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Abstract

The biomechanics-based Abdominal Aortic Aneurysm (AAA) rupture risk assessment has

gained considerable scientific and clinical momentum. However, such studies have mainly

focused on information at a single time point, and little is known about how AAA properties

change over time. Consequently, the present study explored how geometry, wall stress-

related and blood flow-related biomechanical properties change during AAA expansion.

Four patients with a total of 23 Computed Tomography-Angiography (CT-A) scans at differ-

ent time points were analyzed. At each time point, patient-specific properties were extracted

from (i) the reconstructed geometry, (ii) the computed wall stress at Mean Arterial Pressure

(MAP), and (iii) the computed blood flow velocity at standardized inflow and outflow condi-

tions. Testing correlations between these parameters identified several nonintuitive depen-

dencies. Most interestingly, the Peak Wall Rupture Index (PWRI) and the maximum Wall

Shear Stress (WSS) independently predicted AAA volume growth. Similarly, Intra-luminal

Thrombus (ILT) volume growth depended on both the maximum WSS and the ILT volume

itself. In addition, ILT volume, ILT volume growth, and maximum ILT layer thickness corre-

lated with PWRI as well as AAA volume growth. Consequently, a large ILT volume as well

as fast increase of ILT volume over time may be a risk factor for AAA rupture. However, tai-

lored clinical studies would be required to test this hypothesis and to clarify whether monitor-

ing ILT development has any clinical benefit.

Introduction

Degradation of elastin, collagen and apoptosis of Smooth Muscle Cells (SMC) [1] may lead to

Abdominal Aortic Aneurysm (AAA) formation in the infrarenal aorta, which in turn may

result in aortic rupture. Elective surgical or endovascular AAA repair is offered to prevent

such catastrophic events, and repair is indicated as soon as the risk of aortic rupture exceeds

the interventional risks. While the risks of intervention are reasonably predictable, assessing

AAA rupture risk remains challenging during clinical decision making. Present clinical guide-

lines recommend AAA repair as soon as the diameter reaches 55mm or grows faster than
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10mm/year [2,3], and diameter remains the most important surrogate marker of AAA risk [4].

However, a considerable portion of AAAs rupture below the size of 55mm (especially in female

patients and current smokers [5]), whereas many aneurysms larger than 55mm never rupture

[6–8]. Consequently, a more robust AAA rupture risk assessment would be of great clinical

value.

The Biomechanical Rupture Risk Assessment (BRRA) quantitatively integrates many

known risk factors for AAA rupture, allowing a more holistic risk assessment. The BRRA has

gained considerable momentum [9–18], but the derived indices are essentially based on infor-

mation at a single time point, and currently little is known about how AAA biomechanical

parameters change over time.

Almost all clinically relevant AAAs contain an intra-luminal thrombus (ILT) [19] com-

posed of fibrin and blood cells. The role of ILT is still contentious, but it is thought to play an

important role in AAA progression. Despite ILT tissue being several times softer than the

AAA wall, it may be large in volume, and thus having a significant structural impact on AAA

biomechanics. Numerical [20,21] and in-vitro experimental [22] studies reported ILT’s struc-

tural impact, and the location of Peak Wall Stress (PWS) has been associated with the site of

smallest ILT layer thickness [23]. Consequently, a thrombus layer may protect the vessel wall

from rupture by acting as a stress buffer [20,22], thus decreasing the rupture risk of the aneu-

rysm. However, when growing too thick, the ILT layer can cause the wall to weaken, for exam-

ple due to hypoxia [24]. The ILT also provides an ideal environment for proteolytic agents

[25]. These chemicals can be conveyed through the porous ILT [26,27] and diminish wall

strength by proteolytic degradation of elastin and collagen. Such a wall weakening mechanism

could explain why a thick ILT layer [28] and fast increase in ILT volume [29] have been linked

to AAA rupture risk. A recent CT-A-based study [30] reported some consequences for AAA

growth that might be linked to both aforementioned (competing) ILT-based mechanisms. The

study found slowest AAA wall expansion behind an about seven millimeter thick ILT layer, i.e.

ILT-based stress buffering seems to be fully compensated by ILT-based wall weakening once

the ILT layer reached this thickness.

The present study aims at investigating how geometry, wall stress-related and blood flow-

related biomechanical properties change during AAA expansion. Despite the fact that effects

of blood flow on AAA growth have been reported [31], the interaction between these factors is

still poorly understood. Knowledge about the time course of such parameters may lead to a

better estimate of AAA rupture risk and improve monitoring protocols of AAA patients.

Materials and methods

Patient cohort

The use of anonymized patient data was approved by the Karolinska Institute ethics commit-

tee. AAA patients from Karolinska University Hospital, Stockholm, Sweden with at least five

high resolution Computed Tomography-Angiography (CT-A) scan recordings within the last

10 years were included. Most of the CT-A scans were performed for diagnostic purposes and

AAA surveillance. Patient characteristics are listed in Table 1. To avoid temporal fluctuations,

the blood pressure was averaged over all available measurements.

Geometrical analysis

The aorta was semi-automatically segmented between the renal arteries and the aortic bifurca-

tion (A4clinics Research Edition, VASCOPS GmbH, Graz, Austria). Segmented geometries

included luminal and exterior AAA surfaces and used a predefined wall thickness that

accounted for the reported wall thinning behind the ILT [28]. Specifically, in order to account
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for a moderate wall thinning behind the ILT layer, the wall thickness was set to HWALL ¼

max 1:5 � 0:17

25
HILT

� �
mm with HILT denoting the local thickness of the ILT layer in millimeters.

Such predefined value compares reasonably to 1.56mm, an average value reported in the litera-

ture, see Table 2 in another study [32]. The reproducibility of the applied method has been

reported previously [33–35], and a typical AAA segmentation is shown in Fig 1A. The maxi-

mum diameter (dmax), the maximum ILT layer thickness (HILT max), and luminal (Vlum),

thrombus (VILT) and total (Vtot) volumes were calculated for each aortic geometry. See Table 2

for further details.

Structural analysis

Non-linear Finite Element (FE) models were used to compute the stress in the AAA wall at

Mean Arterial Pressure (MAP). Peak Wall Stress (PWS), i.e. the highest von Mises stress in the

aneurysm wall, was extracted from each simulation (A4clinics Research Edition, VASCOPS

GmbH, Graz, Austria). The FE model used hexahedral-dominated finite elements of Q1P0 for-

mulation [38] to avoid volume locking of incompressible solids. The AAA was fixed at the

Table 1. Patient characteristics and timeline of Computed Tomography-Angiography (CT-A) scans.

Patient ID Age in years at baseline Gender Blood pressure (mmHg) Number of CT-A scans (n) and follow-up times in years from baseline

A 76 male 140/80 (5) 0/0.7/2.2/2.7/3.9

B 64 female 207/113 (5) 0/2.0/3.0/4.0/5.9

C 63 male 160/100 (7) 0/0.6/1.5/2.7/4.2/5.3/8.4

D 73 female 140/80 (6) 0/0.3/0.6/1.3/3.5/3.7

https://doi.org/10.1371/journal.pone.0187421.t001

Table 2. Definition of geometrical and biomechanical parameters. Bold face notation denotes vector or tensor quantities, and the region of interest was

(manually) specified between the lower level of the renal arteries and the upper level of the aortic bifurcation, respectively.

Notation Description Remark

Geometrical parameters

dmax Maximum outer diameter perpendicular to the luminal centerline

HILT max Maximum thickness of the Intra-Luminal Thrombus (ILT) layer, i.e. maximum distance between wall-ILT

interface and the luminal surface

Vlum,VILT,Vtot Volumes of the lumen, ILT and the total vessel.

Structural biomechanical parameters

PWS Peak Wall Stress. Highest von Mises stress in the wall all over the AAA PWS = max[Wall stress]

PWRI Peak Wall Rupture Index. Highest ratio between the calculated wall stress and the estimated wall strength

all over the AAA.
PWRI ¼ max Wall stress

Wall strength

h i

Hemodynamic biomechanical parameters

vmin,vmax,

vmean

Minimal, maximal and mean magnitude of the blood flow velocity. The mean blood flow velocity is derived

by averaging the magnitude of the blood flow velocity v over the time T of the cardiac cycle, as well as the

volume of the lumen Vlum

vmin = min[|v|];

vmax = max[|v|];

vmean ¼
1

T

Z T

0

1

Vlum

Z Vlum

0

jvjdv
� �

dt

_gmin; _gmax Minimal and maximal scalar shear rates over the cardiac cycle. These quantities are derived from the

spatial velocity gradient gradv, i.e. a quantity that denotes how fast the blood velocity changes in space.

_gmin ¼ min½ _g�; _gmax ¼ max½ _g�
with _g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lsymlsym

p
and

lsym = (gradv + gradTv)/2

WSSmin,

WSSmax

Minimal and maximal magnitude of the Wall Shear Stress (WSS) vector WSS over the cardiac cycle. WSS

denotes the mechanical stress induced by blood flow onto blood-tissue (wall or ILT) interface.

WSSmin = min[|WSS|]

WSSmax = max[|WSS|]

OSI Oscillatory Shear Index. The OSI is computed from the averaged magnitude of WSS and its magnitude |

WSS|. The OSI denotes oscillatory behavior of the flow caused by complex flow patterns. Specifically, the

extreme cases OSI = 1 and OSI = 0 denote oscillating and uni-directional flows, respectively.

OSI ¼ 1

2
1 �

jAWSSVj
AWSS

� �

with AWSS ¼ 1

T

R T
0
jWSSjdt

and AWSSV ¼ 1

T

R T
0
WSSdt

https://doi.org/10.1371/journal.pone.0187421.t002
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renal arteries and at the aortic bifurcation, and no contact with surrounding organs was con-

sidered. Isotropic constitutive descriptions for the aneurysm wall [39] and the ILT [27] were

assigned to each model with the ILT stiffness gradually decreasing from the luminal to the

abluminal sites [27]. Specifically, the AAA wall was assumed to be homogenous and modeled

by the two-parameter Yeoh strain energy function ψ = c1(I1 − 3) + c2(I1 − 3)2 with I1 = tr C

denoting the first invariant of the right Cauchy-Green strain C. Here, the material parameters

c1 = 77 kPa and c2 = 1881 kPa have been used, i.e. values identified from in-vitro AAA wall

testing [39]. The ILT was modeled by an Ogden-type strain energy function c ¼ c
P3

i¼1
ðl

4

i �

1Þ with λi, i = 1,2,3 denoting the principal stretches. The constitutive properties of the ILT are

captured by c ¼ max 2:62 � 0:89

25
HILT; 1:73

� �
kPa with HILT denoting the local thickness of the

ILT layer in millimeters. This expression accounts for the gradual decrease of stiffness from

the luminal to the abluminal layer, i.e. as reported from in-vitro testing of ILT tissue [27]. The

wall-ILT interface was rigid, i.e. ILT and AAA wall displacements matched at their interface.

A wall rupture risk index was defined by locally dividing the von Mises wall stress to an esti-

mate of wall strength. AAA wall strength was assigned inhomogeneously and estimated by a

scaled version [18,34] of the strength model proposed previously [12]. Finally, the highest wall

risk index, or Peak Wall Rupture Index (PWRI), was extracted. In order to avoid picking up

PWRI artefacts, A4clinics Research Edition averages over a sufficiently large number of FE

nodes, i.e. locations where the wall rupture risk index is computed. In addition, PWRI location

is indicated in the software window, so that the user can disregard identified artefacts. Fig 1B

illustrates the typical distribution of the wall rupture risk index, and Table 2 details the investi-

gated structural biomechanical parameters.

Hemodynamical analysis

Rigid wall Computational Fluid Dynamics (CFD) models (ANSYS CFX, ANSYS Inc. US) with

reported inflow and outflow conditions [36,37] were used to predict the blood flow velocity.

Specifically, at the inlet, a plug velocity profile was derived from the inflow volume rate, and at

Fig 1. Analysis method performed for each patient at each time point. (a) Lateral Computed Tomography-

Angiography (CT-A) slice with segmented Abdominal Aortic Aneurysm (AAA). Yellow, blue and green curves

denote the luminal surface, exterior surface and wall-thrombus interface, respectively. (b) Rupture risk index plot

derived from the structural biomechanics-based analysis at Mean Arterial Pressure (MAP). (c) Wall Shear Stress

distribution at t = 0.25 s of the cardiac cycle derived from a Computational Fluid Dynamics (CFD) computation. At

the inlet and the outlets, the indicated volume flow rate and pressure versus time responses were prescribed

[36,37].

https://doi.org/10.1371/journal.pone.0187421.g001
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both outlets, the pre-defined pressure was used. Inflow volume rate and outlet pressure wave

have been taken from the literature [37]. The no-slip boundary condition was prescribed all

along the luminal surface. The AAA lumen was meshed with tetrahedral finite volume ele-

ments (about 2mm in size), and five layers of prism elements (layer thickness ranging from

0.1mm to 0.2mm) aimed at capture boundary layer flow. Estimates on the required mesh size

were based on our previous CFD work [36]. Specifically, a mesh sensitivity analysis [40] com-

pared velocity, pressure, and WSS at ten points, to assess the relation between discretization

error and element size.

The continuity and momentum equation were solved within the segment of the vascular

lumen that has been segmented from CT-A images; in total five cardiac cycles with blood of

density r ¼ 1050
kg
m3 were simulated. In addition, blood’s shear-thinning viscous properties

were captured by the Carreau-Yasuda viscosity model m ¼ m1 þ m0 � m1ð Þ½1þ ðl _gÞ
a
�

n� 1
a .

Here, _g denotes the scalar shear rate, and μ0 = 0.16 Pa s and μ1 = 0.0035 Pa s specified blood

viscosity at low and high shear rates, respectively. In addition, the time constant λ = 8.2 s, the

power law index n = 0.2128, and the Yasuda exponent a = 0.64 have been used. These parame-

ters represent blood viscosity of blood at 37 degrees Celsius, and have been used previously

[41,42]. Further details regarding the applied CFD, especially regarding verifying the plausibil-

ity of the predictions, are given elsewhere [43].

Hemodynamics parameters were extracted from the fifth calculated cardiac cycle and inside

the aneurysmatic vessel domain (MATLAB, The MathWorks Inc., Natick, Massachusetts,

USA). Specifically, the minimal (vmin), maximal (vmax) and mean (vmean) blood flow velocities,

minimal ( _gmin) and maximal ( _gmax) scalar shear rates, minimal (WSSmin) and maximal

(WSSmax) Wall Shear Stresses (WSS), as well as the Oscillatory Shear Index (OSI) [28,44] were

computed. The definition of these parameters is listed in Table 2, and Fig 1C illustrates a typi-

cal WSS distribution, for example.

Data analysis

Data analysis of biomechanical parameters was carried out within the aneurysmatic portions

of the aorta. The proximal border of the aneurysmatic domain was defined by the vessel sec-

tion at which the aorta was at least 10% larger than the normal (non aneurysmatic) aorta. The

distal border was set 2.0cm proximal to the aortic bifurcation.

The rates of change over time of the geometrical, structural and hemodynamical were also

investigated. At given time point, such quantities were calculated as the arithmetic difference

between two consecutive CT-A scans and divided by the time between the scans. The rate of

change of parameter X was denoted by ΔX.

Pooled data from all patients were statistically analyzed (SPSS, IBM Corp. Released 2013.

IBM SPSS Statistics, Armonk, USA). All parameters were tested for normality using the Sha-

piro-Wilk test (significance level: p< 0.05), and Pearson and Spearman’s correlation tests (sig-

nificance level: p< 0.05) were used to investigate simple correlation among normal and non-

normal distributed parameters, respectively. Analysis of variance (ANOVA) was used to assess

the statistical significance of multivariate linear regressions.

Results

A complete analysis of a single case at one time point took about ten hours. Figs 2 and 3 illus-

trate the development of the wall rupture risk index and WSS over time for all four patients,

respectively.

Biomechanical changes during AAA growth
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Fig 2. Development over time of the wall rupture risk index at Mean Arterial Pressure (MAP) in all four Abdominal Aortic

Aneurysm (AAA) patients.

https://doi.org/10.1371/journal.pone.0187421.g002
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Fig 3. Development over time of the Wall Shear Stress (WSS) at t = 0.25 s of the cardiac cycle, i.e. at the time of peak blood inflow, in all four

Abdominal Aortic Aneurysm (AAA) patients. Note that this time point does not correlate with the time when WSS peaks within the aneurysmatic portion

of the aorta.

https://doi.org/10.1371/journal.pone.0187421.g003
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Diameter and biomechanical rupture risk index

PWRI and dmax varied considerably over time (Fig 4). AAA C is rather stable and slightly

below the mean PWRI versus diameter curve. At baseline, AAA B has a slightly smaller diame-

ter than AAA C (49mm versus 52mm) but a higher PWRI, and within 5.9 years its diameter

grows up to 60mm. Interestingly, PWRI increases rapidly at first but slightly decreases later.

Case D is rather small at baseline (42mm) at a PWRI between the cases B and C. After 3.5 years

the diameter in case D reaches 48 mm, but subsequently both diameter and PWRI reduce.

AAA A is already large at baseline (71 mm), and within 2.2 years its diameter grows to 82 mm,

subsequently shrinking by about 4 mm.

Correlation analysis

Simple correlation analysis. Tables 3–6 summarize the results from the simple correla-

tion analysis, and Fig 5A–5D illustrates key findings with respect to dmax. Interestingly, dmax

Fig 4. Development of the maximum diameter dmax and the Peak Wall Rupture Index (PWRI) in

Abdominal Aortic Aneurysm (AAA) patients A to D. Each time point is labeled with the time in years from

baseline. For comparison, the black solid curve denotes the PWRI versus dmax characteristics that in average is

seen in AAA patients. Dotted curves denote the 5% and 95% confidence intervals, respectively.

https://doi.org/10.1371/journal.pone.0187421.g004

Table 3. Correlations of geometrical and biomechanical parameters with the maximum diameter dmax

(results are based on simple correlation analysis).

Correlation coefficient p-value

HILT max 0.755 <0.001

Vlum; Vtot; VILT 0.968; 0.936; 0.822 <0.001; <0.001; <0.001

PWS 0.891 <0.001

PWRI 0.672 0.002

_γmin; _γmean -0.773; -0.554 <0.0010.014

WSSmax; WSSmean -0.698; -0.459 0.001; 0.048

OSI 0.768 <0.001

vmin; vmean -0.695; -0.519 <0.001; 0.023

ΔVtot; ΔVILT 0.646; 0.501 0.003; 0.029

https://doi.org/10.1371/journal.pone.0187421.t003
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did not correlate with diameter growth Δdmax (Fig 4A). Instead dmax correlated with volume

growth ΔVtot, wall shear stress WSSmax, and the biomechanical risk index PWRI (Fig 5B–5D).

Moreover, trivial correlations between the diameter and volumes (Vlum, Vtot and VILT) were

found.

The scalar shear rates _gmin and _gmean as well as the wall shear stresses WSSmax (Fig 5E) and

WSSmean correlated negatively with VILT. In contrast, the biomechanical risk index PWRI (Fig

5F) and the Oscillatory Shear Index OSI showed positive correlations with VILT. In addition,

the mean blood flow velocity vmean correlated negatively with VILT.

With respect to growth parameters, the maximum ILT thickness HILT max correlated with

total volume growth ΔVtot (Fig 6C). In addition, PWRI (Fig 6B) and OSI correlated positively,

while _gmin (Fig 6A) correlated negatively with ΔVtot. Finally, simple regression with respect to

the ILT growth ΔVILT, exhibited correlations with vmax, PWRI (Fig 6D), HILT max (Fig 6C) and

_gmax (Table 3).

All identified correlations are given in the supporting information section.

Multiple correlation analysis. Multiple linear regression showed that both WSSmax

(p = 0.004) and PWRI (p = 0.001) are independent predictors of vessel volume growth. Specifi-

cally, volume growth increased with low WSSmax and high PWRI following the relation

ΔVtot = a0 + a1WSSmax + a2PWRI with parameters a0 = −47.2 (CI90%: −89.4/−5.0), a1 = −0.411

(CI90%): −1.713/0.892) and a2 = 124.1 (CI90%): 69.4/178.7), where CI90% denotes the 90% confi-

dence interval.

Similarly, high WSSmax (p = 0.023) and VILT (p<0.001) independently predicted ILT vol-

ume growth according to ΔVILT = b0 + b1WSSmax + b2VILT with the parameters b0 = −48.38

Table 4. Correlations of geometrical and biomechanical parameters with the ILT volume VILT (results

are based on simple correlation analysis).

Correlation coefficient p-value

HILT max 0.964 <0.001

Vlum; Vtot 0.804; 0.941 <0.001; <0.001

PWS 0.640 0.003

PWRI 0.693 0.001

_γmin; _γmean -0.866; -0.580 <0.001; 0.009

WSSmax; WSSmean -0.829; -0.559 <0.001; 0.013

OSI 0.518 0.023

vmean -0.584 0.009

ΔVtot; ΔVILT 0.750; 0.605 <0.001; 0.006

https://doi.org/10.1371/journal.pone.0187421.t004

Table 5. Correlations of geometrical and biomechanical parameters with the change of AAA volume

ΔVtot over time (results are based on simple correlation analysis).

Correlation coefficient p-value

HILT max 0.804 <0.001

Vlum; Vtot; VILT 0.697; 0.773; 0.750 0.001; <0.001; <0.001

PWS 0.584 0.009

PWRI 0.799 <0.001

_γmin -0.615 0.005

WSSmax -0.577 0.010

OSI 0.475 0.040

vmin -0.477 0.039

ΔVILT 0.694 0.001

https://doi.org/10.1371/journal.pone.0187421.t005
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(CI90%: −75.73/−21.03), b1 = 2.169(CI90%: 0.859/3.479) and b2 = 0.541(CI90%: 0.346/0.736),

respectively.

Discussion

Clinical and experimental observations have indicated that biomechanical conditions influ-

ence the progression of aneurysm disease [45,46]. Despite these observations, a fundamental

understanding of these interactions is still missing, particularly the role of the ILT in AAA

pathology [25] is controversially discussed. The ILT is an active biochemical entity [25] that

influences wall strength [12,24] and AAA progression [30], but also mechanically unloads the

stress in the wall [20–22]. Specifically, clinical studies have linked a thick ILT layer [28] and

fast increase in ILT volume [29] to increased AAA rupture risk. The present biomechanical

study supports these observations through a strong positive correlation of the biomechanical

risk index PWRI with both ILT volume VILT and its change over time ΔVILT. Consequently,

the suitability of monitoring ILT volume, and its change over time, as additional risk indica-

tors should be explored in larger clinical studies.

ILT formation requires platelet accumulation, and for platelets to be able to adhere to the

vessel, platelets must spend sufficient time in the vicinity of thrombogenic surfaces. Therefore,

the adhesion of platelets might be promoted at sites of low WSS [43], i.e. an inverse relation-

ship between WSS and aneurysm expansion may exist. Such an inverse relationship is con-

firmed by our study through the negative correlation of ΔVtot with WSS. Similar conclusions

have been drawn from clinical observations, experimental AAA models [46], and simulation

studies [31]

The present study found that PWRI and WSSmax independently predicted the growth of

total AAA volume ΔVtot. PWRI is strongly related to the stress in the wall, and our finding is

supported by previous experimental studies [30] showing that the growth of small AAAs is

especially sensitive to wall stress. Due to the lack of endothelial cells in AAAs [28], blood flow

properties may only indirectly promote AAA growth through stimulation of the biochemical

environment within the ILT. For example, a high OSI could support pumping proteolytic

agents through the porous ILT, which in turn could promote AAA growth.

Contrary to intuition, our data showed that the biomechanical risk does not always increase

in time. Wall stress is strongly linked to AAA shape parameters like its asymmetry [47] or,

more generally, to the surface curvatures [41]. Consequently, if growth appears to reduce AAA

asymmetry, the biomechanical risk for rupture also reduces, i.e. the aneurysm grows into a

shape of lower risk for rupture. The fluctuations in PWRI could also be explained by releasing

spots of high surface curvatures of the wall through “cracking” of wall calcifications during

AAA expansion, for example.

Table 6. Correlations of geometrical and biomechanical parameters with the change of ILT volume

ΔVILT over time (results are based on simple correlation analysis).

Correlation coefficient p-value

HILT max 0.627 0.004

Vlum; Vtot; VILT 0.625; 0.666; 0.605 0.004; 0.002; 0.006

PWS 0.524 0.021

PWRI 0.696 0.001

_γmax; _γmin 0.548; -0.471 0.015; 0.042

vmax 0.734 <0.001

ΔVtot 0.694 0.001

https://doi.org/10.1371/journal.pone.0187421.t006
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Fig 5. Influence of the maximum diameter on (a) the diameter growth Δdmax, (b) volume growth ΔVtot, (c) maximum Wall Shear Stress

WSSmax over the cardiac cycle, and (d) Peak Wall Rupture Index PWRI at Mean Arterial Pressure (MAP). Influence of the Intra-luminal

Thrombus (ILT) volume on (e) WSSmax over the cardiac cycle, and (f) PWRI at MAP.

https://doi.org/10.1371/journal.pone.0187421.g005
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The present study has several limitations. First of all our study was based on a relatively

small number of cases due to the requirement of analyzing at least five CT-A scans for each

patient. CT-A exposes patients to ionizing radiation and nephrotoxic contrast agents and

should not be performed frequently. However, CT-A is practically the only standard image

modality providing images accurate enough to build robust computational AAA models.

Another limitation is related to the quantification of aneurysm growth. AAA growth is com-

plex, and single parameters like change in maximum diameter or aneurysm volume can only

serve as surrogate growth parameters. Therefore, a more rigorous three-dimensional quantifi-

cation of the changing geometry would have been advantageous. However, CT-A images do

not provide enough tracers in the wall that can be correlated amongst the different time points

Fig 6. Influence of the change of vessel volume ΔVtot on (a) the Minimum shear rate _gmin over the cardiac cycle, (b) Peak Wall Rupture

Index PWRI at Mean Arterial Pressure (MAP). Influence of the Intra-Luminal Thrombus (ILT) volume growth rate ΔVILT on (c) maximum

thickness of the ILT layer HILT max, and (d) PWRI at MAP.

https://doi.org/10.1371/journal.pone.0187421.g006
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for a robust extraction of local wall growth. Such approach requires always some algorithms

that interpolate between a few tracers (like anatomical landmarks) [48], and the extracted

growth would always be largely influenced by algorithmic parameters, i.e. how the wall motion

is interpolated between such tracers.

Biomechanical models introduce numerous modeling assumptions and cannot (and should

not) completely reflect biomechanics of the real aneurysm. The constitution of aneurysm tis-

sue and blood was modelled using mean population data. Patient-specific tissue and blood

properties would have likely increased the accuracy of the predictions. Using a predefined

AAA wall thickness influences wall stress predictions as well as ILT thickness measurements,

and prescribing an inflow velocity profile influences blood flow predictions. Despite some of

this information could be measured in the individual patient, the need for doing so remains

unclear, and more research would be required to explore the sensitivity of our study results to

such modeling assumptions. However, as these assumptions were used consistently across all

patients they might not influence our conclusions.

Supporting information

S1 Table. Simple correlation analysis. Correlations amongst geometry, wall stress-related
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