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Abstract
Aquaporins (AQPs) are membrane-bound proteins for water transportation and are useful for diagnosing drowning and wound
vitality in forensic pathology. Here, we examined intrathrombotic expression of AQP-1 and AQP-3 using deep vein thrombosis
models in mice. To perform immunohistochemical analyses, we used anti-AQP-1 and anti-AQP-3 antibodies. In thrombus
samples with the post-ligation intervals of 1 to 5 days, AQP-1+ areas were over 70%. At 7 days after the IVC ligation, AQP-
1+ areas became less than 50%, eventually decreasing to 11% at 21 days. At 3 days after the IVC ligation, AQP-3+ cells started to
appear from the peripheral area. Thereafter, the positive cell number progressively increased and reached to a peak at 10 days
after the IVC ligation. When the intrathrombotic AQP-1+ area was as large as the intrathrombotic collagen area or smaller, it
would indicate a thrombus age of ≥ 10 days. AQP-3+ cell number of > 30 would indicate a thrombus age of 10–14 days.
Collectively, our study implied that the detection of AQP-1 and AQP-3 would be useful for the determination of thrombus age.
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Introduction

The movement of water into and out of cells is a fundamental
biological process that keeps the water volume of human body at
approximately 70%. Aquaporins (AQPs) are membrane-bound
channelproteinsdistributed inmost tissues for thewater transport,
and there are currently 13 AQPs in mammals [1–3]. AQPs are
involved in the physiological processes such as regulation in the
ovine fetal lung liquid, urinary concentration, body fluid homeo-
stasis, brain function, glandular secretion, skin hydration, male
fertility, hearing, and vision [3, 4].Moreover,AQPs are also asso-
ciatedwith several pathological disorders such as cancer progres-
sion, angiogenesis,Parkinson’sdisease, anddischerniation [5–8].

From the forensic aspects, pulmonary thromboembolism
resulting from deep vein thrombosis (DVT) is one of the

major causes that occurs sudden unexpected death. We ex-
plored the pathophysiology of DVT from the viewpoints of
both forensic and molecular pathology [9, 10]. Subsequently,
we found key roles of several cytokines such as IFN-γ,
TNF-α, and IL-6 in the resolution of DVT using knockout
mice [11–13]. It is one of the important matters to determine
how long before a wound has been sustained or a thrombus
has been formed [14–20]. Thus, we reported several specific
cell and markers for the estimation of thrombus age [9, 10].

Previously, we demonstrated the forensic significances of
AQP-1 and AQP-3 from the determination of wound vitality or
ages [21, 22]. In the present study, we immunohistochemically
examined intrathrombotic appearance of AQP-1 and AQP-3 and
discussed the possibility of their application to thrombus age
estimation in forensic practices.

Materials and methods

Stasis-induced deep vein thrombus model

Specific pathogen-free 8- to 10-week-old male BALB/c mice
were purchased from SLC (Shizuoka, Japan). Intravenous
thrombus was induced as described previously [10–13].
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Under the deep anesthesia, an incision was made on the ab-
dominal wall, and the inferior vena cava (IVC) was exposed
and ligated. At the indicated time intervals, mice were eutha-
nized by the inhalation of over-dose isoflurane, and thrombus
samples were obtained. At each time point, 5 mice were used.
All animal experiments were approved by the Committee on
Animal Care and Use of the Wakayama Medical University.

Histopathological analyses and
immunohistochemistry

Thrombus samples were fixed in 4% formaldehyde buffered
with PBS (pH 7.2), and 4- μm-thick paraffin-embedded sec-
tions were made [10]. For histopathological analyses,
deparaffinized sections were stained with Masson’s trichrome
(MT) staining [11–13, 23]. As described previously, immuno-
staining of AQP-1, AQP-3, and F4/80 was performed by
Ventana Discovery® XT (Ventana Medical Systems, Inc.,
AZ, USA) using rabbit anti-AQP-1 polyclonal antibodies
(pAbs) (sc-20810, 2 μg/ml; Santa Cruz Biotechnology, Inc.,
Santa Cruz, CA, USA), goat anti-AQP-3 pAbs (sc-9885,
2 μg/ml; Santa Cruz Biotechnology, Inc., Santa Cruz, CA,
USA), and rat anti-F4/80 monoclonal Ab (40 μg/ml;
Serotec, Oxford, UK) [10, 11, 13].

Double-color immunofluorescence analysis

Double-color immunofluorescence analysis of AQP-3 and F4/80
was performed by Ventana Discovery®XT [13]. Deparaffinized
sections were incubated in a combination of rabbit anti-AQP-3
pAbs and rat anti-F4/80 mAb. After incubation with FITC-
labeled (3 μg/ml; Jackson ImmunoResearch Laboratories, West
Grove, PA) and Cy3-labeled secondary pAbs (0.75 μg/ml;
Jackson ImmunoResearch Laboratories), the sections were ob-
served by fluorescence microscopy [15, 17].

Morphometrical analysis of AQP-1+ area and collagen
deposition

Intrathrombotic collagen deposition was semi-quantitated as
the blue area in MT-stained sections [23]. AQP-1+ brown area
in the thrombus was evaluated by ImageJ analysis software
Ver. 1.50a (National Institute of Health, USA) and expressed
as the percentage of the whole thrombus area [24].

Semi-quantitative evaluation

Intrathrombotic AQP-3+ cells and F4/80+ cells were evaluated
semi-quantitatively, as described previously [10, 11, 25].
Immunopositive cells were enumerated in five high-power
fields (hpf; × 1000) within the thrombus; the total numbers
in the five fields were combined. All measurements were per-
formed by two examiners without prior knowledge.

Statistical analysis

All data are presented as the mean ± SEM. To compare the
values between two groups, Student’s t test orWelch t test was
performed. All statistical analyses were performed using
Statcel4 software.

Results

Intrathrombotic appearance of AQP-1+ area and
collagen content area

In the thrombus samples with the post-ligation intervals of 1 to
7 days, numerous AQP-1+ erythrocytes were found. Thereafter,
AQP-1+ erythrocyte areas were gradually decreased in accor-
dance with the thrombus ages. However, AQP-1+ erythrocyte
was still detected in 21-day-old thrombus samples (Fig. 1a). In
mirror to these observations, MT-stained blue area was hardly
found in the early time points after IVC ligation, and the blue
area was increased in the thrombus sample aged 7 days or more
(Fig. 1b).We performed the semi-quantitation assay to obtain the
AQP-1+ area andMT-stainedblue area to the thrombus formation
area on the cross section of the thrombi. In thrombus samples
with the post-ligation intervals of 1 to 5 days, AQP-1+ areas
andMT-stained blue area were over 70% and < 10%, respective-
ly. At 7 days after the IVC ligation, AQP-1+ areas became less
than 50%, eventually decreasing to 11% at 21 days (Table 1,
Fig. 1c). On the contrary,MT-stained blue area started to increase
from the peripheral area of the thrombi at day 7 ormore, reaching
to > 80% at day 21 (Table 1, Fig. 1c). In thrombus samples aged
less than 7 days, AQP-1+ area was dominant to MT-stained blue
area (Fig. 1c). Moreover, AQP-1-positive signals were detected
in the endothelial cells of neovessels later than 10 days after the
IVC ligation (Fig. 2a), and the number of AQP-1-positive
neovessels increased time dependently (Fig. 2b).

Intrathrombotic distributions of AQP-3+ cell and
macrophages

In 1-day-old thrombus samples, AQP-3+ cells could not be
detected in thrombi. At 3 days after the IVC ligation, AQP-
3+ cells started to appear from the peripheral area. Thereafter,
the positive cell number progressively increased and reached
to a peak at 10 days after the IVC ligation (Fig. 3). Moreover,
we found that AQP-3 was colocalized in F4/80+ macrophages
(Fig. 4a). Although there was no thrombus sample with the
AQP-3+ cell number of > 30 in the post-ligation intervals of ≤
7 days, all of thrombus samples aged 10 and 14 days had the
AQP-3+ cell number of > 30 (Table 2, Fig. 3b). Calculating
the ratio of AQP-3+ macrophage number to total macrophage
number, almost of thrombus samples aged ≤ 7 days had the
ratio of < 50%.
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Discussion

It is needless to say that forensic medicine is not just basic but
appliedmedicine that diagnoses the cause of death, themechanism
of wounding, and wound ages. Thus, in order to improve the
accuracy and objectivity of diagnosis, advanced scientific and
medical knowledges and information should be applied to forensic
practices. AQPs are indispensable molecule for water movement
in mammals, which prompted us to explore the relationship be-
tween drowning andAQP expression. In 2009, our research group
firstly examined intrapulmonary AQP5 expression from the as-
pects of differentiation between freshwater and saltwater drowning

[26]. Thereafter, there are several studies on the AQP-associated
forensic practices such as brain edema, pulmonary edema, and
hyper- or hypothermia [27–29].

It is well known that there are similar points such as inflam-
matory cell migration, neovascularization, and collagen accu-
mulation in pathophysiology between skin wound healing and
thrombus formation/resolution. Thus, we found several com-
mon markers for the determination of both wound ages and
thrombus ages. In addition to the differentiation between
freshwater and saltwater drowning [30, 31], we demonstrated
the usefulness of AQP-1 and AQP-3 in the determination
wound vitality or ages [21, 22]. These observations implied

Table 1 Mean intrathrombotic
AQP-1+ area and collagen content
area in each thrombus age group
(n = 4–5)

Thrombus age
(day)

% AQP-1+ area

Mean ± SEM (range)

% collagen content area

Mean ± SEM (range)

Intrathrombotic neovessels/
mm2

Mean ± SEM (range)

1 92.72 ± 3.29 (83.32–99.14) 0.64 ± 0.37 (0.17–2.09) 0 (−)
3 76.96 ± 3.09 (67.51–86.89) 0.92 ± 0.40 (0.11–1.97) 0 (−)
5 70.02 ± 4.19 (57.29–79.73) 5.51 ± 0.29 (4.52–6.32) 1.42 ± 0.57 (0–3.18)

7 45.96 ± 6.04 (29.46–63.96) 22.07 ± 2.11 (16.91–29.37) 3.05 ± 0.50 (1.86–4.41)

10 40.71 ± 4.77 (27.00–51.89) 42.70 ± 5.06 (24.88–52.84) 6.02 ± 0.95 (3.96–8.99)

14 22.43 ± 5.62 (9.82–32.04) 57.94 ± 8.55 (25.11–72.60) 21.20 ± 2.52 (14.47–25.67)

21 11.25 ± 1.43 (8.25–15.53) 82.98 ± 5.04 (73.89–94.57) 29.62 ± 4.45 (19.62–43.45)

Fig. 1 (a) Immunohistochemical detection of murine intrathrombotic AQP-1 and (b) Masson’s trichrome staining images of murine thrombi at 3, 7, 14,
and 21 days after IVC ligation. Original magnification: × 100. (c) Relationship of intrathrombotic AQP-1+ area and collagen+ area

549Int J Legal Med (2021) 135:547–553



that AQPs might be involved in thrombus formation/resolu-
tion. Thus, we tried to examine the expression of AQP-1 and
AQP-3 in stasis-induced venous thrombi of mice.
Subsequently, we found out the possibility that aquaporins
contributed in thrombogenesis/the resolution process.

AQP-1 is widely distributed in various organs, tissues,
and cells such as red blood cells, proximal tubular cells,
lung, secretory glands, skeletal muscle, and peritoneum ex-
cept for the central nervous system [32–35]. On the other
hand, aquaporin 1 contributes to the coagulation function of
the platelet, and the possibility that an aquaporin inhibitor
results in anticoagulant action is suggested [36]. The inhi-
bition of AQP-1-dependent water exchange augmented the
pressure-induced hemolysis in human erythrocytes, thus in-
dicating that AQP-1 played protective roles in pressure-
induced hemolysis [37, 38].

In early phase, thrombus samples were mainly composed
of erythrocytes, followed by leukocyte migration. Eventually,
thrombus samples were organized by collagen accumulation
and neovascularization [39]. In line with these changes, AQP-
1+ area on erythrocytes was widely observed and gradually
disappeared time dependently. Moreover, AQP-1 was

expressed in dermal capillaries [40], indicating that AQP-1
might be associated with angiogenesis but not collagen accu-
mulation [41]. Also, chronic hypertension resulted in the en-
hancement of AQP-1 expression in vascular endothelium
[42]. Actually, we could detect AQP-1+ signals in
intrathrombotic neovessels.

AQP-3 is expressed in keratinocytes and epithelial cells of
air way and urinary [43–46]. Several lines of accumulating
evidence implied that AQP-3 played important roles in tissue
repair [39, 47, 48]. AQP-3 promoted keratinocyte migration,
and AQP-3-deficient mice showed impaired skin wound
healing [39]. Similarly, the lack of AQP-3 in corneal cells
retarded corneal reepithelialization [47]. Moreover, AQP-3
was also associated in enterocyte proliferation through glyc-
erol transportation. Thus, the administration of dextran sulfate
or acetic acid causes more severe colitis in the absence of
AQP-3 [48]. In the present study, we found that
intrathrombotic macrophages expressed AQP-3, suggesting
that AQP-3 might contribute to macrophage migration. This
is supported by the evidence that the function of the macro-
phage was disturbed in AQP-3 null mice, eventually resulting
in a high mortality due to bacterial peritonitis [49].

Fig. 2 (a) AQP-1+ cells in the
endothelial cell of intrathrombotic
neovessels. (b) Changes of
intrathrombotic AQP-1+

neovessels numbers after IVC
ligation

Fig. 3 (a) Immunohistochemical detection of murine intrathrombotic AQP-3 at 1, 7, 10, and 14 days after IVC ligation and (b) changes in
intrathrombotic AQP-3+ cell numbers after IVC ligation. Original magnification: × 400
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In the present study, we could confirm intrathrombotic ex-
pression of AQP-1 and AQP-3, implying that both AQP-1 and
AQP-3 were involved in thrombogenesis and resolution.
From the aspects of forensic pathology, both AQPs would
be available markers for thrombus age estimation. Temporal
changes of intrathrombotic AQP-1 expression were mirror
image to that of intrathrombotic collagen accumulation.
When the intrathrombotic AQP-1+ area was as large as the
intrathrombotic collagen area or smaller, it would indicate a
thrombus age of ≥ 10 days. AQP-3+ cell number of > 30
would indicate a thrombus age of 10–14 days. Moreover,
AQP-3 was expressed by a part of intrathrombotic macro-
phages. The ratio of AQP-3+ macrophage number to total
macrophage number would be useful for the determination
of thrombus ages. Actually, in thrombus samples without
intrathrombotic organization, the ratio of < 50% would indi-
cate a thrombus age of ≤ 7 days.

Additionally, coronavirus disease 2019 (COVID-19) rap-
idly spread across the entire globe rapidly. The patients with
COVID-19 develop acute lung injury, resulting in the prog-
ress to respiratory failure. The initial coagulopathy of COVID-
19 presents with prominent elevation of D-dimer and fibrin/
fibrinogen degradation products, while abnormalities in

prothrombin time, partial thromboplastin time, and platelet
counts are relatively uncommon in initial presentations [50,
51]. On the autopsy findings, pulmonary embolism and DVT
were observed in the patients with COVID-19 [52–55].
COVID-19 brought down the thrombosis and led to sudden
death. In our previous papers on the IVC stasis-induced mu-
rine DVT model, we found out the roles of the cytokines,
chemokines, and their receptors which developed in neutro-
phils and macrophages, which constituted a thrombus forma-
tion and resolution [11, 12]. The thrombus age determination
would be important in order to clarify the relationship between
COVID-19 infection and thrombogenesis using human
thrombus samples and to diagnose the cause of death
correctly.
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