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Abstract
Corticosteroid hormones act in the brain to support adaptation to stress via binding to mineralocorticoid and glucocorticoid 
receptors (MR and GR). These receptors act in large measure as transcription factors. Corticosteroid effects can be highly 
divergent, depending on the receptor type, but also on brain region, cell type, and physiological context. These differences 
ultimately depend on differential interactions of MR and GR with other proteins, which determine ligand binding, nuclear 
translocation, and transcriptional activities. In this review, we discuss established and potential mechanisms that confer 
receptor and cell type-specific effects of the MR and GR-mediated transcriptional effects in the brain.
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Introduction

Corticosteroids are potent modulators of neurons and non-
neuronal brain cells. In humans, cortisol is the main corti-
costeroid hormone that is secreted upon stress, whereas in 
rodents corticosterone plays this role. Two corticosteroid 
receptors mediate the vast majority of the effects of cor-
tisol and corticosterone: high-affinity mineralocorticoid 
receptors (MRs) and lower-affinity glucocorticoid receptors 
(GRs). MR and GR action as transcription factors is thought 
to underlie many responses to cortisol in a time frame that 
spans from hours (Oitzl and Ronald de Kloet 1992) to 

weeks or even years. Fascinating studies on pain sensitivity 
showed that glucocorticoids can act as a switch, to instate 
long-term changes in pain sensitivity: the effects of remov-
ing the adrenals from rats differed dramatically depending 
on the acute levels of corticosterone at the moment of the 
operation (Ratka et al. 1988; Marinelli et al. 1997). Long-
term exposure to cortisol in Cushing’s patients is manifested 
10 years after normalization of hormone levels as distur-
bances in brain gray and white matter organization (Andela 
et al. 2013; van der Werff et al. 2014). Non-genomic effects 
have also been reported and mediate more rapid responses 
(Gutièrrez-Mecinas et al. 2011; Joëls et al. 2013; Gasser 
and Lowry 2018). The transcriptional activity of corticos-
teroid receptors is the focus of the present review article, and 
we will discuss how MR and GR specificity in response to 
ligand binding may be brought about.

Transcriptional regulation is intrinsically context depend-
ent (Weikum et al. 2017). Indeed, there is a pronounced cell 
type/regional specificity of brain corticosteroid effects, 
exemplified by the opposite directionality of GR-mediated 
Crh gene expression in hypothalamus and amygdala (Kolber 
et al. 2008) (Makino et al. 1994) (Zalachoras et al. 2016), 
and by the opposite effects of corticosteroids on dendritic 
complexity in distinct brain regions and circuits (Magariños 
and McEwen 1995; Mitra and Sapolsky 2008; Dias-Ferreira 
et al. 2009). This regional specificity is partially explained 
by different localization of the receptors (Reul and De Kloet 
1985), but mostly reflects cell type-specific differences in 
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chromatin structure and different subsets of transcriptionally 
active proteins that interact with MR and GR.

MR and GR can mediate very different, and sometimes 
opposite effects in the brain that range from effects on neuro-
transmitter responsiveness at the level of a single hippocam-
pal neuron (Joëls et al. 1991), to their protective/endangering 
effects for psychopathologies (Spijker et al. 2009; Klok et al. 
2011b). On the other hand, MR and GR share a number of 
canonical target genes, and apparently can have very simi-
lar effects on the regulation of such genes (D’Adamio et al. 
1997; Robert-Nicoud et al. 2001).

Receptor Structure

MR and GR are both members of the nuclear receptor fam-
ily of transcription factors, with the typical modular protein 
structure of a central DNA-binding domain (DBD), a C-ter-
minal ligand-binding domain (LBD), and an N-terminal 
domain (Oakley and Cidlowski 2013) (Fig. 1). The LBD 
and especially the DBD show a high level of evolutionary 
conservation between the two receptors. The basic function 
of the different domains is reasonably well understood, and 
discussed in more detail below. It is important to note that 
there are many post-translational modifications of the recep-
tors, that can substantially alter the activity of the recep-
tors (Lambert et al. 2013). These will not be extensively 
described here, but have been reviewed recently (Vandevy-
ver et al. 2014; Faresse 2014; Kino 2018).

The LBD contains the ligand-binding pocket that deter-
mines binding specificity and affinity. It also contains the 
amino acid residues that are responsible for the initiation 
of conformational changes upon binding of ligands, which 
subsequently leads to receptor translocation to the nucleus 
and enables interactions with DNA and transcription-related 

proteins in the cell nucleus. The LBD also harbors one of 
the two transcriptional output domains: the ‘AF-2’ protein 
surface that in a ligand-dependent manner interacts with 
downstream proteins that mediate the transcriptional effects 
of the receptors (Vandevyver et al. 2014; Starick et al. 2015).

The DBD is 96% identical between MR and GR. Via 
the DBD, both receptors bind to glucocorticoid response 
elements (GREs) in the DNA, which consist of two half 
sites, each of which serve as a docking site for one recep-
tor, leading to dimer formation on a full GRE. Mutations 
in the DBD dimer interface impair receptor binding (Liu 
et al. 1995; Reichardt et al. 1998), but there are GRE-binding 
sites that are independent of classical receptor dimerization 
(Adams et al. 2003; Lim et al. 2015). The high similarity 
between MR and GR DBDs allows for heterodimerization on 
the same GREs, which has been observed in neuronal cells 
(Trapp and Holsboer 1996; Mifsud and Reul 2016; Weikum 
et al. 2017). Recent studies suggest that also higher-order 
receptor complexes, i.e., tetramers, may occur at the GRE 
(Kolber et al. 2008; Presman and Hager 2017). The DBD is 
not just a rigid docking domain: DBD interaction with the 
nucleotides of the GRE can modify the exact conformation 
of the receptor, and in this way the GRE allosterically modu-
lates the transcriptional activity of the receptor (Meijsing 
et al. 2009). Regardless of the exact make-up of the receptor 
complexes on the DNA, direct binding of MR and GR to 
GREs seems to be the dominant mode of signaling for both 
transcription factors in the brain (Polman et al. 2013; van 
Weert et al. 2017; Pooley et al. 2017).

The N-terminal domain differs substantially in amino 
acid content between MR and GR. This domain is ‘intrin-
sically unstructured,’ meaning that it will adopt a particu-
lar conformation depending on molecular partners (Kumar 
and Thompson 2012). This domain is important in that it 

Fig. 1   Structure and functional domains of the mineralocorticoid 
receptor (MR) and glucocorticoid receptor (GR). MR and GR belong 
to the nuclear receptor super family and comprised an N-terminal 
domain (NTD), a DNA-binding domain (DBD), a hinge region (HR), 
and a ligand-binding domain (LBD). Ligands are bound by the gener-
ally well-conserved LBD, leading to a set of ligands (e.g., cortisol) 
which can activate both the MR and GR. The LBD also contains a 

nuclear localisation signal (NLS), which is important for transloca-
tion to the nucleus after ligand binding. The highly conserved DBD 
enables DNA binding of both the MR and GR to a glucocorticoid 
response element (GRE) on the DNA. Coregulator proteins that can 
modulate the transcriptional output can bind to both the LBD and the 
NTD, of which the latter is the most divergent domain between the 
MR and GR
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contains the AF-1 region that is able to stimulate transcrip-
tion even in the absence of ligand. Of note, the N-terminal 
domain can differ in length, as a consequence of alternative 
translation initiation (Lu and Cidlowski 2005; Viengchareun 
et al. 2007), and these translation variants may differ in their 
activities (Wu et al. 2013; Oakley et al. 2018). Because it is 
difficult to distinguish between these protein variants in vivo 
(other than with antibodies that recognize the actual N-ter-
minus), their relevance for brain function remains largely 
unknown.

Splice Variants and Alternative Promoter Activity

From the genes encoding GR and MR (Nr3c1 and Nr3c2), 
differentially spliced mRNAs can be generated resulting in 
the occurrence of receptor variants. Variation in the C-ter-
minal part of the receptor is most common, with the human 
GR beta as the best known example (van der Vaart and 
Schaaf 2009). hGRbeta does not bind cortisol, and may be 
a cause of glucocorticoid resistance (Oakley and Cidlowski 
2013). However, this receptor isoform was not detected in 
the human brain at appreciable levels, at least under non-
inflammatory conditions (Derijk et al. 2003). Also other 
splice variants within the coding region of the genes exist 
(Zennaro et al. 2001; Oakley and Cidlowski 2013). In addi-
tion, MR and in particular GR vary in their non-coding first 
exon usage. This reflects the activity of alternative promoters 
and has no consequences for the structure of the encoded 
receptor protein (Turner et al. 2006; Klok et al. 2011a). 
The GR intron 1F (1–7 in rat and mouse) has received con-
siderable attention, based on its differential CpG methyla-
tion as a consequence of early-life stress/trauma (Liu et al. 
1997; McCormick et al. 2000). It is of note that this intron 
is responsible for only a fraction of the total amount of GR 
mRNA, and its methylation should be seen as a marker for 
broader methylation of the gene (Weaver et al. 2006; Alt 
et al. 2010; Witzmann et al. 2012).

Receptor Localization

MR and GR activation clearly lead to different effects on 
brain function. The most direct way to achieve receptor-spe-
cific effects is by differential receptor expression per brain 
region. It is known since 1985 that indeed GR and MR differ 
in their brain expression patterns (Reul and De Kloet 1985). 
GR is expressed at varying degrees throughout the mouse 
brain—with the interesting exception of the suprachiasmatic 
nucleus (Rosenfeld et al. 1998; Balsalobre et al. 2000). MR 
expression on the other hand is much more restricted. It is 
very abundant in the rodent and human hippocampus where 
MR expression equals or exceeds that of GR in CA3 pyrami-
dal cells (Mahfouz et al. 2016). In addition, it is present in 

other limbic brain areas such as the prefrontal cortex and 
amygdala (Venkova et al. 2009; McEown and Treit 2011; 
Qi et al. 2013).

MR and GR are expressed in neuronal cells and there 
is compelling evidence for direct corticosteroid effects on 
specific types of neurons via both MR and GR (Joëls 1997; 
Ambroggi et al. 2009; Hartmann et al. 2016). In addition, 
GR expression has been demonstrated in oligodendrocytes 
(van Gemert et al. 2006), astroglia (Koyanagi et al. 2016; 
Piechota et al. 2017), and microglia (Tentillier et al. 2016). 
Moreover, it has been argued that MRs and GRs localized in 
the brain vasculature should be taken into account when con-
sidering brain processes (Gomez-Sanchez 2014). Here it is 
relevant that MRs in endothelial and vascular smooth muscle 
cells may be responsive to aldosterone, rather than corti-
sol. This is a consequence of the expression of the enzyme 
11β-hydroxysteroid dehydrogenase type 2 that inactivates 
endogenous corticosteroids to their 11-dehydro metabolites 
(like cortisone in the case of cortisol) (Bender et al. 2013).

Mode of Action

Receptor Activation and Nuclear Translocation

In the absence of hormone, MR and GR reside in the 
cytoplasm in a multiprotein complex. This consists of an 
Hsp90 dimer, p23, and one of the tetratricopeptide repeat 
(TPR)-containing co-chaperones: the immunophilin 
FK506-binding proteins (FKBP) 51 or 52, cyclophilin 40 
(CyP40), or protein phosphatase 5 (PP5). The assembly 
of this complex is ATP-driven and requires the involve-
ment of Hsp70, Hop, and Aha1 (Ratajczak 2015). The 
incorporation of FKBP51 in a complex with GR results 
in decreased ligand affinity of the receptor and reduced 
nuclear translocation efficiency (Wochnik et al. 2005). 
As a result, GR-induced upregulation of FKBP51 expres-
sion acts as a negative feedback mechanism to decrease 
glucocorticoid sensitivity (Davies et al. 2005; Banerjee 
et al. 2008; Cluning et al. 2013). This mechanism has been 
linked to the pathogenesis of psychiatric diseases, as a 
result of epigenetic alterations in the GRE that mediates 
FKBP51 induction (Klengel et al. 2013). The FKBP51 
gene may also be regulated via MR, as it contains a GRE 
that is bound by both MR and GR in vivo (Mifsud and 
Reul 2016). Upon ligand binding, switching from a com-
plex with FKBP51 to one including FKBP52 is a first step 
in GR activation and results in recruitment of dynein and 
nuclear translocation of the receptor (Davies et al. 2002). 
The dissociation of the phosphatase PP5 from the complex 
upon ligand binding contributes to receptor phosphoryla-
tion which modulates the transcriptional activity in a gene-
dependent manner (Wang et al. 2007). Similar effects of 
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these specific co-chaperones and ligand-induced changes 
in the composition of the multiprotein receptor complex 
have been demonstrated for MR (Gallo et al. 2007).

MRs and GRs are known to shuttle between the cytoplas-
mic and nuclear compartments and the subcellular distribu-
tion of MR and GR depends on the equilibrium between 
nuclear import and export. This equilibrium appears to be 
cell type specific, since immunofluorescent analysis in the 
rat hippocampus shows that in adrenalectomized rats, sub-
stantial nuclear localization of MR and GR was observed 
in dentate gyrus, but not in CA1 pyramidal cells (Sarabd-
jitsingh et al. 2009). Nuclear import of MR and GR starts 
with transport of the multiprotein receptor complex towards 
the nucleus along microtubules, which is followed by pas-
sage of the entire complex through the nuclear pore complex 
(NPC). Both steps require the presence of Hsp90, FKBP52, 
and dynein in the multiprotein complex, and dissociation of 
the receptors from this complex occurs in the nucleoplasm 
(Galigniana et al. 2010). Reassociation of GR with compo-
nents of this complex like p23 and hsp90 has been shown to 
disrupt the transcriptional activity of the receptor (Freeman 
and Yamamoto 2002). A role for the microtubule-associ-
ated protein doublecortin-like in the transport of GR was 
demonstrated in neuronal progenitor cells (Fitzsimons et al. 
2008). When the cytoskeleton is disrupted, the receptors 
may move to the NPC by passive diffusion. Nuclear import 
through the NPC is dependent on nuclear localization sig-
nals (NLSs). GR contains two NLSs (Picard and Yamamoto 
1987), whereas MR contains three (Walther et al. 2005). 
In both cases, the function of the most C-terminal NLS, 
located in the LBD, is dependent on ligand binding. The 
NLS sequences are bound by importins, which translocate 
to the nucleus through the NPC. Importins 7, 8, 13, and α/β 
are known to be involved in GR nuclear translocation. Once 
in the nucleus, the importins dissociate from the receptor by 
binding to RanGTP. Nuclear export of MR and GR follows 
a similar mechanism in the opposite direction. The expor-
tin Calreticulin binds in a Ca2+-dependent way to a nuclear 
export signal (NES), which is located between the two zinc 
fingers in the DBD. This complex associates with RanGTP 
and is transported out of the nucleus through the NPC.

Finding Target Sites Inside the Nucleus

Inside the nucleus, MRs and GRs interact with specific DNA 
target sites to regulate transcription. How the receptors reach 
these sites in the vast amount of DNA is starting to become 
clear. The advancement of fluorescence microscopy tech-
niques in recent years has enabled detailed analysis of the 
mobility pattern of fluorescently labeled proteins (Mueller 
et al. 2013; van Royen et al. 2011). Studies, in which fluo-
rescence recovery after photobleaching (FRAP) and single-
molecule microscopy were combined, have shown that the 

mobility of MR and GR inside the nucleus is very similar 
(Groeneweg et al. 2014). Recently, we have demonstrated 
that four different states of GR molecules inside the nucleus 
can be distinguished based on their mobility (Keizer, Schaaf 
et al., unpublished). In two of these states, receptors are dif-
fusing through the nucleus, with either a diffusion coeffi-
cient of 3.1 µm2/s, or with an approximately sixfold lower 
diffusion coefficient. In the other two states, the receptors 
are immobile, with an immobilization time of approximately 
0.5 or 3 s, and the exact times are dependent on the ligand. 
Based on functional studies, the fast diffusing population was 
interpreted as receptors freely diffusing through the nucleus 
(possibly in a complex with chaperones), and the slowly dif-
fusing population as receptors of which the diffusion is inter-
rupted by random brief (< 1 ms) interactions with DNA. The 
longer immobilizations were interpreted as (direct and indi-
rect) binding to specific DNA target sites. The results of our 
analysis further showed that GRs spend a relatively long time 
in the free diffusion state (more than 7.5 s on average). When 
they leave this state, they almost always transit to the slow 
diffusion state. Interestingly, from this slow diffusing state 
they almost always go to one of the immobile states and sub-
sequently they alternate between these states for a long period 
of time before returning to the free diffusion state. This pro-
cess of alternating between the slow diffusion and immobile 
state has been called the ‘repetitive switching’ mode.

Chromatin Interaction

MR and GR have two major modes of DNA binding: directly 
to (variations of) GREs, and indirectly by ‘tethering’ to other 
transcription factors (Fig. 2). The anti-inflammatory effects 
of corticosteroids are mediated by GR, and these depend for 
a substantial part on GR’s inhibitory binding as monomers 
to proinflammatory transcription factors, such as AP-1 and 
NF-kB. MR is much weaker in transrepressing AP-1 (Pearce 
and Yamamoto 1993), but has been shown to transrepress 
the transcription factor SP1 (Meijer et al. 2000b; Meinel 
et al. 2013). Classically direct DNA binding is considered 
as stimulating gene expression, and tethering as repressing 
this process. However, more recent evidence shows that 
tethering may also have stimulating effects. For example, 
positive interactions between GR and the transcription 
factor Stat3 occur when Stat3 interacts with DNA-bound 
GR (Langlais et al. 2012). Moreover, negative GREs exist 
and are prominent in the core of the HPA-axis, where they 
mediate GR-dependent repression of Crh and Pomc genes in 
the hypothalamus and pituitary corticotrophs, respectively. 
These negative GREs are however much more widespread, 
including an intronic nGRE that contributes to homologous 
downregulation of GR (Surjit et al. 2011; Ramamoorthy and 
Cidlowski 2013; Oakley and Cidlowski 2013).
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Genome-wide studies of MR and GR binding to DNA 
have been performed using chromatin immunoprecipita-
tion (ChIP)-sequencing analysis. Subsequent motif analysis 
of MR- and/or GR-bound DNA loci has yielded informa-
tion on whether there are GRE-like sequences present, or 
rather binding sites of potential tethering partners. Analysis 
of MR DNA binding in a human kidney cell line showed 
that, although a GRE sequence was the most prevalent motif 
among MR binding sites, the majority of MR binding sites 
involved indirect DNA binding through interaction with 
other transcription factors (FOX, EGR1, AP1, PAX5) (Le 
Billan et al. 2015). Similar data have been found for GR 
binding in many tissues (John et al. 2011; Rao et al. 2011; 
Uhlenhaut et al. 2012). In contrast, three ChIP-seq datasets 
from rat hippocampal tissue are available, and they suggest 
that in this brain region both MR and GR act predominantly 
via direct binding to GRE sequences (Polman et al. 2013; 
van Weert et al. 2017; Pooley et al. 2017).

Interestingly, often times other DNA motifs were pre-
sent in the vicinity of the GREs (Polman et al. 2013; van 
Weert et al. 2017; Pooley et al. 2017). A comparison of GRE 
sequences around proven corticosterone target genes in the 
rat hippocampus revealed a number of strong evolutionary 

conserved GRE sequences around these genes (Datson et al. 
2013). However, actual GR binding occurred at only 50% of 
these GREs, and these functional sequences were enriched 
in binding motifs for transcription factors like MAZ1 (Dat-
son et al. 2011). Later, genome-wide binding studies identi-
fied NF-1 motifs being present in 50% of the loci that were 
bound by GR. A binding motif for transcription factors of 
the NeuroD family occurred in about 15% of the GR binding 
loci (Pooley et al. 2017).

MR and GR can regulate transcription by binding to the 
same GRE sequences, as is clear for genes like Per1, Fkbp5, 
Gilz, and Sgk1 (Webster et al. 1993; D’Adamio et al. 1997; 
Chen et al. 1999; Robert-Nicoud et al. 2001; Mifsud and 
Reul 2016). However, MR and GR mediate receptor-specific 
effects, since there are intrinsically different effects of MR 
and GR activation in the same cell type, presumably via 
genomic mechanisms (Joëls et al. 1991; Karst et al. 2000). In 
a recent study, we have directly addressed MR/GR selectiv-
ity by comparing genomic binding sites in the rat hippocam-
pus for MR and GR (van Weert et al. 2017). It transpired that 
in addition to common MR/GR binding sites on the DNA, 
there are many loci that exclusively bind either GR or MR. 
In the vicinity of all MR-specific binding sites, the Atoh/

Fig. 2   General and receptor-specific interactions underlying MR and 
GR signaling. MRs and GRs reside in the cells cytoplasm bound by 
chaperone proteins (e.g., Hsp90, Fkbp5). The existence of receptor-
specific chaperone proteins is unclear (top). Upon ligand binding, this 
multiprotein complex translocates to the nucleus, where it dissociates. 
Subsequently, the MR and GR can form either homo- or heterodimers 
or function as monomers. MR and GR homo- and heterodimers bind 
to the glucocorticoid response elements (GRE) in order to exert their 

genomic effects. MR and GR-specific binding are mainly linked to 
co-occurrence with binding motifs of other transcription factors (e.g., 
NF-1 for GR and NeuroD for leading to an actual ‘MRE’) indicating 
interactions between these transcription factors. GRE-independent, 
receptor-specific monomer interactions with other transcription fac-
tors (e.g., AP-1 for GR and SP-1 for MR) are known in other tissues, 
but the presence of these is not yet shown in the brain
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NeuroD consensus sequence was found, and this sequence 
was absent from GR-specific sites. We therefore suggest that 
other transcription factors play an important role in deter-
mining the MR/GR specificity of a GRE. For other nuclear 
receptors, there are often transcription factors that bind close 
to the receptor as well, be it as necessary cell type-specific 
pioneers or as co-binders to the same loci (Krum et al. 2008; 
Biddie et al. 2011).

Our motif analysis suggests that mainly MR homodi-
mers and to some extent MR–GR heterodimers are associ-
ated with NeuroD sites (van Weert et al. 2017). We have 
observed in the brains of forebrain MR knockout animals 
that NeuroD still binds to these loci, suggesting that NeuroD 
facilitates MR binding to DNA, rather than the other way 
around (Meijer et al, unpublished observations). In cultured 
cells, DNA-bound NeuroD can potentiate both MR and GR-
dependent transcription, which suggests that the interaction 
may be indirect and dependent on tissue-specific proteins in 
the complex associated with hippocampal MR (van Weert 
et al. 2017). The fact that MR is associated with NeuroD 
also has functional implications. NeuroD factors are bHLH 
proteins that are developmentally important in shaping the 
exact phenotype of neurons (Fong et al. 2015). MR recruit-
ment to some of the NeuroD binding loci to the DNA sug-
gests that cortisol via MR is involved in determining the 
neuronal differentiation of pyramidal and granule cells in the 
hippocampus. This may be relevant during development, but 
also in adulthood, e.g., in relation to MR-mediated effects 
enhancing neuronal excitability (Joëls 1997). In conclusion, 
in hippocampal tissue selectivity of MR/GR binding to DNA 
can be explained by cis-acting transcription factors that con-
fer the specificity of a GRE sequence.

Transcriptional Activation: Target Genes 
and Coregulators

However insightful the genome-wide MR/GR binding data 
are, only a relatively small fraction of the detected binding 
sites is associated with active transcription (Vockley et al. 
2016). Apparently, gene regulation by MR and GR does not 
only depend on DNA binding. To regulate transcription, the 
receptors engage in interactions with coregulators, which 
determine both the nature and the extent of transcriptional 
regulation. Coregulators mediate and modulate transcrip-
tion in a gene and receptor, and even ligand-specific manner 
(O’Malley 2007; Rogerson et al. 2014; Atucha et al. 2015), 
and are therefore likely to contribute to the MR/GR specific-
ity of the transcriptional regulation of a gene. The expression 
and activity of coregulators is cell type specific, and this 
likely determines which sets of genes are regulated via MR 
and GR (Zalachoras et al. 2016).

MR and GR have two AF-domains which interact with 
coregulator proteins. Over 300 coregulators of AF-2 have 

been identified, but only a subset will interact with a spe-
cific nuclear receptor (Broekema et al. 2018). Accordingly, 
different knockout mice for coregulator genes show a wide 
spectrum of neuronal and behavioral phenotypes. (Stashi 
et al. 2013). The cell type-specific coregulator dependence 
was studied for GR in some detail for two splice vari-
ants of steroid receptor coactivator-1 (SRC-1), coded by 
the Ncoa1 gene. The SRC-1a and SRC-1e splice variants 
differ in their stimulation of steroids receptors in a gene 
(GRE)-specific manner (Kalkhoven et al. 1998). Oligonu-
cleotide based in situ hybridization showed wide expres-
sion of SRC-1 in the brain, with a substantial enrichment 
of SRC-1a in the hypothalamus and anterior pituitary, 
suggestive of a specific role in the regulation of neuroen-
docrine axes (Meijer et al. 2000a). Indeed, whole SRC-1 
knockout mice show gene-specific GR resistance for the 
repression of corticotrope POMC expression and hypotha-
lamic CRH expression (Winnay et al. 2006; Lachize et al. 
2009). To address the role of the specific splice variants, 
we employed exon-skipping, in which oligonucleotides 
bind to primary RNA molecules to interfere with splicing 
(Zalachoras et al. 2011). The oligonucleotides are taken 
up very effectively after local injection in the brain. In 
this way, we were able to show that increasing the ratio 
of SRC-1A:SRC-1E led to a loss of CRH induction in the 
central nucleus of the amygdala, whereas regulation of 
the FKBP5 gene via GR remained intact. Skewing SRC-1 
splice variants in the CeA also led to changes in fear mem-
ories (Zalachoras et al. 2016). Genome-wide analysis of 
gene expression in the brain has since shown that as a rule, 
coregulator expression is brain area specific (Mahfouz 
et al. 2016), and may therefore be responsible for many 
cell-specific (transcriptional) effects of corticosteroids.

There seems to be little MR/GR specificity for these 
AF-2 interacting coactivators (Broekema et  al 2018), 
which perhaps is not surprising given the similarity 
between the MR and GR ligand-binding domain. The 
AF-1 domain has been more difficult to study, but likely 
displays substantially more receptor specificity (Mei-
jer et al. 2005; Fuller et al. 2017). So far, many of the 
receptor–coregulator interactions have only been studied 
in vitro and have been validated on a limited number of 
endogenous genes. As a first approach to studying in vivo 
interactions between MR/GR and their many (potential) 
coregulators, it is possible to first evaluate the occurrence 
in the same cell type using genome-wide expression data 
for the mouse and human brain (Mahfouz et al. 2016). The 
availability of more refined (single cell based) datasets 
(Cembrowski et al. 2016), and analysis of genome-wide 
coregulator recruitment (Zwart et al. 2011) will help to 
further understand how MR and GR regulate specific sets 
of target genes under particular conditions.
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Factors Modifying Genomic Activity

In the process that goes from ligand binding to transcrip-
tional modulation, MR and GR engage in several molecu-
lar processes that involve numerous potential interacting 
proteins. In short, proven differences between MR and 
GR-dependent transcription in the brain occur at the level 
of DNA-binding sites, mediated at least in part by distinct 
interaction partners. Rather than via tethering, it seems that 
MR/GR interactions with other transcription factors occur 
in cis. Factors like NeuroD (for MR) and NF-1 (for GR) 
seem to confer binding specificity, and in this way direct 
MR and GR-specific transcriptional regulation. It is very 
likely that also receptor-specific coregulator interactions take 
place, in particular via the poorly conserved AF-1 domain 
(Fuller et al. 2017). Lastly, we cannot rule out that the well-
described differences in tethering partners are also relevant 
for the brain, in the context of in specific, activated cell 
populations like astrocytes or microglia under inflamma-
tory conditions. Cell type-specific expression of the recep-
tor (Mahfouz et al. 2016), context-specific post-translational 
modifications of all interacting partners (Vandevyver et al. 
2014), sensitivity to specific ligands, and the temporal vari-
ation of hormone availability (Stavreva et al. 2009; Conway-
Campbell et al. 2010) are additional layers on top of the 
intrinsic differences in MR/GR structure (Fig. 3).

Rapid technological developments should resolve a 
number of current questions on MR and GR-specific sign-
aling. Omics approaches like RNAseq and ChIP-seq have 
been applied at the level of whole hippocampus, or some-
times (mRNA) at microdissected cell populations from 
hippocampus (Datson et al. 2013). Single-cell sequencing 
should before long give much more detailed information on 

transcriptional responses in the whole cellular repertoire 
of brain structures (Ofengeim et al. 2017). The ATAC-seq 
approach is very promising, as it can already at this stage 
probe general chromatin accessibility in as little as 500 neu-
rons (Buenrostro et al. 2013). Large-scale profiling of in vivo 
protein interaction is possible for particular sets of inter-
actions, such as the coregulators that interact with the GR 
AF-2 (Desmet et al. 2014), and in open approaches (Lem-
piäinen et al. 2017).

Given the recent and expected future technological 
advancements, there will be a veritable mer à boire with 
respect to studies of corticosteroid receptor signaling. These 
will include applications in different brain structures, pos-
sibly from post mortem human samples, in contexts that are 
relevant either for normal adaptive responses to stressors or 
to understanding and reversing the contribution of corticos-
teroids to disease.
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Fig. 3   GR and MR interactions on the DNA. A prerequisite for 
MR/GR binding to its GRE is accessibility of the target sequence 
in a region of open chromatin. Besides binding to readily available 
regions of open chromatin, the GR is able to increase accessibility of 
closed chromatin regions via interactions with chromatin remodeling 
proteins. The MR and GR can transactivate and repress gene tran-
scription via a number of mechanisms: (1) direct DNA binding to the 
GRE leads to the recruitment of a specific set of coregulator proteins 

which together initiate transcription. (2) MR and GR bind to a DNA-
bound transcription factor (tethering) and modulate the transcription 
of the target gene. (3) MR/GR bind to the GRE and interacts with 
another DNA-bound transcription factor (co-binder) leading to recep-
tor-specific target gene regulation. Of note, the chromatin accessibil-
ity and expression of chromatin remodellers/coregulator/co-binders is 
cell-specific and will contribute to the divergent effects of MR and 
GR on transcription
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