodihydroflurescein diacetate, acetyl ester (CM-H2DCFDA) were purchased from invitrogen (Eugene, Oregon, 
USA). The in situ Cell Death Detection Kit was obtained from Roche (Mannheim, Germany). Murine breast can-
cer 4T1 cell line was purchased from American Type Culture Collection. Female BALB/c mice (6 to 10 week old) 
were purchased from Guangdong Medical Experimental Animal Center (Guangzhou, China). All other reagents 
were of analytical grade.

In vitro cellular uptake of IR-780 iodide. IR-780 iodide was dissolved in DMSO and diluted with PBS in 
final concentration of 100 mM for vitro experiment. For cellular uptake study, 4T1 cells (2 ×  106 cells/dish) were 
seeded in 35 mm diameter dishes and cultivated for 24 h for full adhesion. The media were replaced with the fresh 
media containing 4 μ M, 10 μ M or 16 μ M of IR-780 iodide. The medium containing the same volume PBS were 
used as the control. After 1, 2 or 3 h, the cells were washed with PBS for 3 times and harvested with trypsin diges-
tion. After that, the cells were detected by flow cytometry (BD FACSCanto II, USA).

To further determine the cellular distribution and retention of IR-780 in 4T1 cells, a laser confocal microscopy 
(Leica TCS SP5, Wetzlar, Germany) was used. Briefly, 4T1 cells were seeded onto 8-well chambered cover-glass at 
a density of 2 ×  104/well (0.4 mL). 24 h later, the medium was changed with fresh medium containing 4 μ M, 10 μ M  
or 16 μ M of IR-780 iodide. After 1 h incubation, the cells were washed and fixed with 4% paraformaldehyde 
solution for 20 min, then stained with Hoechst 33258 for 5 min. The cells were examined under a confocal laser 
scanning microscope.

In vitro cytotoxicity of IR-780 iodide with US irradiation. The cell cultivation and IR-780 treatment 
were the same as stated above. After washing cells for 3 times, 2 mL of fresh complete medium were added into 
each dish. All of groups were exposed to US irradiation using a sonicator device purchased from Tianjin Tianshi 
Technology Company (Tianjin, China). The in vitro US experiment instrument was showed in Supplementary 
Fig. 1. Briefly, the transducer was immerged in a sink filled with degassed water. There was a dish holder on 
the water surface to fix the cell dish which was not fully immersed in the tank where the transducer is located. 
The distance between the transducer and the dishes was kept at 3 cm. US irradiation was performed at the spa-
tially and temporally averaged intensity of 1.5 W/cm2 (frequency: 1 MHz; duty cycle: 50%, pulse repetition fre-
quency: 1 Hz) for 20 s or 40 s, respectively. After US treatment, the cell viability was assessed by CCK-8 detection 
kits. The absorbance at 450 nm was determined using a multimode plate reader (Synergy™ 4, BioTek, VT, USA). 
For further assess of apoptosis induced by US and IR-780, the 20-sencond-US-treated cells were stained with 
FITC-conjugated Annexin V and propidium iodide for 15 min and analyzed by flow cytometry (BD Accuri C6, 
USA).

Detection of ROS levels. The intracellular ROS were detected after the cells were treated with US and 
IR-780. As for 1O2 detection, the probe reagents were dissolved with DMSO at the concentration of 5 mM, and 
then diluted with PBS at the final concentration of 5 μ M for experiment use. 4T1 breast cancer cells (1 ×  106/dish) 
were seeded in 35 ×  35 mm dishes and cultivated for 24 h for full adhesion. The medium was replaced by the fresh 
medium containing 10 μ M of IR-780 iodide. As a control, no IR-780 was used. After being incubated for 3 h, the 
cells were washed and added with the prepared probe solution. Then cells were treated with US irradiation at 

Figure 1. The molecular structure of IR-780 iodide. 
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1.5 W/cm2 for 20 s. After treatment, the cells were harvested, and the fluorescence intensity was measured using 
a multimode plate reader at the excitation wavelength of 510 nm and emission wavelength of 580 nm. Relative 
fluorescence units (RFU) of samples were calculated and normalized to the untreated cells. As for the detec-
tions of H2O2 and ⋅ OH, CM-H2DCFDA (final concentration of 7.9 μ M) and HPF (final concentration of 10 μ M)  
were used, respectively. Similar procedures were performed as stated above. The fluorescence intensity of 
CM-H2DCFDA was determined at the excitation wavelength of 490 nm and emission wavelength of 525 nm. The 
fluorescence intensity of HPF was measured at the excitation wavelength of 490 nm and emission wavelength of 
515 nm.

Effect analysis of active oxygen scavengers. The effects of active oxygen scavengers were detected 
according to the previous report21. Briefly, the cell cultivation were the same as stated above. 10 μ M of IR-780 
iodide was added and incubated for 3 h. After washing out the free IR-780 dye, 2 mL of fresh complete medium 
were added into each dish. As the control, no IR-780 was used for these cells. Before ultrasound irradiation, histi-
dine (10 mM), mannitol (100 mM) or SOD (100 ug/mL) were added to the cells and US irradiation was performed 
for 20 s. After that, cell damage induced by insonation in the presence and absence of IR-780 with active oxygen 
scavengers was detected by staining of the cells with Trypan Blue dye as described previously1.

In vivo imaging analysis. All animal studies were approved by the Institute’s Animal Care and Use 
Committee of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. The methods were 
carried out in accordance with the approved guidelines. 6- to 8-week-old female BALB/c mice (five per cage) were 
housed on a 12:12 light: dark cycle with free access to food and water. 4T1 breast carcinoma cells (1 ×  106/each)  
were injected into the right flank of mice. When mice had developed palpable tumors 6 days after tumor cell 
injection (about 5 mm in diameter), 0.1 mL 800 μ g/mL of IR-780 was injected into the tumor. Images and fluo-
rescence semi-quantitative analysis of IR-780 were taken at 0.1 h, 0.5 h, 3 h, 6 h after injection using the ex/in vivo  
imaging system (CRi maestro, USA) with a 704 nm excitation wavelength and a 740 nm filter to collect the fluo-
rescence signals of IR-780. 48 h later, the mice were sacrificed and tissue organs were collected for imaging and 
biodistribution analysis.

Anti-tumor efficacy of SDT with IR-780. In the in vivo experiments, we set up the experiment instru-
ment as shown in Supplementary Fig. 2. Briefly, the transducer was immersed in a degassed water-filled sink. On 
the surface of water, there is a mouse supporting plate with a hole (15 mm diameter) at the center of the plate. 
The mouse was placed on the plate and the tumor was positioned into the hole. Tumor-bearing mice were ran-
domly divided into 4 groups (5 animals each group). Mice were intratumorally injected with 100 μ L PBS, 100 μ L  
PBS +  US, 80 μ g of IR-780 (in 100 μ L solution), or 80 μ g of IR-780 +  US. US irradiation was performed at 2 W/cm2 
for 4 min. The day when mice were received with US treatment was designated as day 0. The tumor volumes and 
body weights of the mice were recorded. The tumor volumes were calculated by the following formula: Tumor 
volume (mm3) =  axial length (mm) ×  (lateral axial length)2 (mm2)/2.

Histological analysis. 12 tumor bearing mice (3 mice each group) were sacrificed by standard decapitation 
48 h later after US treatments. The tumors were harvested, fixed with formalin and embedded in paraffin. The 
tumor sections (8 μ m) were cut with a paraffin slicing machine (Leica, RM223, Germany) and stained with hema-
toxylin and eosin (H&E). For assessment of apoptosis, terminal deoxynucleotidyl transferase-mediated dUTP 
nick end labeling (TUNEL) was carried out with an in situ Cell Death Detection Kit according to the manufactur-
er’s protocol. Cell apoptosis index was determined by calculating the percentage of positively stained cells for all 
cells from six randomly chosen fields/sections at ×  400 magnification.

Statistical analysis. The results were expressed as the mean ±  standard deviation (S.D). Comparisons 
between cell fluorescence intensities in the uptake experiments were compared using two-way repeated ANOVA 
test. Data analyses including cell viability, in vitro apoptosis/necrosis ratios, levels of ROS, in vivo fluorescence 
intensities and apoptotic index in tumor sections were performed with one-way ANOVA test. Tumor volumes 
and mouse body weights were compared using a Kruskal-Wallis test followed by the Manne-Whitney test. The 
differences were considered to be significant for *P <  0.05, and to be very significant for **P <  0.01.

Results
Cellular uptake of IR-780 iodide. The uptake of 4T1 cancer cells were investigated with flow cytometry 
and confocal laser scanning microscope. Results were showed in Fig. 2. Figure 2A demonstrated there were obvi-
ous dose- and time-dependence for cellular uptake of IR-780 iodide. At all three examined time points, the fluo-
rescence intensities of the cells incubated with IR-780 iodide increased with an increase of IR-780 concentrations. 
After 1 h, the fluorescence intensity of the cells incubated with 10 μ M or 16 μ M of IR-780 iodide were 2.01-fold 
and 2.27-fold higher than that of the cells with 4 μ M of IR-780 iodide, respectively. Similar trends can be found in 
these cells incubated for 2 or 3 h. Also, stronger fluorescence intensities might be found in these cells with longer 
incubation time at the same dye dose, indicating the time-dependence of cellular uptake. Figure 2B showed the 
significant right shift of the fluorescence curves with the increasing dye concentrations after 1 h cell incubation. 
The results were further confirmed by a laser confocal microscopy, indicating the gradual increasing cellular 
uptake with the increase of IR-780 doses (Fig. 2C).

In vitro sonotoxic effect with IR-780 iodide on 4T1 cells. Figure 3A showed the viability of the 
tumor cells received with US irradiation at different time for three different IR-780 iodide doses. Under the con-
dition without US, treatment of tumor cells had minor inhibition effect on cell viability with 86.45 ±  1.12%, 
77.19 ±  0.56%, or 73.35 ±  1.26% at 4, 10 or 16 μ M dye concentrations, respectively. Only US irradiation for 20 s 
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had not obvious effect on cell viability, but longer US irradiation for 40 s could observe some inhibitive effect on 
tumor cell viability. It was notable that significant growth inhibition effects on cell viabilities could be seen when 
IR-780 iodide plus US was used. The tumor cells treated with 4 μ M of IR-780 with US showed significantly lower 
cell viability (74.21 ±  1.96% and 39.99 ±  0.81% of cell viability for 20 s and 40 s US irradiation, respectively) than 
that treated with 4 μ M of IR-780 only (86.45 ±  1.12%) (P <  0.01). The higher concentrations of the IR-780 iodide 
or longer US duration were used, the better inhibitory effect on tumor cell growth would be. The survival cells 
decreased to 47.75 ±  0.42% and 19.25 ±  1.03% for 20 s and 40 s US duration when the cells treated with 16 μ M of 
IR-780.

In order to detect whether IR-780 can induce apoptosis of tumor cells under US exposure, 4T1 breast tumor 
cells were treated with various concentrations of IR-780 and received US irradiation for 40 s. Apoptosis was deter-
mined by flow cytometry of the staining cells with Annexin V-FITC/PI. The results demonstrated that IR-780 plus 
US induced significant tumor cell apoptosis/necrosis compared with the control groups (Fig. 3B–F). There were 
67.83 ±  3.16%, 80 ±  4.97% or 88.87 ±  0.97% apoptosis/necrosis tumor cells when the concentrations of IR-780 
were 4 μ M, 10 μ M or 16 μ M, respectively. Only 7.93 ±  1.08% and 30.5 ±  4.19% apoptosis/necrosis tumor cells were 
found in the untreated cells and the only US treated cells (Fig. 3G). These results indicated that IR-780 could act 
as a potential sonosensitizer for SDT.

Levels of ROS generation. We further investigated whether IR-780 could induce the generation of ROS 
in the tumor cells after US irradiation. Figure 4A demonstrated that the tumor cells treated with IR-780 plus 
US caused significant increased level of 1O2, with 1.55-fold, 2.29-fold and 2.91-fold higher fluorescence intensi-
ties than that of the tumor cells treated with IR-780, only US or PBS control, respectively (P <  0.01). Figure 4B 
demonstrated there had a significant increase of H2O2 in the tumor cells treated with IR-780 plus US. There were 
1.29-fold, 1.33-fold and 1.41-fold higher fluorescence intensities compared with the tumor cells treated with 
IR-780, only US or PBS control, respectively (P <  0.01). No significant increase of ⋅ OH levels was found in the 
tumor cells treated with IR-780 plus US (P >  0.05)(Fig. 4C).

Effect of active oxygen scavengers. Since IR-780 could induce the generation of ROS in the tumor cells 
after US irradiation, we further used active oxygen scavengers to confirm the effects. The results were shown 
in Fig. 5. Obviously, cell damage by US alone was partly inhibited by histidine, but its enhancement by IR-780 
was greatly inhibited (P <  0.01). SOD had no effect to inhibit the cell damage by US alone, while it could also 
decreased the cell damage by US +  IR-780 (P <  0.01), which was similar with the effect of histidine. Mannitol had 
no effect in decreasing the cell damage of US with or without IR-780 (P >  0.05).

Figure 2. The cellular uptake of IR-780 iodide into 4T1 breast cancer cells. (A) The mean fluorescence 
intensities of 4T1 breast cancer cells incubated with PBS, 4 μ M, 10 μ M or 16 μ M of IR-780 for 1, 2, or 3 h were 
detected by flow cytometry. (B) Representative fluorescence intensity curves for IR-780-incubated cells (for 1 h) 
by flow cytometry revealed a right shift when compared with the control cells. (C) Representative fluorescence 
micrograph of 4T1 breast cancer cells after incubated with PBS, 4 μ M, 10 μ M or 16 μ M of IR-780 for 1 h. Red 
stands for IR-780 and blue stands for Hoechst-stained nuclei. (Scale bar =  20 μ m).
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In vivo imaging of IR-780 in tumor-bearing mice. In order to determine the optimal time for in vivo 
SDT using IR-780, we examined the tissue permeability and distribution of IR-780 in the tumor-bearing mice by 
a whole animal NIR imaging system. Figure 6A indicated the fluorescence signals increased gradually as IR-780 
diffusing in the tumor tissue, reaching a maximum tumor coverage area after 1 h. A longer time (> 6 h) would 
result in the permeability of IR-780 into the peripheral normal tissues. The quantitative values of fluorescence 
intensities at different time were presented in Fig. 6B, revealing that the fluorescence intensity in the tumors could 
almost achieve the maximum level after 1 h. The tumor localization of IR-780 was still dominant even if 48 h later 
(Fig. 6C,D).

Figure 3. In vitro sonotoxic effect with IR-780 iodide on 4T1 cells. (A) Cell viability analysis of 4T1 breast 
cancer cells incubated with PBS, 4 μ M, 10 μ M or 16 μ M of IR-780 followed by US for 0, 20, or 40 s after 24 h later, 
the cell viability of 4T1 breast cancer cells were detected by CCK-8 kit. (B–F) Flow cytometry analysis of tumor 
cell apoptosis and necrosis after 4T1 breast cancer cells were incubated with PBS (C), 4 μ M (D), 10 μ M (E) or 
16 μ M (F) of IR-780 followed by US for 20 s 24 h later, the cell viability of 4T1 breast cancer cells were stained 
with Annexin V and PI, followed by detecting with flow cytometry. The untreated cells were used for a control 
(B). (G) The dead cells including apoptotic and necrotic cells were quantified.
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In vivo therapeutic efficacy of IR-780 plus US. Next, we tested the in vivo efficacy of IR-780 as a son-
osensitizer. Figure 7A showed the representative tumor-bearing mice at day 0, day 11, day 23 and day 30. The 
tumor growth curves were presented in Fig. 7B. Obviously, mice received with IR-780 plus US showed a signif-
icant tumor growth inhibition (P <  0.01), with the mean tumor size of 40.7 ±  36.93 mm3 at day 30. By contrast, 
there were not significant inhibition effects on tumor growth for IR-780 group or only US group (P >  0.05), with 
the mean tumor size of 973.06 ±  367.98 mm3 or 921.62 ±  234.39 mm3 at day 30, respectively. Figure 7C showed all 
of the tumors removed from four groups of tumor-bearing mice at day 30, demonstrating a dramatic decrease of 
tumor sizes when they received SDT with IR-780. No significant changes of body weight of mice were observed 
over the course of the mouse experiment (Fig. 7D). Additionally, we measured the surface temperature of the 
tumors through an electronic thermometer while the tumors were irradiated by US. It was demonstrated that the 
temperature of the tumors of both groups of animals receiving US did not have obvious increase, excluding the 
thermal effects by US irradiation in our experiments (data not shown).

Histological analyses. The tumor sections from mice after 48 h treatment were stained with H&E and 
examined under light microscope. A significantly increased degree of cell necrosis could be observed in the 
tumors receiving IR-780 and US (Fig. 8A, upper row). To elucidate whether SDT with IR-780 induce tumor cell 
apoptosis, TUNEL staining were performed. Results demonstrated that TUNEL-positive cells (green) were sig-
nificantly more in the tumors treated using SDT with IR-780, compared with other groups (Fig. 8A, bottom row). 
Quantitatively, there were 50.9 ±  3.89% apoptotic tumor cells found in the tumors received IR-780 plus US. By 
contrast, there were 1.8 ±  0.77%, 1.85 ±  0.67% and 2.35 ±  0.57% apoptotic cells found in the tumors received PBS, 
only US or only IR-780, respectively (P <  0.01) (Fig. 8B).

Discussion
Currently, it is widely accepted that presence of potential sonosensitizers is one of the most essential factors in 
SDT. Identification and development of novel sonosensitizers are attracting more and more researchers’ atten-
tion. In this study, we found the remarkable toxicity of SDT using IR-780 as a sonosensitizer against 4T1 breast 
cancer in vitro and in vivo. To our best knowledge, there is no literature reporting IR-780 agent as a sonosentizer 
in SDT. Our study provided evidences that IR-780 can function as a sonosentizer in SDT of breast tumor. In fact, 
some photosensitizers including porphyrin derivatives and phthalocyanins are also found to have great potentials 

Figure 4. The ROS analysis of 4T1 breast cancer cells received SDT with IR-780. 4T1 breast cancer cells were 
incubated with PBS or 16 μ M of IR-780, and then these cells received with US for 40 s or without US irradiation. 
24 h later, the levels of 1O2 (A), H2O2 (B) and ⋅ OH (C) in these cells were detected.

Figure 5. Effect of active oxygen scavengers on ultrasound cell damage by SDT with IR-780. 4T1 breast 
cancer cells were incubated with PBS or 10 μ M of IR-780. Histidine (10 mM), SOD (100 μ g/mL) or mannitol 
(100 mM) was added to the cells before US exposure. Cell damage was detected by Trypan Blue staining. The 
stained cell fraction was expressed the percent of blue stained cells in all of the examined cells.
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Figure 6. The in vivo fluorescence imaging of tumor-bearing mice before and after injected with IR-780. 
(A) The representative fluorescence micrograph of tumor-bearing mice before and 0.1, 0.5, 1, 3, or 6 h after 
injected with IR-780. White cycles for tumor sites. (B) The mean fluorescence intensities of tumors were 
quantified, showing a peak value after 1 h injection of IR-780. (C) The representative fluorescence micrograph 
of heart, lung, liver, spleen, kidney and tumor from tumor-bearing mice injected with IR-780. (D) The mean 
fluorescence intensities of these tissues were quantified, showing the highest fluorescence intensity in tumor.

Figure 7. The tumor growth can be inhibited by SDT with IR-780. (A) The representative photographs of 
tumor-bearing mice before and after treated for 11, 23 or 30 days. (B) The tumor growth curves of tumor-
bearing mice treated by SDT with IR-780. (C) The photograph of tumors removed from mice after treatment  
(30 days). (D) The body weight changes of tumor-bearing mice before and after treatment.
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as sonosensitizers and attract extensive attentions22. Given the unique advantages of SDT over PDT, there are 
enough reasons for us to believe that IR-780 can have a promising application in tumor treatment.

In our study, 4T1 breast cancer cells demonstrated excellent uptake efficiency for IR-780 iodide (Fig. 2). It is 
easy to understand when considering the fact that the lipophilic property of this dye may favor it to effectively 
cross the membrane into the tumor cells. Also, we found that the free IR-780 iodide and only US had some 
anti-proliferative activity on 4T1 breast cancer cells (Fig. 3A), demonstrating a proper dye dose and US energy 
should be optimized for future clinical utilities. Also, several approaches, such as encapsulation of this dye with 
biocompatible nanomaterials or utilization of local intratumoral administration, may decrease the potential cyto-
toxicity of IR-780 dye to health cells. It was demonstrated the cytotoxicity from the non-thermal US mainly result 
from the mechanical stress or sonochemical effects of acoustic cavitation23. In our study, SDT with IR-780 mainly 
led to cell necrosis and late apoptosis (Fig. 3B–G). It is known that PDT can induce apoptosis and necrosis, and 
necrotic response may be the major cell death pathway in high-dose photosensitizer with PDT24. This also can 
be expected for SDT with IR-780. In the Tsuru’s report, it was proved that SDT with DEG mainly led to necrosis 
instead of apoptosis25. Indeed, various kinds of factors, such as sonosensitizers, tumor cell lines, and US parame-
ters, may affect the ratios of apoptosis or necrosis of tumor cells in SDT26.

The generation of ROS plays an important role in SDT of tumor treatment. Our data showed that 1O2 and 
H2O2, but not ⋅ OH were found to be an increased generation after 4T1 cancer cells treated with IR-780 and US 
(Fig. 4A,B). This was confirmed by the sonodynamic cell damage experiments, in which the sonodynamic cell 
damage can be inhibited by histidine and SOD, but not by mannitol (Fig. 5). The species of ROS induced by SDT 
were involved in the kinds of sonosensitizers27. Previous studies revealed that singlet oxygen was a major source 
of ROS from porphyrin-derived sensitizers in both PDT and SDT28,29. Our result was consistent with the SDT 
with porphyrins30,31. Thus, a possible mechanism of IR-780 for SDT may be speculated as follows: IR-780 can 
be uptaken by the tumor cells. Upon receiving US irradiation, IR-780 in the tumor cells would be activated and 
changed into the excited state from the ground state. Due to the instability of the excited-state IR-780, they would 
trend to return to the ground state and to release the US energy. Oxygen molecules and H2O can acquire the 
released energy and turn into 1O2 and H2O2. With the increase of the concentrations of 1O2 and H2O2, the tumor 
cells would be progressively damaged through oxidative stress-induced cell death pathways (Fig. 9). In fact, the 
specific mechanisms of SDT are dependent on various factors, including tumor cell models, experimental systems 

Figure 8. Histological analysis of tumors after treated SDT with IR-780. (A) H&E and TUNEL staining 
analysis of tumors from mice received with PBS, PBS +  US, IR-780 and IR-780 +  US. A significant tumor 
necrosis (upper row) and more apoptotic cells (bottom row, green) can be found in the tumor treated by IR-
780 +  US. (B) The apoptotic index was determined by calculating the percent of apoptotic cells versus the total 
cells in the same field. (Scale bar =  40 μ m).
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utilized, the type of sonosensitizers and the US exposure parameters (such as frequency and intensity)32. It is also 
difficult to give a universal mechanism of SDT. Our study, at least partly, demonstrated that SDT with IR-780 can 
kill 4T1 tumor cells through increasing the level of 1O2 and H2O2 in these tumor cells.

In this study, we further investigated the efficacy of SDT with IR-780 and demonstrated the great tumor 
growth inhibition in vivo xenografts of 4T1 cancer cells (Fig. 7). An obvious tumor necrosis and more apoptotic 
tumor cells could be observed in the H&E- or TUNEL-stained microscopic section of tumors received SDT with 
IR-780 (Fig. 8). The increased apoptosis may contribute to the generation of ROS in the process of IR-780 expo-
sure to US. No obvious adverse effects were observed during our tumor treatments. Our data showed for the first 
time that SDT with IR-780 significantly inhibited the tumor growth with increased apoptosis and necrosis. Thus 
provides a promising SDT agent for tumor treatment with minimal side effects.

Conclusions
Our study demonstrated that IR-780 can act as a sonosensitizer with a great potential for SDT of breast cancer. 
Since the previous documents have reported its usefulness for PTT and PDT, our data revealed its possible utili-
zation for SDT and provided a promising strategy for breast tumor treatment via US.

References
1. Yumita, N., Nishigaki, R., Umemura, K. & Umemura, S. Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn. 

J. Cancer Res. 80, 219–222 (1989).
2. Trendowski, M. The promise of sonodynamic therapy. Cancer Metastasis Rev. 33, 143–160 (2014).
3. Yumita, N. et al. Sonodynamically-induced cell damage with fluorinated anthracycline derivative, FAD104. Cancer Lett. 125, 

209–214 (1998).
4. Harada, Y. et al. Ultrasound activation of TiO2 in melanoma tumors. J. Control. Release 149, 190–195 (2011).
5. Sassaroli, E. & Hynynen, K. Cavitation threshold of microbubbles in gel tunnels by focused ultrasound. Ultrasound Med. Biol. 33, 

1651–1660 (2007).
6. Trendowski, M. et al. The real deal: using cytochalasin B in sonodynamic therapy to preferentially damage leukemia cells. Anticancer 

Res. 34, 2195–2202 (2014).
7. Wang, X., Wang, Y., Wang, P., Cheng, X. & Liu, Q. Sonodynamically induced anti-tumor effect with protoporphyrin IX on 

hepatoma-22 solid tumor. Ultrasonics 51, 539–546 (2011).
8. Rosenthal, I., Sostaric, J. Z. & Riesz, P. Sonodynamic therapy-a review of the synergistic effects of drugs and ultrasound. Ultrason. 

Sonochem. 11, 349–363 (2004).
9. Lagneaux, L. et al. Ultrasonic low-energy treatment: a novel approach to induce apoptosis in human leukemic cells. Exp. Hematol. 

30, 1293–1301 (2002).
10. Wang, X. et al. Role of autophagy in sonodynamic therapy-induced cytotoxicity in S180 cells. Ultrasound Med. Biol. 36, 1933–1946 

(2010).
11. Song, D. et al. Study of the mechanism of sonodynamic therapy in a rat glioma model. Onco. Targets Ther. 7, 1801–1810 (2014).
12. Goertz, D. E. et al. Antitumor effects of combining docetaxel (taxotere) with the antivascular action of ultrasound stimulated 

microbubbles. PLoS One 7, 1–11 (2012).
13. Yoshida, T. et al. Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an 

additive enhancement in apoptosis induction in human lymphoma U937 cells. Cancer Chemother. Pharmacol. 61, 559–567 (2008).
14. Wang, J. et al. Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic 

irradiation and application in sonocatalytic degradation of organic dyes. Ultrason. Sonochem. 18, 177–183 (2011).
15. Chen, H. et al. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov. Today 19, 

502–509 (2014).
16. Sadanala, K. C. et al. Sono-photodynamic combination therapy: a review on sensitizers. Anticancer Res., 34, 4657–4664 (2014).
17. Wang, X. et al. Sonodynamic and photodynamic therapy in advanced breast carcinoma: a report of 3 cases. Integr. Cancer Ther. 8, 

283–287 (2009).

Figure 9. The possible mechanisms of tumor treatment of SDT with IR-780. IR-780 can be uptaken by the 
tumor cells. Upon receiving US, IR-780 in the tumor cells would receive the US energy and be activated from a 
ground-state into an excited state. When the excited-stated IR-780 returns to the ground-stated one, the energy 
could be released; 1O2 and H2O can absorb the released energy and change into 1O2 and H2O2. The superfluous 
1O2 and H2O2 would cause the apoptosis and necrosis of tumor cells.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:25968 | DOI: 10.1038/srep25968

18. Zhang, C. et al. Sentinel lymph node mapping by a near-infrared fluorescent heptamethine dye. Biomaterials 31, 1911–1917 (2010).
19. Peng, C. L. et al. Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type 

photosensitizer. ACS Nano. 5, 5594–5607 (2011).
20. Wilk, K. A. et al. Photo-oxidative action in MCF-7 cancer cells induced by hydrophobic cyanines loaded in biodegradable 

microemulsion-templated nanocapsules. Int. J. Oncol. 41, 105–116 (2012).
21. Umemura, S., Yumita, N., Nishigaki, R. & Umemura, K. Mechanism of cell damage by ultrasound in combination with 

hematoporphyrin. Jpn. J. Cancer Res. 81, 962–6 (1990).
22. Xu, H. N. et al. Preparation and sonodynamic activities of water-soluble tetra-α -(3-carboxyphenoxyl) zinc(II) phthalocyanine and 

its bovine serum albumin conjugate. Ultrason. Sonochem. 22, 125–131 (2015).
23. Gao, Z. et al. Sonodynamic therapy inhibits angiogenesis and tumor growth in a xenograft mouse model. Cancer Lett. 335, 93–99 

(2013).
24. Wong, T. W., Tracy, E., Oseroff, A. R. & Baumann, H. Photodynamic therapy mediates immediate loss of cellular responsiveness to 

cytokines and growth factors. Cancer Res. 63, 3812–3818 (2003).
25. Tsuru, H., Shibaguchi, H., Kuroki, M., Yamashita, Y. & Kuroki, M. Tumor growth inhibition by sonodynamic therapy using a novel 

sonosensitizer. Free Radic. Biol. Med. 53, 464–472 (2012).
26. Sun, X. et al. Real-time detection of intracellular reactive oxygen species and mitochondrial membrane potential in THP-1 

macrophages during ultrasonic irradiation for optimal sonodynamic therapy. Ultrason. Sonochem. 22, 7–14 (2015).
27. Miyoshi, N., Igarashi, T. & Riesz, P. Evidence against singlet oxygen formation by sonolysis of aqueous oxygen-saturated solutions 

of hematoporphyrin and rose bengal. The mechanism of sonodynamic therapy. Ultrason. Sonochem. 7, 121–124 (2000).
28. Castano, A. P., Mroz, P. & Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6, 535–545 (2006).
29. Yumita, N., Han, Q. S., Kitazumi, I. & Umemura, S. Sonodynamically-induced apoptosis, necrosis, and active oxygen generation by 

mono-l-aspartyl chlorin e6. Cancer Sci. 99, 166–172 (2008).
30. Yumita, N., Umemura, S. & Nishigaki, R. Ultrasonically induced cell damage enhanced by photofrin II: mechanism of sonodynamic 

activation. In Vivo 14, 425–429 (2000).
31. Yumita, N. et al. Involvement of reactive oxygen species in sonodynamically induced apoptosis using a novel porphyrin derivative. 

Theranostics 2, 880–888 (2012).
32. Tachibana, K., Feril, L. B. & Ikeda-Dantsuji, Y. Sonodynamic therapy. Ultrasonics 48, 253–259 (2008).

Acknowledgements
The work was supported by National Key Basic Research Program of China (973 Program) (Grant Nos 
2015CB755500, 2014CB744502, 2013CB733800), National Natural Science Foundation of China (Grant 
Nos 81371563, 81571701, 11325420, 81301242, 81527901, 81401435, 61327001), Military Medical Scientific 
Research Plan Project (CWS12J076), Guangdong Provincial Science and Technology Projects (2011B080701019, 
2012B031800309, 2014A020212255), Shenzhen Science and Technology Innovation Committee grants: 
(ZDSYS20140509162754023, JCYJ20130401105615480).

Author Contributions
F.Y. and H.Z. conceived and designed the project and prepared the manuscript. Y.L., Q.Z. and T.D. conducted the 
experiments. X.L., J.W. and M.P. analyzed the data. All authors read and approved the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Li, Y. et al. IR-780 Dye as a Sonosensitizer for Sonodynamic Therapy of Breast Tumor. 
Sci. Rep. 6, 25968; doi: 10.1038/srep25968 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	IR-780 Dye as a Sonosensitizer for Sonodynamic Therapy of Breast Tumor
	Materials and Methods
	Materials. 
	In vitro cellular uptake of IR-780 iodide. 
	In vitro cytotoxicity of IR-780 iodide with US irradiation. 
	Detection of ROS levels. 
	Effect analysis of active oxygen scavengers. 
	In vivo imaging analysis. 
	Anti-tumor efficacy of SDT with IR-780. 
	Histological analysis. 
	Statistical analysis. 

	Results
	Cellular uptake of IR-780 iodide. 
	In vitro sonotoxic effect with IR-780 iodide on 4T1 cells. 
	Levels of ROS generation. 
	Effect of active oxygen scavengers. 
	In vivo imaging of IR-780 in tumor-bearing mice. 
	In vivo therapeutic efficacy of IR-780 plus US. 
	Histological analyses. 

	Discussion
	Conclusions
	Acknowledgements
	Author Contributions
	Figure 1.  The molecular structure of IR-780 iodide.
	Figure 2.  The cellular uptake of IR-780 iodide into 4T1 breast cancer cells.
	Figure 3.  In vitro sonotoxic effect with IR-780 iodide on 4T1 cells.
	Figure 4.  The ROS analysis of 4T1 breast cancer cells received SDT with IR-780.
	Figure 5.  Effect of active oxygen scavengers on ultrasound cell damage by SDT with IR-780.
	Figure 6.  The in vivo fluorescence imaging of tumor-bearing mice before and after injected with IR-780.
	Figure 7.  The tumor growth can be inhibited by SDT with IR-780.
	Figure 8.  Histological analysis of tumors after treated SDT with IR-780.
	Figure 9.  The possible mechanisms of tumor treatment of SDT with IR-780.



 
    
       
          application/pdf
          
             
                IR-780 Dye as a Sonosensitizer for Sonodynamic Therapy of Breast Tumor
            
         
          
             
                srep ,  (2016). doi:10.1038/srep25968
            
         
          
             
                Yekuo Li
                Qunfang Zhou
                Zhiting Deng
                Min Pan
                Xin Liu
                Junru Wu
                Fei Yan
                Hairong Zheng
            
         
          doi:10.1038/srep25968
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep25968
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep25968
            
         
      
       
          
          
          
             
                doi:10.1038/srep25968
            
         
          
             
                srep ,  (2016). doi:10.1038/srep25968
            
         
          
          
      
       
       
          True
      
   




