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Abstract: The Prandtl number is evaluated for the three-dimensional hard-sphere and one-component
plasma fluids, from the dilute weakly coupled regime up to a dense strongly coupled regime near the
fluid-solid phase transition. In both cases, numerical values of order unity are obtained. The Prandtl
number increases on approaching the freezing point, where it reaches a quasi-universal value for
simple dielectric fluids of about '1.7. Relations to two-dimensional fluids are briefly discussed.
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The Prandtl number, Pr, is a dimensionless quantity characterizing the ratio of
momentum-to-thermal diffusivity and is defined as [1,2]

Pr =
cpη

mλ
, (1)

where η is the shear viscosity coefficient, λ is the thermal conductivity coefficient, m is
the atomic mass, and cp = Cp/NkB is the reduced specific heat. The Prandtl number
is a useful intrinsic property, which can vary considerably depending on a substance.
For instance, for liquid metals Pr� 1 due to electron contribution to thermal conductiv-
ity. Usually, the Prandtl number is around 0.7 for gases, around 6.9 for water at 25 ◦C,
and can be higher for liquified noble gases [2]. Various oils are characterized by very
high values of Prandtl number, Pr� 1. Additionally, the Prandtl number can depend on
thermodynamic conditions.

The purpose of this Brief Report is to investigate how the softness of the interparticle
interaction can affect the Prandtl number. We evaluate the magnitude of the Prandtl number
for two model fluids in three dimensions with very different pairwise interaction potentials
across their corresponding phase diagrams. The hard-sphere (HS) fluid represents the
steepest pairwise interaction while the one-component plasma (OCP) model represents the
opposite limiting case of very soft long-range interaction.

The HS model is widely used to approximate structural and transport properties of
simple gases, fluids and solids [3]. The interaction potential between the two hard spheres
of diameter σ, whose centers are separated by the distance r, is infinitely large at r < σ
(impenetrable condition) and is zero otherwise. This mimics the strong repulsion that
atoms experience at short separations. The OCP model is an idealized system of point
charges immersed in a neutralizing uniform background of opposite charge (e.g., ions in the
immobile background of electrons or vice versa) and interacting via a very soft Coulomb
potential energy, e2/r, where e is the electric charge [4–6]. This model is of considerable
practical interest in the context of charged (ionized) matter, including laboratory and
space plasmas, planetary interiors, white dwarfs, liquid metals, and electrolytes, as well
as colloidal suspensions and complex (dusty) plasmas [7–9]. Both HS and OCP systems
are important reference models to test and validate various theories and approximations
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developed for condensed phases. In particular, a proper comparison can help to understand
the effects of potential softness on various processes and phenomena.

Structure and thermodynamics of HS and OCP systems are in each case characterized
by a single dimensionless parameter. In the case of HS system this is the packing fraction,
φ = (π/6)ρσ3, where ρ is the particle density. The HS fluid behaves similar to an ideal
gas at φ � 1 and exhibits the fluid-solid phase transition at higher density, with the
freezing (melting) point at φ f ' 0.494 (φm ' 0.545) [10]. In the OCP case, the coupling
parameter Γ = e2/aT, where a = (4πρ/3)−1/3 is the Wigner-Seitz radius, and T is the
temperature in energy units (kB = 1), is traditionally used to describe the phase state.
The ideal-gas behavior corresponds to Γ � 1, while at Γ & 1 the OCP demonstrates
liquid-like properties [11]. The fluid-solid phase transition occurs at Γ ' 174 [6,12,13].

Transport properties of the HS and OCP fluids are very well investigated in classical
MD simulations. Extensive data on the self-diffusion, shear viscosity, and thermal conduc-
tivity coefficients have been published and discussed in the literature. For the HS system,
we use the recent comprehensive simulation study by Pieprzyk et al. [14,15]. For the OCP
model we use the shear viscosity data tabulated by Daligault et al. [16] and thermal con-
ductivity data tabulated by Scheiner and Baalrud [17]. When expressed using Rosenfelds’
reduced units [18,19], the shear viscosity ηR = ηρ−2/3/mvT and the thermal conductivity
λR = λρ−2/3/vT coefficients have the following dependence on the HS packing fraction
and the coupling parameter (here vT =

√
T/m is the thermal velocity). In the dilute

gaseous (weakly coupled) limit they decrease with φ and Γ until the minimum is reached at
φ ∼ 0.1 and Γ ∼ 10, respectively. Then ηR and λR increase with φ and Γ. The values of ηR
at the freezing point of HS and OCP fluids are comparable (∼5). The thermal conductivity
coefficient λR is somewhat higher for the HS fluid (∼15) than for the OCP fluid (∼10) at
freezing, according to the simulation results.

In addition to viscosity and thermal conductivity data obtained previously in numeri-
cal simulations we need the specific heat values to calculate the Prandtl number (1). The
following thermodynamic identities are used for this purpose [20]:

CV =

(
∂U
∂T

)
V

, (2a)

CP − CV = −T
(∂P/∂T)2

V
(∂P/∂V)T

, (2b)

where U is the internal energy, P is the pressure, and V = N/ρ is the system volume.
For HS fluids, the internal energy is only due to kinetic contribution, U/NT = 3/2.

This implies that the reduced specific heat is just constant, cV ≡ 3/2. For the pressure we
use the Carnahan-Starling (CS) equation of state (EoS) [21]:

P
ρT

=
1 + φ + φ2 − φ3

(1− φ)3 . (3)

For the OCP we use a simple EoS proposed in Ref. [22], based on extensive Monte
Carlo simulation data from Ref. [23]. The internal energy in this approximation reads

U
NT
' 3

2
− 9

10
Γ + 0.5944Γ1/3 − 0.2786. (4)

The first term on the right-hand-side is the kinetic energy, the second term corresponds
to the so-called ion sphere model (ISM) [6,12,24], which dominates at strong coupling. ISM
assumes that due to the strong Coulomb repulsion between the particles they form a
regular quasi-crystalline structure. The system can then be approximated as a collection
of particles, each attached to a spherical piece of the uniform background of radius a,
which exactly compensates the particle charge. These compound charge-neutral spheres
are not overlapping and the system energy is just the sum of the energies of the individual
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spheres. The latter can be easily calculated via purely electrostatic arguments. The last
two correction terms in (4) improve the agreement with the numerical results [22,25].
The pressure corresponding to EoS of Equation (4) is

P
ρT
' 1− 3

10
Γ + 0.1981Γ1/3 − 0.0929, (5)

where we have used the fact that the excess (over the ideal gas) components of the pressure
and energy are related via pex = 1

3 uex.
The subsequent calculation is straightforward and the results are presented in

Figures 1 and 2.
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Figure 1. Prandtl number, Pr, of a hard-sphere (HS) fluid versus the packing fraction φ.
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Figure 2. Prandtl number, Pr, of a strongly coupled one-component plasma (OCP) fluid versus the
coupling parameter Γ.

In Figure 1, the packing fraction of the HS fluid varies from φ ' 0.05 to ' φ f .
We observe a minimum Pr ' 0.6 at φ ' 0.1. In the dilute limit we have cp = 5/2,
η = (5/16σ2)(mT/π)1/2, and λ = (75/64σ2)(T/πm)1/2, so that Pr = 2/3 (this results is
independent on the interatomic interaction potential) [1]. This asymptote is approached
from below. For φ & 0.1 the Prandtl number increases monotonically and reaches Pr ' 2
at freezing.

Similarly, in the strongly coupled OCP (Γ� 1), the Prandtl number increases mono-
tonically and reaches Pr ' 1.5 at freezing. The range of Γ shown in Figure 2 starts from
Γ = 10, to avoid the region around Γ ' 3, where the isothermal compressibility changes
sign, and hence cp and cp/cv diverge. At very weak coupling, Γ� 1, the Prandtl number
should approach the ideal gas asymptote 2/3.

Thus, in both HS and OCP fluids, the Prandtl number is around unity, indicating that
momentum and thermal diffusivities are comparable in magnitude. Close values of the
Prandtl number at the freezing of two fluids with quite different potentials of interaction
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points to a possible quasi-universality involved. The following consideration supports this
conjecture. The Andrade’s scaling [26,27] for the liquid shear viscosity at the melting point
can be cast in the form

ηm = Cρ2/3(Tmm)1/2, (6)

where C is a number that varies between 5 and 6 for various liquid metals; C ' 4.8 for
a soft repulsive Yukawa system; C ' 5.2 for a Lennard-Jones system, and C ' 5.8 for a
liquefied argon at the melting temperature [28]. We take an “average” value C = 5.5 for
further estimates. A vibrational model of heat conduction, discussed recently [29], relates
the heat conductivity coefficient to specific heat, density, and sound velocities of a fluid:

λ ' 0.16cvρ2/3(cl + 2ct), (7)

where cl and ct are the longitudinal and transverse sound velocities. For a rough simple
estimate we assume cl ∼ 2ct, which is approximately so for inverse power law interactions
with sufficiently large exponents, Lennard–Jones fluids, and some liquid metals [30].
Combining Equations (6) and (7) we get

Pr ' 17.2
cp

cv

vT
cl

∣∣∣∣
T=Tm

. (8)

The last step is to neglect the difference between cp and cv at melting conditions
(which is particularly appropriate for soft repulsive interactions and less appropriate for
HS interactions) and use the fact that (cl/vT)Tm ' 10 for many simple melts, including
Lennard–Jones, soft-spheres, hard-spheres, and liquid metals [31–33]. We obtain Pr ' 1.7
at the melting temperature. Note that although the arguments presented above apply
directly neither to the HS system (due to strong anharmonicity) nor to the OCP system (due
to non-acoustic character of the longitudinal dispersion relation), they should be relevant
to a wide class of intermediate pairwise interactions in simple dielectric fluids. Remarkably,
these arguments yield the Prandtl number at freezing just in between the values obtained
for the HS and OCP limiting regimes.

Our current understanding of transport phenomena in two-dimensional (2D) systems
is not sufficient to perform a detailed comparison similar to that in three dimensional
(3D) systems, presented above. The problem remains rather controversial. The absence
of valid transport coefficients in 2D systems was predicted based on the analysis of the
velocity autocorrelation function and of the kinetic parts of the correlation functions
for the shear viscosity and the heat conductivity [34]. However, in some special cases
finite transport coefficients have been reported in simulations and experiments. This is
for instance the case of 2D Yukawa systems, which represent important model systems
with relations to aqueous solutions of electrolytes, charged colloidal micro- and nano-
particles in various solvents and at interfaces of fluid media, as well as charged particles
in complex plasmas [7,8,35]. The Yukawa potential—Coulomb potential with exponential
screening—represents the case intermediate between the Coulomb potential and the hard-
sphere potential, which is approached at (unrealistically) strong screening. Existence of
finite shear viscosity coefficients of strongly coupled 2D Yukawa fluids was reported in
experiments with complex (dusty) plasma monolayers and molecular dynamics (MD)
simulations [36–40]. Finite values of the thermal conductivity coefficient were reported for
single layers of complex plasma in experiments [41–43] and numerical simulations [44–46].
A critical analysis of these data along with a comparison with the vibrational model of
thermal conduction adapted to the 2D geometry has been performed [47].

Our present knowledge allows us to make only a rough estimate. According to the
data shown in Figure 3 of Ref. [38], the shear viscosity coefficient near the freezing transition
can be estimated as η ' mρΩEa2, where ΩE is the characteristic Einstein frequency (and
a = 1/

√
πρ is a 2D Wigner-Seitz radius). On the other hand, the thermal conductivity

coefficient tends to λ ' ρΩEa2 [47] as freezing is approached. The 2D analog of the Dulong-
Petit law implies cv ' 2 in 2D solids and dense fluids. The difference between cv and cp
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can be neglected at strong coupling (see Figure 3 from Ref. [48]). As a result, we obtain
that Pr ' 2 near the fluid–solid phase transition of 2D Yukawa fluids, comparable to the
numerical values of 3D fluids.

Experimental measurement of the Prandtl number (along with Brinkman and Eckert
numbers) was performed in a complex plasma subject to a laser-driven flow [49]. The re-
ported value of Pr ' 0.09 appears too small, compared to what one would expect on
the basis of theoretical consideration above. We note, however, that in this experiment
profound peaks of the particles’ kinetic temperature were observed. These occurred in
the regions of high-velocity shear and were attributed to viscous heating. Particle heating
resulted in weaker coupling and this could lower the Prandtl number compared to its freez-
ing point value. Additionally, the shear viscosity coefficient we have used corresponds to
the simulations with small shear rates, which agree with equilibrium MD simulations [38].
The high shear rate simulations demonstrated that the shear viscosity coefficient can be
significantly reduced for these conditions in a manifestation of shear thinning [38,39]. This
might be the reason for the observed discrepancy.

The main results can be summarized as follows: (i) the steepness of the pairwise
interatomic interaction in simple fluids does not affect considerably the magnitude of the
Prandtl number; (ii) for simple pairwise repulsive interactions in 3D the Prandtl number
is about unity and increases in the dense fluid regime; (iii) it reaches a quasi-universal
value of '1.7 at the freezing of simple dielectric fluids; (iv) comparable values are expected
for 2D fluids, the experimental value available for a complex plasma is however lower,
probably due to shear thinning effect.
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14. Pieprzyk, S.; Bannerman, M.N.; Brańka, A.C.; Chudak, M.; Heyes, D.M. Thermodynamic and dynamical properties of the hard
sphere system revisited by molecular dynamics simulation. Phys. Chem. Chem. Phys. 2019, 21, 6886–6899. [CrossRef]
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