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Abstract

Repetition suppression (RS) is evident as a weakened response to repeated stimuli after
the initial response. RS has been demonstrated in motor-evoked potentials (MEPs) induced
with transcranial magnetic stimulation (TMS). Here, we investigated the effect of inter-train
interval (ITI) on the induction of RS of MEPs with the attempt to optimize the investigative
protocols. Trains of TMS pulses, targeted to the primary motor cortex by neuronavigation,
were applied at a stimulation intensity of 120% of the resting motor threshold. The stimulus
trains included either four or twenty pulses with an inter-stimulus interval (I1SI) of 1 s. The ITI
was here defined as the interval between the last pulse in a train and the first pulse in the
next train; the ITls used here were 1, 3, 4,6, 7, 12, and 17 s. RS was observed with all ITIs
except with the ITI of 1 s, in which the ITI was equal to ISI. RS was more pronounced with
longer ITls. Shorter ITIs may not allow sufficient time for a return to baseline. RS may reflect
a startle-like response to the first pulse of a train followed by habituation. Longer ITIs may
allow more recovery time and in turn demonstrate greater RS. Our results indicate that RS
can be studied with confidence at relatively short ITls of 6 s and above.

Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive method which externally activates
the cortex of the brain [1]. TMS may be applied to evaluate the excitability of the motor system
due to its ability to induce measurable motor-evoked potentials (MEPs), i.e., muscle twitches,
when the stimulation is targeted to the excitable motor areas of the cortex with a sufficient
stimulation intensity (SI) [2,3]. TMS can be applied as single pulses, paired pulses, or trains of
pulses. Previous stimulation pulses can transiently influence the MEP amplitudes if the inter-
stimulus interval (ISI) is short. On the other hand, long trains of repetitive TMS can induce
long-term effects on the cortex [4]. Previous single-pulse TMS studies on potential carry-over
effects on MEP amplitudes have reported that these have no major impact at ISIs of at least 5 s
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[5]. In addition to ISI, inter-train interval (ITI) may affect the cortical excitability or inhibition
or both. For example, ITT has been shown to influence the plastic effects of high-frequency
repetitive TMS [6].

When single-pulses were delivered in short trains at an ISI of 1 s, the second, third, and
fourth MEPs were found to suppress in amplitude in comparison to the first MEP in the train
[7]. This phenomenon, repetition suppression (RS), or the habituation of a startle response, is
observed as a rapid decrement of response amplitudes which may show a trend towards grad-
ual recovery [7]. RS is thought to represent a general mechanism for the brain’s reaction to
external repeated stimuli. RS has been well characterized in the auditory-evoked potentials
(AEPs) induced by auditory stimuli [8-10] and more recently in the motor responses induced
by TMS [7,11,12]. The MEP amplitudes after second, third, and fourth stimuli have been
reported to decline to 40-58% of the first MEP amplitude [7,12]. RS has also been demon-
strated in the cortical electroencephalography N100 responses generated by TMS [7] and by
sensory stimuli [13,14]. RS in the AEPs has been observed to last at least until the 30th stimulus
[8]. However, any direct comparison between the auditory, sensory, and motor systems is
complicated by the potentially different synaptic organizations of these systems. On the other
hand, the auditory sensory and the primary motor networks likely are linked since they com-
municate with each other [11].

The physiological origin of RS in the motor system is not fully understood, although previ-
ously a peripheral source was ruled out by electric stimulation of the medianus nerve [7]. The
high-amplitude of the first evoked potential may be due to a startle or an arousal effect, where
the brain reacts intensely to a new and surprising stimulus. After arousal, the brain may inter-
pret the subsequent repeated stimuli as less important and suppress reactivity to prevent an
overreaction [15]. Several mechanisms have been postulated [16,17]. RS might be modulated
by the inhibitory system, because of the lengthening of TMS-evoked corticospinal silent peri-
ods during RS, suggesting the possibility of continuously increasing GABAergic inhibition
during stimulation trains [12]. In addition, RS has been observed in the mental imagery of
movement [18] and in the repetition of hand gestures [19]. For these reasons, RS has been
claimed to represent a general short-term mechanism in the cortex to external stimuli such as
TMS [7].

Indications of abnormal sensory RS effect have been found in some diseases, e.g., in schizo-
phrenia [20] and in migraine [14] and it might also be involved in some symptoms of age-asso-
ciated memory impairment [21]. Similar findings could potentially be found in the motor
system RS and thus, it could provide a novel, non-invasive biomarker for diseases affecting the
cortical motor control, e.g., myoclonus epilepsies or Parkinson’s disease.

Thus far, in RS-MEP studies, the number of the stimuli in the trains has been limited to
four and the ITT has been 17 s in order to demonstrate the appearance of the phenomenon.
Such protocol has been derived from RS studies on the auditory system [7]. However, the
influence of the number of pulses and the duration of the ITI has not been investigated. If the
ITI does not affect RS, the measurement time in RS-MEP studies can be reduced. Therefore, in
the present study, we studied the effect of ITI on the appearance and effect size of RS in healthy
volunteers with neuronavigated TMS (nTMS). We hypothesized that the break between trains
of stimuli would be crucial for the appearance of RS, with the effects of RS being emphasized at
the longest ITIs.

Materials and methods

Fifteen healthy right-handed volunteers (8 males, age: 24-62 years) participated in the study.
Written informed consent was received from each of them and none had contraindications for
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Fig 1. The stimulation protocol included eight sequences. In the first seven sequences, 30 trains consisted
of four or twenty pulses. The inter-train interval (ITl) was determined as an interval between the last pulse in a
train and the first pulse in the next train. The ITIs were 3, 4, 6, 7, 12, and 17 s and an inter-stimulus interval (ISI)
was 1 s. In the last sequence, 120 pulses were applied with an IS of 1 s. When the last sequence was divided
into 4-pulse trains, the ITI was equal to ISI and the number of trains was 30. The sequences were applied in a
random order except the 120 pulses/train sequence which was always given last.

https://doi.org/10.1371/journal.pone.0181663.g001

nTMS or magnetic resonance imaging (MRI). The study was approved by the research ethics
committee of the Kuopio University Hospital (78/2014).

Structural T1-weighted MRIs were collected with a 3T MRI scanner (Philips Achieva 3.0T
TX, Philips, Eindhoven, The Netherlands) and utilized in the neuronavigation of TMS. A
biphasic pulse wave-form with an air-cooled figure-of-eight coil was used in the stimulation
(NBS 4.3.1, Nexstim Plc., Helsinki, Finland). An nTMS-compatible electromyography device
recorded the muscle activity from the first dorsal interosseous (FDI) muscle of the dominant,
right hand at rest. During the experiments, subjects were seated comfortably, wore earplugs,
and watched a silent video on the screen in front of them.

The stimulation began by searching for the FDI hotspot, i.e., the cortical location on the left
hemisphere capable of inducing the maximum MEP for the FDI muscle. The optimal direction
was determined by rotating the coil at the hotspot and choosing the direction that induced the
largest MEP amplitudes. Thereafter, the resting motor threshold (rMT) was measured at the hot-
spot using the iterative threshold assessment tool integrated into the stimulation software. The
tool resembles the threshold hunting algorithm [22,23]. The subsequent stimulation pulses were
targeted to the hotspot at an intensity of 120%-rMT. The stimulation protocol (Fig 1) consisted
of the following sequences applied in a randomized order: 30 trains of four pulses given at ITIs
0f3,4,6,7,12,and 17 s, and 30 trains of 20 pulses given at ITI 17 s. There were short breaks of a
few minutes between the sequences. The ITI was determined from the last pulse in a train to the
first pulse of the subsequent train (Fig 1). The ISI was 1 s within all the trains. In addition, one
train of 120 pulses at ISI of 1 s was applied at the end of each experiment. The sequence was
placed at the end of the session due to the possibility of induction of inhibitory repetitive TMS
effects [24]. This sequence was analyzed by two different techniques: it was either i) divided into
4-pulse trains as was done with the other sequences to resemble the use of 1 s ITT (hereafter
referred to as a sequence with ITI of 1 s) or ii) it was treated as a long train of 120 pulses. This
sequence had to be excluded from the analysis of one subject due to the low number of induced
MEPs. In addition, the sequence with 12 s ITI was not measured in one subject due to technical
reasons.

The preprocessing of the MEP data was performed using MegaWin software (version 3.1,
Mega Electronics Ltd, Kuopio, Finland). MEPs lower than 50 pV in amplitude were consid-
ered as no responses and only the MEPs occurring in a resting muscle were accepted in the
analyses. The muscle activity preceding stimuli was inspected visually. Approximately 2% of
the MEPs were excluded from the analysis. All the MEP amplitudes within trains were first
averaged over all trains based on their ordinal position within a train. Then the averaged
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MEPs were normalized to the first one in the train. Therefore, a low normalized MEP ampli-
tude is indicative of a high RS effect, whereas a normalized MEP amplitude close to 1 repre-
sents a lack of any major RS effect. The Linear Mixed Model with Bonferroni post-hoc analysis
was used to assess the effects of the stimulus number within a train and ITI separately for the
4-pulses/train, 20-pulses/train, and 120-pulses/train sequences. In the 120-pulse train, normal-
ized single-trial MEPs were used in the comparisons. A p-value of less than 0.05 indicated sta-
tistical significance. In the statistical analyses, SPSS Statistics 23 (IBM Corporation, Somers,
NY, USA) was utilized.

Results

The individual rMTs were 40+9% of the maximum stimulator output.

The RS effect was observed as an average decrease of 20-50% in the normalized MEP
amplitudes (p<0.001, Fig 2). The stimulus number (p<0.001, F = 78.73) and ITI (p<0.001,
F=23.79) affected the amplitudes in the 4-pulses/train sequences. RS continued even to the
20th MEP (p<0.001) in the long trains. The amplitude seemed to recover gradually after the
second MEP but did not reach the level of the first MEP during the trains.

The effect of the ITT on the MEP amplitudes is shown in Fig 2. With long ITIs (7-17 s), the
RS appeared to be more pronounced; at I'TT of 4 s, the normalized MEP amplitudes were
higher than at ITIs of 7 s (p<0.001), 12 s (p = 0.003), and 17 s (p = 0.001). On average, the nor-
malized MEP amplitudes in long-ITI sequences were 52+28% (2nd, meantstandard devia-
tion), 59+28% (3rd), and 63+30% (4th) of the normalized first MEP amplitude, whereas with
shorter ITIs (3-6 s), the normalized amplitudes were 70+28% (2nd), 69+26% (3rd), and 74
+26% (4th) of the first amplitude. The variability of normalized MEPs varied slightly with dif-
ferent ITIs being lowest with ITT of 1 s and highest with ITT of 12 s.

ITT had an effect on the amplitudes of the first MEPs in the trains (p<0.001, F = 15.89,
Table 1). On average, the first MEPs were smaller in amplitude with an ITT of 3 s than at the
other ITTs, the difference being significant with ITIs of 4, 6, 7, and 17 s (p<0.001). In addition,
the first MEPs were smaller with an I'TI of 12 s when compared to an ITI of 17 s (p = 0.015).
With an ITT of 4 s, the first MEPs were generally greater than those with ITIs of 3, 6, and 12 s
(p<0.05). Further, with an I'TI of 4 s, all MEPs in the long train of 20 pulses appeared to be
greater than those with ITIs of 3 s, 6 5, and 12 s (p<0.05). The first MEP amplitudes of the
trains remained unchanged within the sequences (p = 0.880).

RS was not observed with the ITI of 1 s, i.e., when ITI was equal to ISI (Fig 2B). Hence, the
first MEP amplitude did not differ from the 2nd-4th MEP amplitudes (p = 1.000). The mean
normalized MEP amplitudes of the 120-pulse long sequence as a function of the stimulus num-
ber are shown in Fig 2].

Discussion

We studied the effect of ITI on the appearance and effect size of RS. Agreeing with our hypoth-
esis, RS was found in MEPs with all ITTs except an ITI of 1 s, indicating that I'TI needs to be
longer than the ISI. However, according to these results, ITI does not necessarily need to be as
long as the previously used 17 s [7,11,12] which would be advantageous as short ITIs would
speed up the examination protocol. However, with long ITIs, RS seemed to be more pro-
nounced suggesting that it would be beneficial to use an ITI of at least 6 s in order to ensure a
stable and clear assessment of the RS effect.

The first MEPs in the trains remained unchanged within the sequences. Nevertheless, the
first MEP amplitudes were different with different ITIs. The ITIs of 3 and 4 s had dissimilar
effects on the first MEP amplitudes. With an ITI of 3 s, the first MEPs were smaller in
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Fig 2. Repetition suppression of the motor-evoked potentials. The effects of the stimulus order and inter-
train interval (ITI) on the amplitudes are shown. The amplitudes (meantstandard deviation) are averaged and
normalized to the first ones in the train (dashed line). Asterisks mark the amplitudes that differ from the first
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one (p<0.05) in the train according to the pairwise comparisons using Bonferroni adjustment of p-values for
correction of multiple comparisons. A) All 4-pulse sequences.B) ITI1s.C)ITI3s.D)ITI4s.E)ITI6s.F)ITI7
s.G) ITI12s. H) ITI 17 s. 1) 20-pulse sequence. J) 120 pulses/train at inter-stimulus interval (ISI) of 1 s.

https://doi.org/10.1371/journal.pone.0181663.9002

amplitude in comparison with other ITIs, whereas with an ITI of 4 s, they were larger. There-
fore, the MEPs with short ITIs appear to be less reliable for measuring RS compared with the
longer ITIs as carry-over effects may appear with short ITIs. This implies that future RS studies
should be performed with ITIs of at least 6 s to avoid potential carry-over effects. Carry-over
effects may affect other common TMS measures as well, and hence sufficient trial-to-trial
interval should be applied [5]. In a previous study, the first silent periods in the trains were
observed to be longest at the beginning of RS stimulation sequences and therefore RS protocol
might induce longer-term effects which are not, however, seen in MEPs of a resting muscle
[12].

The origin of RS is still unknown and several mechanisms have been considered in past
studies [16,17]. For example, a sharpening model, whereby fewer neurons react to the stimuli,
might have a role in RS [7,25]. Another possible explanation is that RS is evoked by an inhibi-
tory feedback from the somatosensory cortex [7]. In addition, RS might involve a similar
GABA-related mechanism as has been claimed to mediate short-interval intra-cortical inhibi-
tion and long-interval intra-cortical inhibition induced with paired-pulse TMS [12,26-28].
Moreover, GABA and RS might be connected as cortical GABA release and motor activity
were negatively correlated in a study examining habituation in rats [29]. RS is likely a general
short-term mechanism and a normal reaction to repeated stimuli, whereas longer-lasting
effects of low-frequency repetitive TMS are related to long-term depression. With short ITIs,
however, the protocol resembles low-frequency repetitive TMS, and therefore, long-term
depression might influence RS. Previously, ITT has been observed to have an effect on the plas-
tic effects of high-frequency repetitive TMS [6]. The mechanisms of this effect are most likely
different from RS mechanisms and RS is not associated to plasticity. In other forms of habitua-
tion, glutamate and dopamine neurotransmissions might be involved [30]. Furthermore, the
high-amplitudes of the first MEPs in the trains may also be explained by a startle reaction.

The potential startle also raises another question, whether it is something that is generally

Table 1. Differences between the first motor-evoked potential amplitudes with different inter-train intervals.

ITI1s
ITI3s

ITl4s

ITI6s

ITI7s

ITI12s

ITI17 s

ITI1s

-25 p=1.000
641 p<0.001
349 p = 0.005
484 p<0.001
247 p=0.222

566 p<0.001

IT3s IT4s IT6s IM7s IT12s IM17s
25 p=1.000 -641 p<0.001 -349 p=0.005 -484 p<0.001 247 p=0.222 -566 p<0.001
- -666 p<0.001 -374 -509 272 -591
p=0.001 p<0.001 p=0.082 p<0.001
666 p<0.001 - 292 158 395 76
p=0.033 p=1.000 p=0.001 p=1.000
374 p=0.001 -292 p = 0.033 - -135 102 217
p=1.000 p=1.000 p=0.390
509 p<0.001 -158 p=1.000 135 p=1.000 - 237 -82
p=0.247 p=1.000
272 p=0.082 -395 p = 0.001 -102 p=1.000 -237 p=0.247 - -319
p=0.015
591 p<0.001 -76 p=1.000 217 p=0.390 82 p=1.000 319 p=0.015 -

Mean differences between the first motor-evoked potential (MEP) amplitudes (uV) in the trains with different inter-train intervals (ITI). The differences were
obtained by subtracting the MEP amplitudes with ITIs shown in the first row from the MEP amplitudes with ITIs shown in the first column. Bonferroni
corrected pairwise comparison p-values for the differences are also shown. p<0.05 are shown in bold.

https://doi.org/10.1371/journal.pone.0181663.t001
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measured through common single-pulse MEPs, and whether it is one of the fundamental rea-
sons, why MEP amplitudes exhibit enormous variation from trial to trial and from individual
to individual, and why potentially the first response in the train of MEPs should be excluded
from analyses. However, most likely RS is mediated through several different cellular mecha-
nisms in different areas of the nervous system [15]. The mechanisms may be dependent on the
protocol parameters such as stimulus types and times.

RS was found to continue even after 20 pulses, which is in agreement with the findings
where RS has been measured from AEPs [8]. Nevertheless, the MEPs began to increase in
amplitude after the second stimulus demonstrating partial recovery. A total recovery of MEPs
to the level of the first MEP in the train was not observed indicating a slow recovery rate.
When the mean amplitudes were extrapolated with a first-degree polynomial, the MEPs would
have reached the level of the first MEP after 45 pulses.

In the continuous 120-pulse train, the single-trial MEPs quickly reached the level of the first
MEP when averaged over all subjects; in the grand average curve, the sixth MEP amplitude
was already at the level of the first one. The inter-subject variability in these 120-pulse trains
was high; in three subjects, RS lasted throughout the entire sequence (i.e., after the first MEP,
all MEP amplitudes in the train were lower than the first MEP), in five subjects the MEPs
recovered rapidly and exceeded the first MEP amplitude, and in the remaining subjects, the
amplitudes varied (Fig 2J). RS is not seen in this sequence likely due to the high inter-subject
variability and due to the fact, that only single-trial MEPs were compared in the individual
level, and the amplitudes shown represent single-trial MEP amplitudes. The RS effect may be
covered by the characteristically high variation in MEP amplitudes, as no repeated trials were
analyzed to reduce the variation. Moreover, this sequence was applied at the end of the experi-
ment and might be influenced by reduced excitability of the subjects. It has been reported that
1 Hz repetitive TMS often has an inhibitory effect on the MEP amplitudes [4,24], but inconsis-
tent reports exist [31]. However, in addition to the frequency, also the duration of the train
and SI influence the effect of repeated TMS [4].

One limitation of the present study is that the full recovery of MEPs could not be demon-
strated without at least 3 s break between trains. Therefore, pulse trains longer than 45 pulses
should likely be used if one wishes to evaluate the full recovery of the MEP amplitudes in RS.
In addition, either four or twenty pulses in a train were given and only an ISI of 1 s was
applied; different train durations and ISIs should be investigated in the future. This compro-
mise was made to avoid excessively long study sessions. We used four pulses in the trains in
order to evoke a clear and reliable effect that would last beyond two stimuli. Four pulses have
also been used in previous studies to demonstrate a prolonged RS effect [7,11,12,21]. Interac-
tion effects between ITI and train duration might exist; in the future, these could be studied by
investigating the duration of the train with different ITIs. Potentially in this way, the hyperex-
citability component caused by the arousal effect on the first pulse could be better identified
and compared with the inhibitory component. Another limitation is that the effect of SI was
not investigated. It is commonly assumed that the RS is faster and more prominent with lower
than higher intensities of stimulation [15] and a similar effect might also be found in RS of
MEPs. We considered these limitations as acceptable to keep the duration of the experiments
reasonable. Furthermore, the induced electric field direction was optimized individually for
each subject to maximize the MEPs. This may have influenced the results by optimizing and
selecting the neuronal population which was stimulated [32,33]. However, based on the maxi-
mal MEPs induced with these directions, it seems likely that the activated neurons were
directly involved in the execution of movements.

In conclusion, ITI was found to have an effect on the appearance of RS; RS was observed at
ITIs of 3-17 s, but not with an ITT of 1 s. We found that the RS effect continued to suppress
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MEP amplitudes up to the maximum number of tested 20 stimuli and a full recovery of RS
could not be demonstrated. In the future, ITIs shorter than 17 s may be used to optimize study
routines for motor system RS with TMS. Very short ITIs should be avoided, as they may
weaken the observed RS. The findings of the present study will be beneficial in the planning of
future study protocols to enable a quick and reliable assessment of the motor cortical RS, and
provide additional information on RS phenomenon in the healthy brain.

Supporting information

S1 Appendix. Data. Motor-evoked potential (MEP) amplitudes induced with transcranial
magnetic stimulation in trains of four or twenty pulses with different inter-train intervals
(ITIs).

(XLSX)
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